The Notion of Explanation in Gödel’s Philosophy of Mathematics

Abstrakt

DOI: http://doi.org/10.26333/stsen.xxx.05

The article deals with the question of in which sense the notion of explanation (which is rather characteristic of empirical sciences) can be applied to Kurt Gödel’s philosophyof mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character (in particular, they are independent of our activities). One of these facts is the solvability of all well-formulated mathematical problems –and this fact requires a clarification. The assumptions on which Gödel’s position is based are: (1) metaphysical realism: there is a mathematical universe, it is objective and independent of us; (2) epistemological optimism: we are equipped with sufficient cognitive power to gain insight into the universe Gödel’s concept of a solution to a mathematical problem is much broaderthan of a mathematical proof –it is rather about finding reliable axioms that lead to a (formal) solution of the problem. I analyze the problem presented in the article, taking as an example of the continuum hypothesis.

PDF (English)

Bibliografia

Brumfiel, G. W. (1979). Partially Ordered Rings and Semi-Algebraic Geometry. Cambridge: Cambridge University Press.

Easton, W. B. (1970). Powers of Regular Cardinals. Annals of Mathematical Logic, 1(2), 139–178.

Ebbinghaus, H-D., Fraser, C. G., Kanamori, A. (2010). Ernst Zermelo. Collected Works. Gesammelte Werke. Vol. I. Berlin, Heidelberg: Springer-Verlag.

Ellentuck, E. (1975). Gödel’s Square Axioms for the Continuum. Mathematische Annalen, 216(1), 29–33.

Feferman, S. (2000). Why the Programs for New Axioms Need to Be Questioned. The Bulletin of Symbolic Logic, 6, 401–413.

Friedman, H. (2000). Normal Mathematics Will Need New Axioms. The Bulletin of Symbolic Logic, 6(4), 434–446.

Gödel, K. (193?). Undecidable Diophantine Propositions. In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 164–175). Oxford: Oxford University Press.

Gödel, K. (1933). The Present Situation in the Foundations of Mathematics. In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 45–53). Oxford: Oxford University Press.

Gödel, K. (1939b). Vortrag Göttingen (Lecture at Göttingen). In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 127–155). Oxford: Oxford University Press.

Gödel, K. (1944). Russell’s Mathematical Logic. In: P. A. Schlipp (Ed.), The philosophy of Bertrand Russell. Library of Living Philosophers (vol. 5, pp. 123–153). La Salle, Illinois: Open Court Publishing Company.

Gödel, K. (1946). Remarks Before the Princeton Bicentennial Conference on Problems in Mathematics. In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume II (pp. 150–153). Oxford: Oxford University Press.

Gödel, K. (1951). Some Basic Theorems on the Foundations of Mathematics and Their Implications. In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 304–323). Oxford: Oxford University Press.

Gödel, K. (1953/9). Is Mathematics Syntax of Language? In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 334–363). Oxford: Oxford University Press.

Gödel, K. (1961). The Modern Development of the Foundations of Mathematics in the Light of Philosophy. In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 374–387). Oxford: Oxford University Press.

Gödel, K. (1964). What is Cantor’s Continuum Problem? In: P. Benacerraf, H. Putnam (Eds.), Philosophy of Mathematics: Selected Readings (pp. 258–272). Englewood Cliffs, New Jersey, Prentice-Hall, Inc.

Gödel, K. (1970a). Some Considerations Leading to the Probable Conclusion, That the True Power of the Continuum Is 2. In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 420–421). Oxford: Oxford University Press.

Gödel, K. (1970b). A Proof of Cantor’s Continuum Hypothesis from a Highly Plausible Axiom About Orders of Growth. In: S. Feferman (Ed.), Kurt Gödel: Collected Works: Volume III (pp. 422–423). Oxford: Oxford University Press.

Hafner, J., Mancosu, P. (2008). Beyond Unification, In: P. Mancosu (Ed.), Philosophy of Mathematical Practice (pp. 151–178). Oxford: Oxford University Press.

Hamkins, J. D. (2012). The Set-Theoretic Multiverse. Review of Symbolic Logic, 5(3), 416–449.

Hammond A. L. (1978). Mathematics—Our Invisible Culture. In: L. Steen (Ed), Mathematics Today. Twelve Informal Essays (pp. 15–34.). New York, Heidelberg, Berlin: Springer-Verlag.

Hardy, G. H. (1929). Mathematical Proof. Mind, 38(149), 1–25.

Hauser, K. (2002). Is Cantor’s Continuum Problem Inherently Vague? Philosophia Mathematica, 10(3), 257–292.

Hodges, W. (2013). Alan Turing. The Stanford Encyclopedia of Philosophy. Retrieved from: https://plato.stanford.edu/archives/win2013/entries/turing/

Kant, I. (1957). Krytyka czystego rozumu (vol. 1). Warszawa: PWN.

Krajewski, S. (2003). Twierdzenie Gödla i jego interpretacje filozoficzne. Warszawa: Wydawnictwo IFiS PAN.

Levy, A., Solovay, R. M. (1967). Measurable Cardinals and the Continuum Hypothesis. Israel Journal of Mathematics, 5(4), 234–248.

Maddy, P. (1988a). Believing the Axioms. I. Journal of Symbolic Logic, 53(2), 481–511.

Maddy, P. (1988b). Believing the Axioms. II. Journal of Symbolic Logic, 53(3), 736–764.

Maddy, P. (1993) Does V Equal L? Journal of Symbolic Logic, 58(1), 15–41.

Maddy, P. (2000). Does Mathematics Need New Axioms? The Bulletin of Symbolic Logic, 6(4), 413–422.

Mancosu, P. (2008). Mathematical Explanation: Why It Matters. In: P. Mancosu (Ed.), Philosophy of Mathematical Practice (pp. 134–150). Oxford: Oxford University Press.

Mancosu, P. (2018). Explanation in Mathematics. The Stanford Encyclopedia of Philosophy. Retrieved from: https://plato.stanford.edu/archives/sum2018/entries/mathematics-explanation/

Marciszewski, W. (2018). Does Science Progress Towards Ever Higher Solvability Through Feedbacks Between Insights and Routines? Studia Semiotyczne, 32(2), 153–185.

McCarty, D. C. (2004). David Hilbert and Paul du Bois-Reymond: Limits and Ideals. In: G. Link (Ed.), One Hundred Years of Russell’s Paradox (pp. 517–532). Berlin, New York: Walter de Gruyter.

Mordell, L. (1959). Reflections of a Mathematician. Montreal: Canadian Mathematical Congress.

Murawski, R. (1984). G. Cantora filozofia teorii mnogości. Studia Filozoficzne, 11–12(8–9), 75–88.

Paris, J., Harrington, L. (1977). A Mathematical Incompleteness in Peano Arithmetic. In: J. Barwise (Ed.), Handbook of Mathematical Logic (pp. 1133–1142). Amsterdam: North-Holland.

Pogonowski, J. (2006). Projekt logiki infinitarnej Ernsta Zermela. Investigationes Linguisticae, XIV, 18–49.

Purkert, W. (1989). Cantor’s Views on the Foundations of Mathematics. In: D. E. Rowe, J. McCleary (Eds.), The History of Modern Mathematics (vol. 1, pp. 49–65). San Diego: Academic Press.

Rav, Y. (1999). Why Do We Prove Theorems? Philosophia Mathematica, 7(3), 5–41.

Rota, G.-C. (1997). The Phenomenology of Mathematical Proof. Synthese, 111(2), 183–196.

Solovay, R. M. (1995). Introductory Note to *1970a, *1970b, *1970c. In: S. Feferman (red.), Kurt Gödel: Collected Works: Volume III (pp. 405–420). Oxford: Oxford University Press.

Steel, J. R. (2000). Mathematics Needs New Axioms. The Bulletin of Symbolic Logic, 6(4), 422–433.

Tieszen R. (1998). Gödel’s Path from the Incompleteness Theorems (1931) to Phenomenology (1961). The Bulletin of Symbolic Logic, 4(2), 181–203.

Wang, H. (1987). Reflections on Kurt Gödel, Cambridge: MIT Press.

Wang, H. (1996). A Logical Journey. From Gödel to Philosophy. Cambridge: MIT Press.

Woodin, W. H. (1999). The Axiom of Determinacy, Forcing Axioms and the Nonstationary Ideal. Berlin, New York: de Gruyter.

Woodin, W. H. (2001). The Continuum Hypothesis. Parts I and II. Notices of the AMS, 48(6–7), 567–576, 681–690.

Wójtowicz, K. (2002). Platonizm matematyczny. Studium filozofii matematyki Kurta Gödla. Tarnów: Biblos.