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1. Introduction 

Gödel’s incompleteness theorem is one of the most remarkable and profound 
discoveries in the 20th century, an important milestone in the history of modern 
logic. Gödel’s incompleteness theorem has wide and profound influence on the 
development of logic, philosophy, mathematics, computer science and other 
fields, substantially shaping mathematical logic as well as foundations and phi-
losophy of mathematics from 1931 onward. The impact of Gödel’s incomplete-
ness theorem is not confined to the community of mathematicians and logicians, 
and it has been very popular and widely used outside mathematics. 

Gödel’s incompleteness theorem raises a number of philosophical questions 
concerning the nature of mind and machine, the difference between human intel-
ligence and machine intelligence, and the limit of machine intelligence. It is well 
known that Turing proposed a convincing analysis of the vague and informal 
notion of “computable” in terms of the precise mathematical notion of “comput-
able by a Turing machine”. So we can replace the vague notion of computation 
with the mathematically precise notion of a Turing machine. In this paper, fol-
lowing Koellner in (2018), we stipulate that the notion “the mind cannot be 
mechanized” means that the mathematical outputs of the idealized human mind 
outstrip the mathematical outputs of any Turing machine.2 A popular interpreta-
tion of Gödel’s first incompleteness theorem (G1) is that G1 implies that the 
mind cannot be mechanized. The Mechanistic Thesis claims that the mind can be 
mechanized. In this paper, we will not examine the broad question of whether the 
mind can be mechanized, which has been extensively discussed in the literature 
(e.g. Penrose, 1989; Chalmers, 1995; Lucas, 1996; Lindström, 2006; Feferman, 
2009; Shapiro, 1998; 2003; Koellner, 2016; 2018; 2018; Krajewski, 2020). In-
stead we will only examine the question of whether G1 implies that the mind 
cannot be mechanized. 

This is a paper for a special issue of Semiotic Studies devoted to Krajewski’s 
paper (2020). We first give a summary of Krajewski’s work in (2020). In (2020), 
Krajewski gave a detailed analysis of the alleged proof of the nonmechanical, or 
non-computational, character of the human mind based on Gödel’s incomplete-
ness theorem. Following Gödel himself and other leading logicians, Krajewski 
refuted the Anti-Mechanist Arguments (the Lucas Argument and the Penrose 
Argument), and claimed that they are not implied by Gödel’s incompleteness 
theorem alone. Moreover, Krajewski (2020) demonstrated the inconsistency of 
Lucas’s arithmetic and the semantic inadequacy of Penrose’s arithmetic. Krajew-
ski (2020) also discussed two consequences of Gödel’s incompleteness theorem 
directly related to Anti-Mechanist Arguments: our consistency is not provable 
(Gödel’s Undemonstrability of Consistency Thesis), and we cannot define the 

 
2 In this paper, we will not consider the performance of actual human minds, with 

their limitations and defects; but only consider the idealized human mind and look at what 
it can do in principle (Koellner, 2018a, p. 338). 
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natural numbers. The discussion in Krajewski’s paper is mainly from the philo-
sophical perspective. However, the discussion in this paper is mainly from the 
logical perspective based on some recent advances on the study of Gödel’s in-
completeness theorem and Gödel’s Disjunctive Thesis. Basically, we agree with 
Krajewski’s analysis of the Anti-Mechanist Arguments and his conclusion that 
Gödel’s incompleteness theorem alone does not imply that the Anti-Mechanist 
Arguments hold. However, some discussions in (2020) are vague. Moreover, in 
the recent work on Gödel’s Disjunction Thesis one finds precise versions which 
can actually be proved. The motivation of this paper is to give some supplemen-
tary notes to Krajewski’s recent paper (2020) on the Anti-Mechanist Arguments 
based on Gödel’s incompleteness theorem. 

This paper is structured as follows. In Section 2, we review some notions and 
facts we will use in this paper. In Section 3, we give some supplementary notes 
to Section 5–6 in Krajewski’s (2020) and classify some misunderstandings of 
Gödel’s incompleteness theorem related to Anti-Mechanist Arguments. In Sec-
tion 4, we give a more detailed discussion of Gödel’s Disjunctive Thesis as in 
Section 7 in Krajewski’s (2020) based on recent advances of the study on Gö-
del’s Disjunctive Thesis in the literature. In Section 5, we give a more precise 
discussion of Gödel’s Undemonstrability of Consistency Thesis and the defina-
bility of natural numbers as in Section 8 in Krajewski’s paper. 

2. Preliminaries 

In this section, we review some basic notions and facts used in this paper. 
Our notations are standard. For textbooks on Gödel’s incompleteness theorem, 
we refer to (Enderton, 2001; Murawski, 1999; Lindström, 1997; Smith, 2007; 
Boolos, 1993). There are some good survey papers on Gödel’s incompleteness 
theorem in the literature (Smoryński, 1977; Beklemishev, 2010; Kotlarski, 2004; 
Visser, 2016; Cheng, in press). 

In this paper, we focus on first order theory based on countable language, and 
always assume the arithmetization of the base theory with a recursive set of non-
logical constants. For a given theory T, we use L(T ) to denote the language of T. 
For more details about arithmetization, we refer to (Murawski, 1999). Under the 
arithmetization, any formula or finite sequence of formulas can be coded by 
a natural number (called the Gödel number of the syntactic item). In this paper, 
⸢φ⸣ denotes the numeral representing the Gödel number of φ. 

We say a set of sentences Σ is recursive if the set of Gödel numbers of sen-
tences in Σ is recursive.3 A theory T is decidable if the set of sentences provable 
in T is recursive; otherwise it is undecidable. A theory T is recursively axiomatiz-
able if it has a recursive set of axioms, i.e. the set of Gödel numbers of axioms of 
T is recursive. A theory T is finitely axiomatizable if it has a finite set of axioms. 
A theory T is essentially undecidable iff any recursively axiomatizable consistent 

 
3 For ease of exposition, we will pass back and forth between the two. 
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extension of T in the same language is undecidable. We say a sentence φ is inde-
pendent of T if T ⊬ φ and T ⊬ ¬φ. A theory T is incomplete if there is a sentence 
φ in L(T) which is independent of T; otherwise, T is complete (i.e., for any sen-
tence φ in L(T), either T ⊢ φ or T ⊢ ¬φ). Informally, an interpretation of a theory 
T in a theory S is a mapping from formulas of T to formulas of S that maps all 
axioms of T to sentences provable in S. If T is interpretable in S, then all sentenc-
es provable (refutable) in T are mapped, by the interpretation function, to sen-
tences provable (refutable) in S. Interpretability can be accepted as a measure of 
strength of different theories. For the precise definition of interpretation, we refer 
to (Visser, 2011) for more details. 

Theorem 2.1 (Tarski, Mostowski, Robinson, 1953, Theorem 7, p. 22). Let T1 and 
T2 be two consistent theories such that T2 is interpretable in T1. If T2 is essentially 
undecidable, then T1 is also essentially undecidable. 

Robinson Arithmetic Q was introduced in (1953) by Tarski, Mostowski and 
Robinson as a base axiomatic theory for investigating incompleteness and unde-
cidability. 

Definition 2.2. Robinson Arithmetic Q is defined in the language {0, S, +, ·} 
with the following axioms: 

Q1: ∀x∀y (Sx = Sy → x = y); 
Q2: ∀x (Sx ≠ 0); 
Q3: ∀x (x ≠ 0 → ∃y (x = Sy)); 
Q4: ∀x∀y (x + 0 = x); 
Q5: ∀x∀y (x + Sy = S(x + y)); 
Q6: ∀x (x · 0 = 0); 
Q7: ∀x∀y (x · Sy = x · y + x). 

The theory PA consists of axioms Q1–Q2, Q4–Q7 in Definition 2.2 and the 
following axiom scheme of induction: 

(φ(0) ∧ ∀x(φ(x) → φ(Sx))) → ∀xφ(x), 

where φ is a formula with at least one free variable x. 
Let 𝔑𝔑 = 〈ℕ, +, ×〉 denote the standard model of PA. We say φ ∈ L(PA) is 

a true sentence of arithmetic if 𝔑𝔑 ⊨ φ. We define that Th(ℕ, +, ·) is the set of 
sentence φ in L(PA) such that 𝔑𝔑  ⊨  φ. Similarly, we have the definition of 
Th(ℤ, +, ·), Th(ℚ, +, ·) and Th(ℝ, +, ·). 

We introduce a hierarchy of L(PA)-formulas called the “arithmetical hierar-
chy” (Murawski, 1999; Hájek, Pudlák, 1993). Bounded formulas (Σ0

0, or Π0
0, or 
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Δ0
0

 formula) are built from atomic formulas using only propositional connectives 
and bounded quantifiers (in the form ∀x ≤ y or ∃x ≤ y). A formula is Σn+1

0  if it 
has the form ∃xφ where φ is Π𝑛𝑛

0. A formula is Π𝑛𝑛+1
0  if it has the form ∀xφ where 

φ is Σn
0. Thus, a Σn

0-formula has a block of n alternating quantifiers, the first one 
being existential, and this block is followed by a bounded formula. Similarly for 
Π𝑛𝑛

0-formulas. A formula is Δn
0

 if it is equivalent to both a Σn
0

 formula and a Π𝑛𝑛
0

 
formula. 

A theory T is said to be ω-consistent if there is no formula φ(x) such that 
T ⊢ ∃xφ(x) and for any n ∈ ω, T ⊢ ¬φ(n�). A theory T is 1-consistent if there is no 
such formula φ(x) which is Δ1

0 . A theory T is sound iff for any formula φ, if T ⊢ φ, 
then 𝔑𝔑 ⊨ φ; a theory T is Σ1

0-sound iff for any Σ1
0

 formula φ, if T ⊢ φ, then 𝔑𝔑 ⊨ φ. 
In the following, unless stated otherwise, let T be a recursively axiomatizable 

consistent extension of PA. There is a formal arithmetical formula ProofT(x,y) 
(called Gödel’s proof predicate) which represents the recursive relation 
ProofT(x,y) saying that y is the Gödel number of a proof in T of the formula with 
Gödel number x. Define ProvT(x) ≜ ∃yProofT(x,y). Since we will discuss gen-
eral provability predicates based on proof predicates, now we give a general 
definition of proof predicate which is a generalization of properties of Gödel’s 
proof predicate ProofT(x,y). 

Definition 2.3. We say a formula PrfT(x,y) is a proof predicate of T if it satisfies 
the following conditions:4 

(1) PrfT(x,y) is Δ1
0(PA);5 

(2) PA ⊢ ∀x(ProvT(x) ↔ ∃yPrfT(x,y)); 
(3) for any n ∈ ω and formula φ, ℕ ⊨ ProofT(⸢φ⸣, n) ↔ PrfT(⸢φ⸣, n); 
(4) PA ⊢ ∀x∀x’∀y(PrfT(x,y)∧PrfT(x’, y) → x = x’). 

We define the provability predicate PrT(x) from a proof predicate PrfT(x,y) 
by ∃yPrfT(x,y), and the consistency statement Con(T ) from a provability predi-
cate PrT(x) by ¬PrT(⸢0 ≠ 0⸣). 

D1: If T ⊢ φ, then T ⊢ PrT(⸢φ⸣); 
D2: If T ⊢ PrT(⸢φ → ϕ⸣) → (PrT(⸢φ⸣) → PrT(⸢ϕ⸣)); 
D3: T ⊢ PrT(⸢φ⸣) → PrT(⸢PrT(⸢φ⸣)⸣). 

 
4 We can say that each proof predicate represents the relation “y is the code of a proof 

in T of a formula with Gödel number x”. 
5 We say a formula φ is Δ1

0(PA) if there exists a Σ1
0

 formula α such that PA ⊢ φ ↔ α, 
and there exists a Π1

0 formula β such that PA ⊢ φ ↔ β. 
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D1–D3 is called the Hilbert-Bernays-Löb derivability condition. Note that D1 
holds for any provability predicate PrT(x). We say that provability predicate 
PrT(x) is standard if it satisfies D2 and D3. In this paper, unless stated otherwise, 
we assume that Con(T ) is the canonical arithmetic sentence expressing the con-
sistency of T and Con(T) is formulated via a standard provability predicate. 

The reflection principle for T, denoted by RfnT, is the schema PrT(⸢φ⸣) → φ 
for every sentence φ in L(T ). The reflection principle for T restricted to a class of 
sentences Γ will be denoted by Γ-RfnT. 

Let α(x) be a formula in L(T). We can similarly define the provability predi-
cate and consistency statement w.r.t. formula α(x) as follows. Define the formula 
Prfα(x,y) saying “y is the Gödel number of a proof of the formula with Gödel 
number x from the set of all sentences satisfying α(x)”. Define the provability 
predicate Prα(x) of α(x) as ∃yPrfα(x,y) and the consistency statement Conα(T) 
as ¬Prα(⸢0 ≠ 0⸣). We say that formula α(x) is a numeration of T if for any n, 
T ⊢ α(n�) iff n is the Gödel number of some sentence in T. 

3. Some notes on Gödel-Based Anti-Mechanist Arguments 

There has been a massive amount of literature on the Anti-Mechanist Argu-
ments due primarily to Lucas and Penrose (see Lucas, 1961; Penrose; 1989) 
which claim that G1 shows that the human mind cannot be mechanized. The 
Anti-Mechanist Argument began with Nagel and Newman in (2001) and contin-
ued with Lucas’s publication in (1961). Nagel and Newman’s argument was 
criticized by Putnam in (1960) and earlier by Gödel (Feferman, 2009), while 
Lucas’s argument was much more widely criticized in the literature. See Fefer-
man (2009) for a historical account and Benacerraf (1967) for an influential 
criticism of Lucas. Penrose proposed a new argument for the Anti-Mechanist 
Argument in (1994; 2011). Penrose’s new argument is the most sophisticated and 
promising Anti-Mechanist Argument which has been extensively discussed and 
carefully analyzed in the literature (Chalmers, 1995; Feferman, 1995; Lindström, 
2001; 2006; Shapiro, 1998; 2003; Gaifman, 2000; Koellner, 2016; 2018a; 2018b, 
etc.) 

Most philosophers and logicians believe that variants of the arguments of Lu-
cas and Penrose are not fully convincing. However, they do not agree so well on 
what is wrong with arguments of Lucas and Penrose. One strength of Krajew-
ski’s paper (2020) is that it provides a detailed review of the history of Anti-
Mechanist Arguments based on Gödel’s incompleteness theorem (Krajewski, 
2020, Section 3) and an analysis of these Gödel-Based Anti-Mechanist Argu-
ments (e.g. Lucas’s argument in Section 4 and Penrose’s argument in Section 6 in 
[Krajewski, 2020]). In this section, based on Krajewski’s work, we give some 
supplementary notes of Krajewski’s Sections 5–6. 

For us, the Gödel-Based Anti-Mechanist Argument comes from some misin-
terpretations of Gödel’s incompleteness theorem. To understand the source of 
these misinterpretations or illusions, we should first have correct interpretations 
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of Gödel’s incompleteness theorem. In the following, we first review some im-
portant facts about Gödel’s incompleteness theorem which are helpful to clarify 
some misinterpretations of Gödel’s incompleteness theorem. 

Gödel proved his incompleteness theorem in (1931) for a certain formal sys-
tem P related to Russell-Whitehead’s Principia Mathematica and based on the 
simple theory of types over the natural number series and the Dedekind-Peano 
axioms (Beklemishev, 2010, p. 3). Gödel’s original first incompleteness theorem 
(1931, Theorem VI) says that for formal theory T formulated in the language of 
P and obtained by adding a primitive recursive set of axioms to the system P, if 
T is ω-consistent, then T is incomplete. The following theorem is a modern re-
formulation of Gödel’s first incompleteness theorem. 

Theorem 3.1 (Gödel’s first incompleteness theorem (G1)). If T is a recursively 
axiomatized extension of PA, then there exists a Gödel sentence G such that: 

(1) if T is consistent, then T ⊬ G; 
(2) if T is ω-consistent, then T ⊬ ¬G. 

Thus if T is ω-consistent, then G is independent of T and hence T is incom-
plete. If T is consistent, Gödel sentence G is a true Π1

0
 sentence of arithmetic. 

Gödel’s proof of G1 is constructive: one can effectively find a true Π1
0

 sentence 
G of arithmetic such that G is independent of T assuming T is ω-consistent. Gö-
del calls this the “incompletability or inexhaustability of mathematics”. Note that 
only assuming that T is consistent, we can show that G is a true sentence of 
arithmetic unprovable in T. But it is not enough to show that T ⊬ ¬G only as-
suming that T is consistent. To show that T ⊬ ¬G, we need a stronger condition 
such as “T is 1-consistent” or “T is Σ1

0-sound”. 
Let T be a recursively axiomatized extension of PA. After Gödel, Rosser con-

structed Rosser sentence R (a Π1
0 sentence) and showed that if T is consistent, 

then R is independent of T. Rosser improved Gödel’s G1 in the sense that Rosser 
proved that T is incomplete only assuming that “T is consistent” which is weaker 
than “T is 1-consistent”. 

In this paper, let 〈Mn : n ∈ ω〉 be the list of Turing machines and Th(Mn) be 
the set of sentences produced by the Turing machine Mn. Let C = {n : Th(Mn) is 
a consistent theory} and S = {n : Th(Mn) is a sound theory}. 

The following proposition on inconsistency and unsoundness is from (Kra-
jewski, 2020). 

Proposition 3.2. 

(1) If F is a partial recursive function such that C ⊆ dom(F) and F(n) ∉ 
Th(Mn) for any n ∈ C, then {F(n) : n ∈ dom(F)} is inconsistent. 
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(2) If F is a partial recursive function such that S ⊆ dom(F) and F(n) ∉ 
Th(Mn) for any n ∈ S, then {F(n) : n ∈ dom(F)} is inconsistent. 

A natural question is: whether there exists such a function F with these prop-
erties. However, the effective version of Gödel’s first incompleteness theorem 
(EG1) tells us that there exists a partial recursive function F such that for any 
n ∈ ω, if Th(Mn) is consistent, then F(n) is defined and F(n) is the Gödel number 
of a true arithmetic sentence which is not provable in Th(Mn). Thus there exists 
such a function F with the properties as stated in Proposition 3.2. 

One popular interpretation of EG1 is: for any Turing machine Mn, F(n) picks 
up the true sentence of arithmetic not produced by Mn. However, this is a misin-
terpretation of EG1 which in fact says that for such a partial recursive function F, 
if Th(Mn) is consistent, then F(n) is the Gödel number of a true sentence of 
arithmetic which is not provable in Th(Mn). A natural question is: whether there 
exists an effective procedure such that we can decide whether Th(Mn) is con-
sistent. The answer is negative since C is a complete Π1

0
 set as Koellner points 

out in (2018a). 
Krajewski (2020) claimed that C and S are not recursive. However, as Kra-

jewski (2020) commented, Proposition 3.2 on inconsistency and unsoundness 
does not require that for n ∈ dom(F), F(n) is the code of a true arithmetic sen-
tence. But we do not see that C or S is not recursive from Proposition 3.2. How-
ever, if we add the condition that for n ∈ dom(F), F(n) ∈ Truth \ Th(Mn), then 
we can show that C and S are not recursive. Let us take C for example and show 
that C is not recursive. 

Proposition 3.3. C is not recursive.6 

P r o o f . Suppose C is recursive. Let A = {F(n) : n ∈ C}. Then A is recursive 
enumerable. Suppose A = Th(Mm) for some m. Note that A ⊆ Truth, and so A is 
consistent. By the definition of C, m ∈ C and hence F(m) ∈ A. But, on the other 
hand, F(m) ∉ Th(Mm) = A which leads to a contradiction.          □ 

Since C is undecidable, it is impossible to effectively distinguish the case that 
Th(Mn) is consistent and the case that Th(Mn) is not consistent.  

In fact, Theorem 3.2 can be generalized in the following form: 

Theorem 3.4. Let P be any property about first order theory (i.e. consistency, 
soundness, 1-consistency, etc). Let C = {n : Th(Mn) has property P}. Suppose 
F is a partial recursive function satisfying the following conditions: 

(1) C ⊆ dom(F), 

 
6 In fact, C is a complete Π1

0 set as Koellner points out in (2018a). 
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(2) for each n ∈ C, F(n) ∉ Th(Mn). 
Then, {F(n) : n ∈ dom(F)} does not have property P. 

P r o o f . Let A = {F(n) : n ∈ dom(F)}. Suppose A has property P. Since F is par-
tial recursive, A is recursively enumerable. Suppose A = Th(Mk) for some k. 
Since A has property P, we have k ∈ C. Thus, F(k) ∉ Th(Mk) = A which contra-
dicts that F(k) ∈ A.                    □ 

Gödel announced the second incompleteness theorem (G2) in an abstract 
published in October 1930: no consistency proof of systems such as Principia, 
Zermelo-Fraenkel set theory, or the systems investigated by Ackermann and von 
Neumann is possible by methods which can be formulated in these systems (see 
Zach, 2007, p. 431). For a theory T, recall that Con(T) is the canonical arithme-
tic sentence expressing the consistency of T under Gödel’s recursive arithmetiza-
tion of T. The following is a modern reformulation of G2: 

Theorem 3.5. Let T be a recursively axiomatized extension of PA. If T is con-
sistent, then T ⊬ Con(T ). 

From G2, we cannot get that Con(T ) is independent of T only assuming that 
T is consistent. It is provable in T that if T is consistent, then T ⊢ Con(T ) ↔ G 
and thus T ⊬ Con(T). However, it is not provable in T that if T is consistent, then 
T + Con(T) is also consistent.7 So it is not enough to show that T ⊬ ¬Con(T) 
only assuming that T is consistent. But we could prove that Con(T) is independ-
ent of T by assuming that T is 1-consistent which is stronger than the condition 
“T is consistent”.8 Let 1-Con(T ) be the sentence in L(PA) expressing that T is 1-
consistent. Fact 3.6 is a summary of these results. 

Fact 3.6. Let T be a recursively axiomatized consistent extension of PA. 

(1) T ⊢ Con(T ) → Con(T + ¬Con(T)); 
(2) T ⊬ Con(T ) → Con(T + Con(T )); 
(3) T ⊢ Con(T ) → Con(T + R);9 
(4) T ⊢ 1-Con(T ) → Con(T + Con(T )). 

An illusion of the application of Gödel’s incompleteness theorem is that we 
can add consistencies (or Out-Gödeling) forever: from Con(T), we have 

 
7 See (Boolos, 1993, Theorem 4, p. 97) for a modal proof in GL of this fact using the 

arithmetic completeness theorem for GL. 
8 It is an easy fact that if T is 1-consistent and S is not a theorem of T, then PrT(⸢S⸣) is 

not a theorem of T. 
9 Recall that R is the Rosser sentence. 
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Con(T + Con(T )), then Con(T + Con(T + Con(T))) and so on. However, by Fact 
3.6, this does not hold. For the iteration of adding the consistency statement (or 
Out-Gödeling), we need a stronger condition: T is 1-consistent. The following 
fact shows the difference between Con(T) and 1-Con(T ). 

Fact 3.7 (Smoryński, 1977). Let T be a recursively axiomatized consistent exten-
sion of PA. Then T ⊢ Con(T ) ↔ Π1

0-RfnT and T ⊢ 1-Con(T) ↔ Σ1
0-RfnT. 

As a corollary of Fact 3.7, 1-Con(T ) ⊢ l-Con(T + Con(T)) (see Proposition 3 
in Pudlák, 1999). Thus, if we assume 1-Con(T ), then we can prove Con(T ), 
Con(T + Con(T )), Con(T + Con(T + Con(T))) and we can continue forever 
(note that the assumption 1-Con(T) is stronger than all these statements). 

In summary, the differences between Rosser sentence and Gödel sentence, as 
well as between Con(T ) and 1-Con(T ) are very important. However, these dif-
ferences are often overlooked in informal philosophical discussions of Gödel’s 
incompleteness theorem. 

4. Gödel’s Disjunctive Thesis 

The focus of Krajewski’s paper (2020) is not about Gödel’s Disjunctive The-
sis even if he gives a very brief discussion of Gödel’s Disjunctive Thesis related 
to the Anti-Mechanist Arguments in Section 7. In this section, we give a more 
detailed discussion of Gödel’s Disjunctive Thesis and its relevance to the Mech-
anistic Thesis based on recent advances on the study of Gödel’s Disjunctive 
Thesis. This section is a summary of Koellner’s papers (2018a) and (2018b), and 
we follow Koellner’s presentation very closely. 

Gödel did not argue that his incompleteness theorem implies that the mind 
cannot be mechanized. Instead, Gödel argued that his incompleteness theorem 
implies a weaker conclusion: Gödel’s Disjunctive Thesis (GD). 

The first disjunct: The mind cannot be mechanized. 
The second disjunct: There are absolutely undecidable statements.10 
Gödel’s Disjunctive Thesis (GD): Either the first disjunct or the second disjunct 

holds.11 

 
10 In the sense that there are mathematical truths that cannot be proved by the ideal-

ized human mind. 
11 The original version of GD was introduced by Gödel in (1951; see p. 310): “So the 

following disjunctive conclusion is inevitable: either mathematics is incompletable in this 
sense, that its evident axioms can never be comprised in a finite rule, that is to say, the 
human mind (even within the realm of pure mathematics) infinitely surpasses the powers 
of any finite machine, or else there exist absolutely unsolvable diophantine problems of 
the type specified (where the case that both terms of the disjunction are true is not exclud-
ed, so that there are, strictly speaking, three alternatives)”. 
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Gödel’s Disjunctive thesis (GD) concerns the limit of mathematical 
knowledge and the possibility of the existence of mathematical truths that are 
inaccessible to the idealized human mind. The first disjunct expresses an aspect 
of the power of the idealized human mind, while the second disjunct expresses 
an aspect of its limitations.12 

What about Gödel’s view toward the first disjunct and the second disjunct? 
For Gödel, the first disjunct is true and the second disjunct is false; that is the 
mind cannot be mechanized and human mind is sufficiently powerful to capture 
all mathematical truths. Gödel’s incompleteness theorem shows certain weak-
nesses and limitations of one given Turing machine. For Gödel, mathematical 
proof is an essentially creative activity and his incompleteness theorem indicates 
the creative power of human reason. Gödel believes that the distinctiveness of 
the human mind when compared to a Turing machine is evident in its ability to 
come up with new axioms and develop new mathematical theories. Gödel shared 
Hilbert’s belief expressed in 1926 in the words: “in mathematics there is no igno-
ramuses, we should know and we must know” (see Reid, 1996, p. 192). Based on 
his rationalistic optimism, Gödel believed that we are arithmetically omniscient 
and the second disjunct is false.13 However, Gödel admits that he cannot give 
a convincing argument for either the first disjunct or the second disjunct. Gödel 
thinks that the most he can claim to have established is his Disjunctive Thesis. 
For Gödel, GD is a “mathematically established fact” of great philosophical 
interest which follows from his incompleteness theorem, and it is “entirely inde-
pendent from the standpoint taken toward the foundation of mathematics” (Gö-
del, 1951, p. 310).14 In the following, we give a concise overview of the current 
progress on Gödel’s disjunctive thesis based on Koellner’s work in (2016; 2018a; 
2018b). 

Let K be the set of sentences in L(PA) that the idealized human mind can 
know. Let Truth be the set of sentences in L(PA) which are true in the standard 
model of arithmetic and Prov be the set of sentences in L(PA) which are prova-
ble in PA. Gödel refers to Truth as objective mathematics and K as subjective 
mathematics. Recall that a theory T in L(PA) is sound if T ⊆ Truth. In this paper, 
we assume that K is sound. However, from G1, we have Prov ⊊ Truth since 
Gödel’s sentence is a true sentence of arithmetic not provable in PA.15 

 
12 We refer to (Horsten, Welch, 2016), a recent comprehensive research volume about 

GD, for more discussions of the status of GD. 
13 For more discussions of the status of the second disjunct, we refer to (Horsten, 

Welch, 2016). 
14 In the literature there is a consensus that Gödel’s argument for GD is definitive, but 

until now we have no compelling evidence for or against any of the two disjuncts (Hor-
sten, Welch, 2016). 

15 Let us take Fermat’s last theorem for another example. People have shown that 
Fermat’s last theorem is a true sentence of arithmetic but, as far as I know, it is still an 
open problem whether Fermat’s last theorem is provable in PA. So Fermat’s last theorem 
belongs to K but it is open whether it belongs to Prov. 
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Note that GD concerns the concepts of relative provability, absolute provabil-
ity, and truth. Before we present the analysis of GD, let us first examine two key 
notions about provability: relative provability and absolute provability. The no-
tion of relative provability is well understood and we have a precise definition of 
relative provability in a formal system. But the notion of absolute provability is 
much more ambiguous and we have no unambiguous formal definition of abso-
lute provability as far as we know. The notion of absolute provability is intended 
to be intensionally different from the notion of relative provability in that abso-
lute provability is not conceptually connected to a formal system. In contrast to 
the notion of relative provability, there is little agreement on what principles of 
the notion “absolute provability” should be adopted. In this paper, we identify 
the notion of “relatively provable with respect to a given formal system F” with 
the notion of “producible by a Turing machine M” (where M is the Turing ma-
chine corresponding to F)16 and we identify the notion of “absolute provability” 
with the notion of “what the idealized human mind can know”. 17 Under this 
assumption, K is just the set of sentences that are absolutely provable. 

In this paper, we assume without loss of generality that Q ⊆ Th(Mn) such that 
both G1 and G2 apply to Th(Mn). For a natural number n, we say that a statement 
φ is relatively undecidable w.r.t. theory Th(Mn) for some n if φ ∉ Th(Mn) and 
¬φ ∉ Th(Mn). We say that a statement φ is absolutely undecidable if φ ∉ K and 
¬φ ∉ K. Let us first examine what the incompleteness theorem tells us about the 
relationship between Th(Mn), K and Truth. 

Note that G1 tells us that for any sufficiently strong consistent theory F con-
taining Q, there are statements which are relatively undecidable with respect to F. 
But as Gödel argued, these statements are not absolutely undecidable; instead 
one can always pass to higher systems in which the sentence in question is prov-
able (see Gödel, 1995, p. 35). For example, from G2, Con(PA) is not provable in 
PA; but Con(PA) is provable in second order arithmetic (Z2). Since G2 applies to 
Z2, the Π0

1 -truth Con(Z2) is not provable in Z2. But Con(Z2) is provable in 
Z3 (third order arithmetic) which captures the Π0

1-truth that was missed by Z2. 
This pattern continues up through the orders of arithmetic and up through the 
hierarchy of set-theoretic systems; at each stage a missing Π0

1-truth is captured at 
the next stage (see Koellner, 2018a, p. 347). 

Now let us examine the question of whether the incompleteness theorem 
shows that GD holds. From the literature, we have found a natural framework 
EAT in which we can show that if the concepts of relative provability, absolute 
provability and truth satisfy some principles, then one can give a rigorous proof 
of GD, vindicating Gödel’s claim that GD is a mathematically established fact 
(see Koellner, 2018a, p. 355). 

 
16 Note that sentences relatively provable with respect to a given formal system F can 

be enumerated by a Turing machine. 
17 Williamson (2016) makes the similar definition that a mathematical hypothesis is 

absolutely decidable if and only if either it or its negation can in principle be known by 
a normal mathematical process; otherwise it is absolutely undecidable. 
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Now we introduce two systems of epistemic arithmetic: EA and EAT. For the 
presentation of EA and EAT, we closely follow Koellner’s discussion in (2016; 
2018a). The first is designed to deal with Th(Me) and K, and the second is de-
signed to deal with Th(Me), K and Truth. For EAT, we only require a typed 
truth predicate.18 The basic system EA of epistemic arithmetic has axioms of 
arithmetic and axioms of absolute provability, and the extended system EAT has 
additional axioms of typed truth.19 In EA and EAT, K is treated as an operator 
rather than a predicate. From results in Gödel (1986), Myhill (1960), Montague 
(1963), Thomason (1980), and others, if one formulates a theory of absolute 
provability with K as a predicate then inconsistency may come (see Koellner, 
2016). The basic axioms of absolute provability are:20 

K1: Universal closures of formulas of the form Kφ where φ is a first-order 
validity. 

K2: Universal closures of formulas of the form (K(φ → ψ) ∧ Kφ) → Kψ. 
K3: Universal closures of formulas of the form Kφ → φ. 
K4: Universal closures of formulas of the form Kφ → KKφ.21 

The language L(EA) is L(PA) expanded to include an operator K that takes 
formulas of L(EA) as arguments. The axioms of arithmetic are simply those of 
PA, only now the induction scheme is taken to cover all formulas in L(EA). For 
a collection Γ of formulas in L(EA), let KΓ denote the collection of formulas 
Kφ where φ ∈ Γ. The system EA is the theory axiomatized by Σ∪ KΣ, where 
Σ consists of the axioms of PA in the language L(EA) and the basic axioms of 
absolute provability. The language L(EAT) of EAT is the language L(EA) aug-
mented with a unary predicate T. The system EAT is the theory axiomatized by 
Σ∪ KΣ, where Σ consists of the axioms of PA in the language L(EAT), the basic 

 
18 A typed truth predicate is one that applies only to statements that do not themselves 

involve the truth predicate. In contrast, a type-free truth predicate is one which also ap-
plies to statements that themselves involve the truth predicate. The principles governing 
typed truth predicates are perfectly straightforward and uncontroversial, while the princi-
ples governing type-free truth predicates are much more delicate (Koellner, 2018a). 

19 These systems were first introduced by Myhill (1960), Reinhardt (1985a; 1985b; 
1986) and Shapiro (1985), and then investigated by many others (e.g. Horsten, 1998; 
Leitgeb, 2009; Carlson, 2000; Koellner, 2016; 2018a and others). 

20 The basic conditions we will impose on knowability are: (1) if the idealized human 
mind knows φ and φ → ψ then the idealized human mind knows ψ; (2) if the idealized 
human mind knows φ then φ is true; (3) if the idealized human mind knows φ then the 
idealized human mind knows that the idealized human mind knows φ. 

21 K1-known as logical omniscience-says that K holds of all first-order logical validi-
ties; K2 says that K is closed under modus ponens, and so distributes across logical deri-
vations; K3 says that K is correct; and K4 says that K is absolutely self-reflective (Koell-
ner, 2018a). 
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axioms of absolute provability (in the language L(EAT)), and the Tarskian axi-
oms of truth for the language L(EA). 

From the incompleteness theorem, Gödel made the following two claims 
about the relationship between Th(Me), K and Truth. 

Claim One: For any e ∈ ℕ, K(Th(Me) ⊆ Truth) → Th(Me) ⫋ K.22 
Claim Two: Either ¬∃e(Th(Me) = K) or ∃φ(φ ∈ Truth∧φ ∉ K∧¬φ ∉ K).23 

Gödel’s Claim One is formalizable and provable in EAT. In fact, something 
stronger is provable in EA as the following theorem shows: 

Theorem 4.1 (Reinhardt, 1985a). Assume that S includes EA. Suppose F(x) is 
a formula with one free variable. 

(1) If for each sentence φ, S ⊢  K(F(⸢φ⸣) →  φ). Then there is a sentence 
ϕ such that S ⊢ Kϕ∧K¬F(⸢ϕ⸣). 

(2) If for each sentence φ, S ⊢ K(Kφ → F(⸢φ⸣)). Then S ⊢ K¬K(Con(F)). 

From the following theorem, GD is also formalizable and provable in EAT 

which confirms Gödel’s claim that GD is a mathematically established fact.24 

Theorem 4.2 (Reinhardt, 1986). Assume EAT. Then GD holds. 

Following Reinhardt, we should distinguish three levels of the mechanistic 
thesis. 

(1) The weak mechanistic thesis (WMT): ∃e(K = Th(Me)); 
(2) The strong mechanistic thesis (SMT): K∃e(K = Th(Me));  
(3) The super strong mechanistic thesis (SSMT): ∃e K(K = Th(Me)). 

Note that WMT is just the first disjunct which says that there is a Turing machine 
which coincides with the idealized human mind in the sense that the two have 
the same outputs. Note that SMT says that the idealized human mind knows that 

 
22 The informal proof of Claim One is as follows: Suppose K(Th(Me) ⊆ Truth). Since 

it is knowable that Th(Me) is consistent, it is knowable that there is a true sentence of 
arithmetic which is not provable in Th(Me). So Th(Me) ⊊ K. 

23 The informal proof of Claim Two is as follows: Suppose Th(Me) = K for some e. 
Since Th(Me) is R.E. but Truth is not arithmetic, K ⊊  Truth. So we can find some 
φ ∈ Truth but φ ∉ K and ¬φ ∉ K. 

24 It is a little delicate to formalize GD in EAT since K is formalized as an operator in 
EAT and so we are prohibited from quantifying into it. For the details, we refer to Rein-
hardt (1986) and Koellner (2016; 2018a). 
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there is a Turing machine which coincides with the idealized human mind. Note 
that SSMT says that there is a particular Turing machine such that the idealized 
human mind knows that that particular machine coincides with the idealized 
human mind. 

Suppose WMT holds. Then there exists an e* such that in fact K = Th(Me∗). It 
might seem at first that if we know that there is such an e* then we will be able to 
find, in a computable way, the indices e such that K = Th(Me). But this is an 
illusion, as demonstrated by Rice’s Theorem, which we shall now explain. 

In recursion theory, the sets Th(Me) are known as computably enumerable 
sets. Each such set is the domain of a partial computable function φe. Rice’s 
Theorem states that for any class C of partial computable functions, {e : φe ∈ C} 
is computable iff either C = ∅ or C is the class of all partial computable functions. 
Now consider the set of indices that we are interested in, namely, {e : K = 
dom(φe)}, that is, {e : φe ∈ C} where C = {φe : K = dom(φe)}. It follows immedi-
ately from Rice’s theorem that {e : K = dom(φe)} is not computable. 

The following theorem shows that we can prove in EAT that there does not 
exist a particular Turing machine such that the idealized human mind knows that 
that particular Turing machine coincides with the idealized human mind. 

Theorem 4.3 (Reinhardt, 1985a). EAT + SSMT is inconsistent. 

The following theorem shows that, from the viewpoint of EAT it is possible 
that the idealized human mind is in fact a Turing machine. From Theorem 4.3, it 
just cannot know which one. 

Theorem 4.4 (Reinhardt, 1985b). EAT + WMT is consistent. 

From Theorem 4.4, the first disjunct is not provable in EAT. But Gödel did 
think that one day we would be in a position to prove the first disjunct, and what 
was missing, as he saw it, was an adequate resolution of the paradoxes involving 
self-applicable concepts like the concept of truth. Gödel thought that “[i]f one 
could clear up the intensional paradoxes somehow, one would get a clear proof 
that mind is not machine”.25 

The following technical theorem from Carlson shows that, from the point of 
view of EAT, it is possible that the idealized human mind knows that it is a Tu-
ring machine: it just cannot know which one. 

Theorem 4.5 (Carlson, 2000). EAT + SMT is consistent. 

Now we give a summary for the question whether Gödel’s incompleteness 
theorems imply the first disjunct. The incompleteness theorems imply that 

 
25 This quotation is from Hao Wang’s reconstruction of his conversations with Gödel 

(see Wang, 1996, p. 187). 
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¬∃e K(K = Th(Me)). But from Theorem 4.4, it does not follow that ¬∃e(K = 
Th(Me)); and from Theorem 4.5, it does not even follow that ¬K∃e(K = Th(Me)). 
The difference between ∃e K and K∃e before K = Th(Me) is essential. Assuming 
the principles embodied in EAT, it is possible to know that we are a Turing ma-
chine (i.e. K∃e(K = Th(Me))); it is just not possible for there to be a Turing ma-
chine such that we know that we are that Turing machine (i.e. ∃e K(K = 
Th(Me))). 

Penrose proposed a new argument for the first disjunct in (1994, 2011). Pen-
rose’s new argument is the most sophisticated and promising argument for the 
first disjunct. It has been extensively discussed and carefully analyzed in the 
literature (see Chalmers, 1995; Feferman, 1995; Lindström, 2001; 2006; Shapiro, 
1998; 2003; Gaifman, 2000; Koellner, 2016; 2018b, etc). The question of wheth-
er Penrose’s new argument establishes the first disjunct is quite subtle. Penrose’s 
new argument involves treating truth as type-free, and so for the analysis and 
formalization of Penrose’s new argument, we need to employ type-free notions 
of truth. However, we now have many type-free theories of truth and there is no 
consensus as to which option is best. Koellner was the first to discuss Penrose’s 
new argument in the context of type-free truth. And he shows that when one 
shifts to a type-free notion of truth then one can treat K as a predicate (as a con-
trast, in the context of EA and EAT, K cannot be treated as a predicate). 

In the literature, Koellner proposed the framework DTK which employs Fe-
ferman’s type-free theory of determinate truth DT and some additional axioms 
governing K to the axioms of DT.26 The following results about the system DTK 
are due to Koellner. From (Koellner, 2016; 2018b), DTK is consistent (see 2016, 
Theorem 7.14.1) and DTK proves GD (see 2016, Theorem 7.15.3). However, the 
particular argument Penrose gives for the first disjunct fails in the context of 
DTK (see 2018b, Theorem 4.1). Moreover, even if we restrict the first and sec-
ond disjunct to arithmetic statements, DTK can neither prove nor refute either 
the first disjunct or the second disjunct (see 2016, Theorems 7.16.1–7.16.2). 
From the point of view of DTK, it is in principle impossible to prove or refute 
either disjunct. Koellner concluded that  

Since the statements that “the mind cannot be mechanized” and “there are abso-
lutely undecidable statements” are independent of the natural principles governing 
the fundamental concepts and, moreover, are independent of any plausible princi-
ples in sight, it seems likely that these statements are themselves “absolutely un-
decidable”. (Koellner, 2018b, p. 469)27 

 
26 For the details of the system DT and DTK, see (Koellner, 2016; 2018b). 
27 Koellner concluded in (2018b, p. 480) with a disjunctive conclusion of his own: 

“Either the statements that ‘the mind cannot be mechanized’ and ‘there are absolutely 
undecidable statements’ are indefinite (as the philosophical critique maintains) or they are 
definite and the above results and considerations provide evidence that they are about as 
good examples of ‘absolutely undecidable’ propositions as one might find”. 
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In our previous discussion of GD, the first disjunct and the second disjunct, 
we identified absolutely undecidability with knowability of the idealized human 
mind and define that φ is absolutely undecidable if φ ∉ K and ¬φ ∉ K. Under 
this framework, the second disjunct is equivalent to “K is not complete”. Under 
the assumption that K ⊆ Truth, the second disjunct is equivalent to 
“K ⊊ Truth”. However, G1 only tells us that Prov ⊊ Truth, and it does not tell 
us that K ⊊ Truth. 

Another natural informal definition of absolutely undecidability is: φ is abso-
lutely undecidable if there is no consistent extension T of ZFC with well-
justified axioms such that φ is provable in T. In this paper, we focus on whether 
Gödel’s incompleteness theorem implies that the human mind cannot be mecha-
nized. In philosophy of set theory, there are extensive discussions about whether 
there exists an absolutely undecidable statement in set theory. For a detailed 
discussion of the question of absolutely undecidability in set theory and especial-
ly whether the Continuum Hypothesis is absolutely undecidable, we refer to 
Koellner (2006). 

5. Gödel’s Undemonstrability of Consistency Thesis and the Definability of 
Natural Numbers 

In Section 8, Krajewski (2020) discussed two consequences of Gödel’s in-
completeness theorem directly related to the Anti-Mechanist Arguments: Gödel’s 
Undemonstrability of Consistency Thesis and the undefinability of natural num-
bers. For us, Krajewski’s discussion on these two consequences is mainly philo-
sophical and not very precise. In this section, we want to give a more precise 
logical analysis of Gödel’s Undemonstrability of Consistency Thesis and the 
undefinability of natural numbers. 

Let us first examine the definability of natural numbers. As a consequence of 
Gödel’s incompleteness theorem, Krajewski (2020) claimed that we can not 
define the natural numbers in the sense that there is not a complete axiomatic 
system which fully characterizes all truths about natural numbers. We give some 
supplementary notes to make this point more precise. 

Firstly, whether a theory about natural numbers is complete depends on the 
language of the theory. In the languages L(0, S), L(0, S, <) and L(0, S, <, +), 
there are, respectively, recursively axiomatized complete arithmetic theories (see 
Enderton, 2001, Section 3.1–3.2). For example, Presburger arithmetic is a com-
plete theory of the arithmetic of addition in the language L(0, S, +) (see Mu-
rawski, 1999, Theorem 3.2.2, p. 222). However, if a recursively axiomatized 
theory contains enough information about addition and multiplication, then it is 
incomplete and hence it must miss some truths about arithmetic. For example, any 
recursively axiomatized consistent extension of Q is incomplete. Thus, in Krajew-
ski’s sense, we can not define the natural numbers in any recursively axiomatized 
consistent extension of Q. 
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Secondly, if we discuss the definability of a set with respect to a structure, 
then the definability of natural numbers depends on the structure we talk about. 
It is well known that ℕ is definable in (ℤ, +, ·) and (ℚ, +, ·) (Epstein, 2011, 
Chapter XVI), and Th(ℕ, +, ·) is interpretable in Th(ℤ, +, ·) and Th(ℚ, +, ·). 
Since Th(ℕ, +, ·) is undecidable,28 by Theorem 2.1, Th(ℤ, +, ·) and Th(ℚ, +, ·) 
are all undecidable and hence not recursive axiomatizable. But Th(ℝ, +, ·) is 
a decidable, recursively axiomatizable theory (even if not finitely axiomatizable) 
and Th(ℝ, +, ·) = RCF (the theory of real closed field; see Epstein, 2011, p. 320–
321). As a corollary, ℕ is not definable in the structure 〈ℝ, +, ·〉 (if ℕ is definable 
in 〈ℝ, +, ·〉, then Th(ℕ, +, ·) is interpretable in Th(ℝ, +, ·) and thus, by Theorem 
2.1, Th(ℝ, +, ·) is undecidable which leads to a contradiction). In summary, if we 
consider matters of definability relative to the base structure, then whether the set 
of natural numbers is definable depends on the base structure: ℕ is definable in 
(ℤ, +, ·) and (ℚ, +, ·), but ℕ is not definable in 〈ℝ, +, ·〉. 

Now we examine Gödel’s Undemonstrability of Consistency Thesis (i.e. G2). 
The intensionality of Gödel sentence and the consistency sentence has been 
widely discussed in the literature (e.g. Feferman, 1960; Halbach, Visser, 2014a; 
2014b; Visser, 2011). Halbach and Visser examined the sources of intensionality 
in the construction of self-referential sentences of arithmetic in (2014a; 2014b) 
and argued that corresponding to the three stages of the construction of self-
referential sentences of arithmetic, there are at least three sources of intensionali-
ty: coding, expressing a property and self-reference. Visser (2011) located three 
sources of indeterminacy in the formalization of a consistency statement for 
a theory T: 

(I) the choice of a proof system; 
(II) the choice of a way of numbering; 

(III) the choice of a specific formula numerating the axiom set of T. 

In summary, the intensional nature ultimately traces back to the various parame-
ter choices that one has to make in arithmetizing the provability predicate. That 
is the source of both the intensional nature of the Gödel sentence and the con-
sistency sentence. 

For a consistent theory T, we say that G2 holds for T if the consistency state-
ment of T is not provable in T. However, this definition is vague, and whether G2 
holds for T depends on how we formulate the consistency statement. We refer to 
this phenomenon as the intensionality of G2. Both mathematically and philo-
sophically, G2 is more problematic than G1. The difference between G1 and G2 
is that in the case of G1 we are mainly interested in the fact that it shows that 
some sentence is undecidable if PA is ω-consistent. We make no claim to the 
effect that that sentence “really” expresses what we would express by saying “PA 

 
28 I.e. there does not exist an effective algorithm such that given any sentence φ in 

L(PA), we can effectively decide whether (ℕ, +, ·) ⊨ φ or not. 
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cannot prove this sentence”.29 But in the case of G2 we are also interested in the 
content of the statement. 

The status of G2 is essentially different from G1 due to the intensionality of 
G2. We can say that G1 is extensional in the sense that we can construct a con-
crete independent mathematical statement without referring to arithmetization 
and provability predicate. However, G2 is intensional and “whether G2 holds for 
T” depends on varied factors as we will discuss. 

In the following, we give a very brief discussion of the intensionality of G2 
(for more details, we refer to Cheng, in press). In this section, unless otherwise 
stated, we make the following assumptions: 

(1) The theory T is a recursively axiomatized consistent extension of Q; 
(2) The canonical arithmetic formula to express the consistency of T is 
Con(T ) ≜ ¬PrT(⸢0 ≠ 0⸣);  
(3) The canonical numbering we use is Gödel’s numbering; 
(4) The provability predicate we use is standard;  
(5) The formula numerating the axiom set of T is Σ1

0. 

Based on works in the literature, we argue that “whether G2 holds for T” de-
pends on the following factors: 

(1) the choice of the base theory T; 
(2) the choice of a provability predicate; 
(3) the choice of an arithmetic formula to express consistency; 
(4) the choice of a numbering; 
(5) the choice of a specific formula numerating the axiom set of T. 

These factors are not independent of each other, and a choice made at an ear-
lier stage may have influences on the choices made at a later stage. In the follow-
ing, when we discuss how G2 depends on one factor, we always assume that 
other factors are fixed as in the default assumptions we make and only the factor 
we are discussing is varied. For example, Visser (2011) rests on fixed choices for 
(1) and (3)–(5) but varies the choice of (2); Grabmayr (2020) rests on fixed 
choices for (1)–(2) and (4)–(5) but varies the choice of (3); Feferman (1960) 
rests on fixed choices for (1)–(4) but varies the choice of (5). 

In the following, we give a brief discussion of how G2 depends on the above 
five factors. For more discussions of these factors, we refer to (Cheng, in press). 

“Whether G2 holds for T” depends on the choice of the base theory. A foun-
dational question about G2 is: how much of information about arithmetic is re-

 
29 I would also like to thank the referee for pointing out this difference between G1 

and G2. 
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quired for the proof of G2. If the base theory does not contain enough infor-
mation about arithmetic, then G2 may fail in the sense that the consistency 
statement is provable in the base theory. Willard (2006) explored the generality 
and boundary-case exceptions of G2 under some base theories. Willard con-
structed examples of recursively enumerable arithmetical theories that couldn’t 
prove the totality of successor function but could prove their own canonical 
consistency (see Willard, 2001; 2006). Pakhomov (2019) defined a theory H<ω 
and showed that it proves its own canonical consistency. Unlike Willard’s theo-
ries, H<ω isn’t an arithmetical theory but a theory formulated in the language of 
set theory with an additional unary function. 

“Whether G2 holds for T” depends on the definition of provability predicate. 
Recall that T is a recursively axiomatizable consistent extension of Q. Being 
a consistency statement is not an absolute concept but a role w.r.t. a choice of the 
provability predicate. Note that G2 holds for any standard provability predicate 
in the sense that if provability predicate PrT(x) is standard, then T ⊬ ¬PrT(⸢0 ≠ 
0⸣). However, G2 may fail for some nonstandard provability predicates. Rosser 
provability predicate is an important kind of non-standard provability predicate 
in the study of meta-mathematics of arithmetic. Define the Rosser provability 
predicate PrT

R(x) as the formula ∃y(PrfT(x,y)∧∀z ≤ y¬PrfT(  (x), z)).30 Define 
the consistency statement ConR(T) via Rosser provability predicate as ¬PrT

R(⸢0 ≠ 
0⸣). Then G2 fails for Rosser provability predicate: T ⊢ ConR(T). 

“Whether G2 holds for T” depends on the choice of arithmetic formulas to 
express consistency. We have different ways to express the consistency of T. The 
canonical arithmetic formula to express the consistency of T is Con(T) ≜ 
¬PrT(⸢0 ≠  0⸣). Another way to express the consistency of T is Con0(T ) ≜ 
∀x(Fml(x)∧PrT(x) → ¬PrT(    x)).31 

Kurahashi (2019) constructed a Rosser provability predicate such that G2 
holds for the consistency statement formulated via Con0(T ) (i.e. the consistency 
statement formulated via Con0(T ) and Rosser provability predicate is not prova-
ble in T ), but G2 fails for the consistency statement formulated via Con(T) (i.e. 
the consistency statement formulated via Con(T ) and Rosser provability predi-
cate is provable in T ). 

“Whether G2 holds for T” depends on the choice of numberings. Any injec-
tive function γ from a set of L(PA)-expressions to ω qualifies as a numbering. 
Gödel’s numbering is a special kind of numberings under which the Gödel number 
of the set of axioms of PA is recursive. Grabmayr (2020) showed that G2 holds for 
acceptable numberings; But G2 fails for some nonacceptable numberings.32 

Finally, “Whether G2 holds for T” depends on the numeration of T. As a gen-
eralization, G2 holds for any Σ1

0
 numeration of T: if α(x) is a Σ1

0
 numeration of T, 

 
30  is a function symbol expressing a primitive recursive function calculating the code 

of ¬φ from the code of φ. 
31 Fml(x) is the formula which represents the relation that x is a code of a formula. 
32 For the definition of acceptable numberings, we refer to (Grabmayr, 2020). 
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then T ⊬ Conα(T ). However, G2 fails for some Π1
0

 numerations of T. For exam-
ple, Feferman (1960) constructed a Π1

0
 numeration τ(u) of T such that G2 fails 

under this numeration: T ⊢ Conτ(T). 
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