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S U M M A R Y : We show that the name “Lucas-Penrose thesis” encompasses several differ-
ent theses. All these theses refer to extremely vague concepts, and so are either practically 
meaningless, or obviously false. The arguments for the various theses, in turn, are based 
on confusions with regard to the meaning(s) of these vague notions, and on unjustified 
hidden assumptions concerning them. All these observations are true also for all interest-
ing versions of the much weaker (and by far more widely accepted) thesis known as “Gö-
del disjunction”. Our main conclusions are that pure mathematical theorems cannot decide 
alone any question which is not purely mathematical, and that an argument that cannot be 
fully formalized cannot be taken as a mathematical proof. 
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1. Introduction 

When I was invited to contribute to this special issue about the Lucas-
Penrose argument (LP), I was hesitating whether there is any point of doing so. 
There were two reasons for that.  

• The arguments of Lucas and Penrose have been totally refuted several 
times in the past. (This was done in more than one way, but this is not be-
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cause it is not clear what is wrong with them, but because they contain sev-
eral clear mistakes, not just one.) Nevertheless, the debate continues, and it 
seems that it will continue forever. The reason is that Lucas-Penrose 
“proofs” that humans are not machines belong to the class I call “proofs for 
the believers”. (They resemble in this respect the well-known classical 
“proofs” of the existence of God.) What is characteristic of such “proofs” is 
that they have never actually convinced anybody to accept their conclusion. 
The only persons who have ever “accepted” the validity of “proofs” of this 
kind were people who had believed their conclusion already before that, 
and because of other reasons. Thus even Lucas and Penrose do not deny the 
fact that almost every logician who wrote something about their “proofs” 
rejected them as invalid. This fact itself should have been sufficient for 
them (according to their own views about the nature of a mathematical 
proof) to realize that their proofs cannot be mathematically valid. Never-
theless, they (and the few philosophers who support them) continue to 
maintain that their argument is valid. 1 It seems that somehow, when it 
comes to their arguments, even people who Lucas and Penrose otherwise 
respect as brilliant logicians (including Gödel himself) suddenly become 
extremely stupid, and just cannot see the light of their unshakable logical 
arguments… I believe that in situations like this it makes no sense to con-
tinue arguing with the believers. In the words of Penrose (1989; which 
were said about “very dogmatic formalists”): we should now simply ignore 
the supporters of the arguments of Lucas and Penrose.  

• It seems to me that practically everything worth saying about LP has by 
now been said. Therefore I was not sure that I can do more than repeating 
arguments and points already made by others. And indeed, almost every-
thing I write below can be found in some form or another somewhere in the 
existing literature. (See, in particular, Feferman, 2006; Franzén, 2005; Ko-
ellner, 2016; LaForte, Hayes, & Ford, 1998; Putnam, 2011; Shapiro, 1998; 
2016.) 

Nevertheless, after reading a great part of the related literature, I realized that 
there are still important aspects of the debate that have not got sufficient atten-
tion so far. Accordingly, the main goals of this paper is to explicitly state, and to 
provide strong evidence for, the following claims: 

1. P u r e  m a t h e m a t i c a l  t h e o r e m s  c a n n o t  d e c i d e  a l o n e  a n y  
q u e s t i o n  w h i c h  i s  n o t  p u r e l y  m a t h e m a t i c a l . For this reason 
it should have been clear from the start, that the “mathematical refutations” 
of the mechanistic thesis about the mind, given by Lucas and Penrose, 
cannot be sound. Any such refutation should depend also on some non-
mathematical assumptions. This principle seems to me self-evident. Yet 

 
1 Or at least “is, in essence, correct”, as Penrose wrote in (1994). 
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even Gödel has done in (1951), the logical mistake of attributing the hon-
or of being a “mathematically established fact” to a disjunction of LP with 
another far-fetched thesis. This claim of Gödel about the human mind is 
now called “Gödel Disjunction” (GD) in (Horsten & Welch, 2016a), and 
“Gödel Dichotomy” in (Feferman, 2006). In (Horsten & Welch, 2016b, 
p. 3) it is stated that in contrast to Lucas-Penrose thesis, “Gödel’s argu-
ment for his disjunctive thesis is highly compelling” and that “In the liter-
ature on the subject there is a consensus that Gödel’s arguments for his 
disjunction are definitive”.2 Accordingly, this paper is mainly devoted to 
a critical discussion of GD rather than to LP. Needless to say, rejecting the 
former implies rejecting also the latter. 

2. A crucial factor in the debate on LP that I have never seen explicitly stated, 
and is perhaps the main reason that it is such an Hydra, is that there is no 
single “Lucas-Penrose thesis”, but there are several Lucas-Penrose theses. 
Different authors, or the same author in different places (frequently within 
one paper) provide different formulations of the thesis that (as we are go-
ing to argue) cannot be taken as equivalent. Since LP is one of the two 
disjuncts in GD, the situation with the latter is even worse. As we show in 
the sequel, we can even find in the literature purely mathematical formu-
lations of it which indeed follow (trivially) from the theorems of Gödel 
and Tarski. Unfortunately, those formulations have very little interest for 
themselves. GD has of course also very interesting formulations, that try 
to say something significant on the nature of human beings. However, the 
more interesting a formulation is, the less clear is what it says, and the more 
doubtful are the non-mathematical assumptions that underlie it. 

3. The arguments for the various Lucas-Penrose theses, as well those for the 
non-trivial versions of GD, are based on confusions concerning the termi-
nology employed. Therefore those arguments include hidden, unjustified 
assumptions. In the words of Koellner in (2016, p. 1): “One problem with 
the discussion in the literature as it currently stands is that the background 
assumptions on the underlying concepts (like truth, absolute provability, 
and idealized human knowability) are seldom fully articulated”. 

2. Formulations of the Two Disjuncts 

We start with a list of some formulations of the two disjuncts that have been 
given in the literature. The list is far from being exhaustive, but it is sufficiently 

 
2 I do not know on what basis this claim abut “consensus” is made. (Horsten & Welch, 

2016b) is an introduction to (Horsten & Welch, 2016a), and in this book alone Gödel 
Disjunction is severely criticized in three different papers (Koellner, 2016; Shapiro, 2016; 
Williamson, 2016). Strong criticism of GD appeared also in (Boolos, 1995; Feferman, 
2006; Franzén, 2005). 
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diverse to do for our purposes. From the discussions in the sequel it follows that 
no two of the formulations in it are really equivalent. 

 

2.1. The First Disjunct (“Lucas-Penrose Theses”) 

1-Gödel-A The human mind cannot be reduced to the working of the brain. 
(Gödel, 1951) 

1-Lucas The human mind is not equivalent to a (finite) machine. (Lucas, 
1961)3 

1-Krajewski The operation of the mind in the field of arithmetics cannot be 
simulated by a machine. (Krajewski, 2020) 

1-Penrose-A The human mind is not a Turing machine. (Penrose, 1989; 1994) 
1-Horsten-Welch-A There is no algorithm that can produce all the theorems 

that the human mind is capable of producing. (Horsten & Welch, 2016b) 
1-Koellner-A The mathematical outputs of the idealized human mind cannot 

coincide with the mathematical outputs of an idealized finite machine. (Koellner, 
2016; 2018a; 2018b) 

1-Koellner-B The mathematical outputs of an idealized human mind cannot 
coincide with the mathematical outputs of any idealized finite machine. (Koell-
ner, 2016; 2018a; 2018b) 

1-Penrose-B Human understanding is something that cannot be reduced to 
computation. (Penrose, 2011) 

1-Horsten-Welch-B The collection of humanly knowable theorems cannot 
be recursively axiomatized in some formal theory. (Horsten & Welch, 2016b) 

1-Gödel-B No well-defined system of correct axioms can contain the system 
of all demonstrable mathematical propositions. (Gödel, 1951) 

1-Charlesworth No computer program can accurately simulate the input-
output properties of human mathematical reasoning. (Charlesworth, 2016) 

1-Gödel-C Mathematics is incompletable in this sense, that its evident axi-
oms can never be comprised in a finite rule. (Gödel, 1951) 

1-Shipman Define “Human mathematics” as the collection of formalized 
sentence in the language of set theory which are logical consequences of state-
ments that will eventually come to be accepted by a consensus of human mathe-
maticians as “true”. There is no r.e. consistent r.e. set which equals (or at least 
contains) Human mathematics. (From a message to FOM, August 2006) 

 
3 In (Godel, 1951, p. 310), this claim is formulated in stronger words: “The human 

mind (even within the realm of pure mathematics) infinitely surpasses the power of any 
finite machine”. 
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2.2. The Second Disjunct 

2-Koellner There are mathematical truths that cannot be proved by the ideal-
ized human mind. (Koellner, 2016; 2018a; 2018b) 

2-Gödel There are absolutely undecidable [Diophantine] problems (Gödel, 
1951). 

Other, more or less equivalent versions of this thesis are: 

• There are objective (mathematical) truths that can never be humanly 
demonstrated. (Feferman, 2006) 

• Mathematical truth outstrips human reason. (Koellner, 2016; 2018a; 2018b) 
• There exists a particular true arithmetic statement that is impossible for 

human mathematical reasoning to master. (Charlesworth, 2016) 

2-Shipman There are mathematical truths that do not belong to “Human 
mathematics”. (From the message to FOM cited above.) 

3. The Mathematically Valid “Gödel Disjunction” 

Let T be a second-order constant, to be interpreted as the set of the true sen-
tences in the language ℒPA of Peano arithmetics. Let F and S be second-order vari-
ables for sets of arithmetical sentences (not necessarily subsets of T!). Finally, let 
formal(S) be a second-order formula which says that S is the set of theorems of 
some formal system. Then Tarski’s theorem implies: 

∀F(formal(F) → T ≠ F) 

This, in turn, is logically equivalent to: 

(MGD)  ∀S(S ≠ T ∨ ∀F(formal(F) → S ≠ F)) 

(MGD) is the purely mathematical formulation of “Gödel Disjunction”. Since it is 
just a trivial corollary of Tarski’s theorem about the arithmetic undefinability of 
arithmetic truth, it is for itself not very interesting. However, Gödel and others 
add here one more step. Denoting by K “the system of all humanly demonstrable 
mathematical propositions”, they infer from (MGD): 

∀F(formal(F) → K ≠ F) ∨ K ≠ T 

Getting by this the disjunction of [1-Gödel-B] and [2-Gödel]: either the set of 
humanly demonstrable theorems cannot be axiomatized by any effectively given 
formal system, or there are absolutely undecidable problems. However, the last 
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inference is logically valid only provided that “the system of all demonstrable 
mathematical propositions” is well-defined. Personally, I do not see any reason 
to think so. In any case, this question is not a purely mathematical one. Therefore 
it cannot be “mathematically established”, as Gödel has claimed. (Note that by 
using precisely the same argument, we can “demonstrate” other “disjunctions”, 
by taking K to denote, e.g., “the system of all mechanically demonstrable math-
ematical propositions” or “the system of all mathematical propositions which can 
be proved in some sound formal system” or “the system of all mathematical 
propositions which can be proved in some sound and justified formal system”, 
etc. All these disjunctions will be no less “valid” than the original one of Gödel.) 

In the next sections it will be explained why Gödel’s notion of “the system of 
all humanly demonstrable mathematical propositions” is ill-defined, so even the 
disjunction of [1-Gödel-B] and [2-Gödel] is extremely vague. We also show that 
even if we accept this particular “Gödel’s disjunction”, the other, more interest-
ing formulations of that disjunction do not follow. 

4. Mind(s) 

From a philosophical point of view, the most interesting Gödel’s disjunctions 
are those that refer to “the human mind”. Thus these disjunctions might be rele-
vant to classical problems like the mind-body problem, and the problem of free 
will (Lucas, 1961). However, it has already been pointed out by several authors 
that the use of this notion in the disjunctions is rather problematic: “It is certainly 
not obvious what it means to say that the human ‘mind’, or even the ‘mind’ of 
some human being, is a finite machine, e.g., a Turing machine” (Boolos, 1995, 
p. 293). “Hardly any mathematicians would ascribe mathematical clarity to the 
concept of ‘the human mind’” (Feferman, 2006, p. 141). “Gödel’s generic talk of 
‘the human mind’ in his Gibbs talk is dangerously misleading” (Williamson, 
2016, p. 249). 

Because of this fuzzy notion that is used in many of the Gödel’s disjunctions, 
their “mathematical proofs” (including Gödel’s original one) rely on some cru-
cial hidden assumptions. In what follows we reveal those assumptions, and show 
that it is extremely unclear what is meant by “human mind” (and by some related 
notions that appear in versions of GD and their “proofs”). 

4.1. “Turing Machines” and “Church Thesis” 

First of all, the meaning of the word “mind” here is doubtful. It is clear that in 
the context in which this noun is used here, it is assumed that it denotes some 
object (unlike, e.g. when one uses in sentences nouns like “luck” or “fate”). But 
what is that object? The mechanist claims that there are really no objects that 
may be called “human minds”—there are only human brains. Hence the related 
disjunctions are meaningless, and so certainly cannot be “proved”. The obvious 
(and justified) reply to this first objection is, of course, that the main point of the 
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first disjunct is that just the activity of our brains cannot account for our mathe-
matical capabilities, and so we should have something else, and this something 
else is what is called here “mind”. But except for [1-Gödel-A], none of the other 
formulations above of the first disjunct even mentions the word “brain”. Neither 
is “brain” mentioned in the proof that Gödel provided to his disjunction. Indeed, 
we have seen that the most this proof might show is the disjunction of [1-Gödel-
B] and [2-Gödel]. Gödel then derives [1-Gödel-A] from [1-Gödel-B] as follows. 
First, by Church Thesis (CT), [1-Gödel-B] is equivalent to the claim that the set 
of humanly demonstrable theorems cannot be produced by any Turing machine. 
Then another application of CT yields that the set of humanly demonstrable 
theorems cannot be produced by any finite machine. Since the human brain is 
obviously a finite machine, 1-Gödel-A follows. However, these two applications 
of “Church Thesis” are in fact applications of two different theses. The first ap-
plication relies on the mathematical thesis that a function f : 𝒩𝒩→ 𝒩𝒩 is computa-
ble by some u n i f o r m  d i s c r e t e  a l g o r i t h m  iff it is recursive (or, according 
to a provably equivalent version, is computable by some particular “Turing ma-
chine”). The second application above of “Church Thesis” takes it to be claiming 
that if the values taken by some function f : 𝒩𝒩→ 𝒩𝒩 (for example: the characteris-
tic function of the set of true arithmetic sentences) can all be somehow computed 
in one way or another by some machine (e.g., a human brain), then f is recursive 
(or computable by some particular “Turing machine”). Since “a machine” in 
general is not, and never has been, a mathematical notion, this is a much stronger, 
nonmathematical thesis. (In other words: despite the confusion that the use of 
a natural language causes here, “mechanically computable” and “computable by 
a machine” mean quite different things.) Unlike the mathematical (and original) 
version of CT, the stronger one is not supported by the evidence for CT that can 
be found in the literature, and a “proof” of GD that uses it is circular. Hence even 
if we accept the m a t h e m a t i c a l  CT as an axiom, and in addition accept Gö-
del’s proof of the disjunction of [1-Gödel-B] and [2-Gödel], we still cannot see the 
disjunction of [1-Gödel-A] and [2-Gödel] as a “mathematically established fact”. 

The question about the meaning and scope of CT seems to stand also behind 
the different views of Lucas and Penrose concerning what exactly their “Gödel 
argument” is showing. While Lucas (and Gödel) took it as refuting mechanism, 
that is: the thesis that the activity of the “human mind” can be reduced to the 
activity of the human brain and the laws of Physics, Penrose explicitly does not 
agree. He claims to refute only c o m p u t a t i o n a l i s m , that is: the thesis that the 
activity of the human “mind” can be reduced to computations. This very signifi-
cant difference is reflected in the difference between [1-Lucas] and [1-Penrose]. 
Anyway, the questions what is exactly Church Thesis, and what version of it we 
are justified to accept, are complicated. Therefore we shall not enter deeper into 
them here. It will be done in a different paper. Accordingly, for the sake of argu-
ment we shall accept in what follows the identification of “finite machine” with 
“Turing machine”. 
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Next we notice that even the use of the notion of a “Turing machine” is very 
ambiguous in the literature on GD and LP. When it is said that the “mind” is not 
a Turing machine, it is not always clear whether what is meant by the latter is 
a combination of hardware and software, that is: the idealized Turing’s device 
together with a specific program (i.e. a finite set of quadruples of a certain type), 
or just the hardware, i.e. the idealized device needed for running Turing-type 
programs on some input.4 At first sight, the second interpretation seems more 
reasonable, since when we perceive a computer as a “machine”, we think about it 
as a device that can execute many programs, i.e. can simulate the activity of 
many Turing machines (even all, in case we are talking about an idealized com-
puter). However, for reasons that are not fully clear to me, it seems that it is the 
first interpretation that most of the various authors have in mind in all of the 
formulations above. This is explicit, e.g., in both [1-Horsten-Welch-A] and [1-
Horsten-Welch-B]. 

4.2. “The Human Mind” 

A particularly problematic aspect of the formulations of the disjuncts that re-
fer to “the mind” is the use of the definite article in the repeated talks on “the 
human mind”, and the frequent back-and-forth moves from “the human mind” to 
“a human mind” in the discussion of the theses. Koellner’s formulations above of 
the first disjunct provide a good example. In these formulations Koellner has 
tried (with certain amount of success) to provide a less vague versions of GD. 
However, there is from the start an obvious ambiguity in his formulation: some-
times he uses [1-Koellner-A], which is about the outputs of the human “mind”, 
and sometimes [1-Koellner-B], which is about the outputs of a human “mind”. It 
is remarkable that he has never used the formulation: “The mathematical outputs 
of the idealized human ‘mind’ cannot coincide with the mathematical outputs of 
the idealized finite machine”. This again shows how much prejudice and hidden 
assumptions are contained just in the formulations of LP and GD, to say nothing 
about their “proofs”. A similar phenomenon is encountered in most other papers 
on the subject. But are [1-Koellner-A] and [1-Koellner-B] (for example) really 
equivalent? There is just one case in which the answer to this question is positive: 
if we assume that (the mathematical thought of) all (idealized) human “minds” 
are essentially the same. (This seems to be the view of Penrose. See below.) In 
the words of Williamson: “Talk of ‘the human mind’ may work better within 
a conception on which all normal humans have the same intellectual competence, 
all differences coming from accidental limitations on performance” (Williamson, 
2016, p. 250). 

 
4 Limiting the discussion to universal Turing machines does not eliminate the ambigu-

ity: Instead of talking on combinations of a device and a program that wait for an input in 
order to run, in the case of universal Turing machines we talk on a combination of a de-
vice and a fixed part of the input, that wait for another part of the input in order to run. 
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This is of course an assumption that cannot be established mathematically, so 
using it (as Gödel might implicitly have done—he did not explain this point) 
already refutes the claim of “mathematically establishing” Gödel disjunction. 
But what reason do we have even to believe it? It is certainly false for actual 
human “minds”. Most people on earth do not even understand Gödel’s theorem 
and its proof, let alone would ever be able to discover and prove it themselves. 
I guess this is why participants in the discussions of the subject, including Pen-
rose himself, rely on the activity (either actual or potential) of mathematicians. 
(By this they seem to leave open the possibility that the “minds” of people who 
cannot be worthy mathematicians are Turing machines…) Thus in Chapter 10 of 
(1989) Penrose argues: 

A mathematical argument that convinces one mathematician—providing that it 
contains no error—will also convince another, as soon as the argument has been 
fully grasped. […] Thus we are not talking about various obscure algorithms that 
might happen to be running around in different particular mathematicians’ heads. 
We are talking about one universally employed formal system which is equivalent 
to all the different mathematicians’ algorithms for judging mathematical truth. 
(pp. 539–540) 

Even had this observation about mathematicians been true, this fact would 
have been no more than an empirical fact, not a mathematical one. But actually 
what Penrose says here is simply false. There have been, and there still are, many 
disagreements among mathematicians about validity of proofs. Here are few 
examples. Many more can be given. 

• The debates on GD and LP provide good examples themselves. While Gö-
del believed that GD is a “mathematically established fact”, Feferman (for 
example) did not accept his proof (Feferman, 2006). Similarly, while al-
most every mathematical logician rejects the proofs that Lucas and Penrose 
have given to their theses, Lucas and Penrose insist that they are (“essen-
tially”) correct. Obviously, the “minds” of Lucas and Penrose differ from 
those of the majority of the logicians… 

• Gödel was a devoted platonist that saw no problem in using actual infinity 
in proofs (something that according to his own testimony has allowed him 
to prove his theorems). In contrast, the only infinity that was acceptable to 
Euclid was potential infinity. Indeed, in most of the history of mathematics, 
from the Greeks to Gauss, the use of actual infinity in proofs was rejected 
by almost all the mathematicians. Only in recent times its use is viewed as 
legitimate by the majority of them—and there are several respectable 
mathematicians who still reject it. Therefore I see no reason to think that 
the (“idealized” versions of the) “minds” of Gödel and Euclid (say) were 
identical. 
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• There is also a great disagreement between constructivists on one hand, and 
classical mathematicians on the other. As is well known, constructivists re-
ject the general use of the law of excluded middle, while classical mathe-
maticians use it freely. There are also many disagreements among the fol-
lowers of various brands of constructivism: Intuitionism, Bishop’s con-
structivism, Russian constructivism (in the tradition of Markov and others), 
and so on. 

• Even among classical mathematicians who are not finitists or constructiv-
ists, there is a controversy about the acceptance of certain axioms. Thus 
there are mathematicians who believe that they can “see” that measurable 
cardinals exist (or at least that their existence is consistent with ZFC), 
while many other mathematicians (like me) totally lack this ability. Even 
Penrose himself admits in Chapter 4 of (1989) that 

When all the ramifications of set theory are considered, one comes across sets 
which are so wildly enormous and nebulously constructed, that even a fairly de-
termined Platonist such as myself may begin to have doubts that their existence, 
or otherwise, is indeed an “absolute” matter. There may come a stage at which the 
sets have such convoluted and conceptually dubious definitions that the question 
of the truth or falsity on mathematical statements concerning them may begin to 
take on a somewhat “matter-of opinion” quality rather than a “god-given” one. 
(p. 147) 

For fairness, I should note that Penrose did not completely ignore the difficul-
ties to his thesis (about the “universal mathematician”) that are caused by the 
different views that actual mathematicians have about mathematical truth and 
validity of proofs. In a footnote to Chapter 10 of (1989) he says: 

Some readers may be troubled by the fact that there are indeed different points of 
view among mathematicians. Recall the discussion given in Chapter 4. However 
the differences, where they exist, need not greatly concern us here. They refer on-
ly to esoteric questions concerning very large sets, whereas we can restrict our at-
tention to propositions in arithmetic (with a finite number of existential and uni-
versal quantifiers) and the foregoing discussion will apply. (Perhaps this over-
states the case somewhat, since a reflection principle referring to infinite sets can 
sometimes be used to derive propositions in arithmetic.) As to the very dogmatic 
Godel-immune formalist who claims not even to recognize that there is such 
a thing as mathematical truth, I shall simply ignore him, since he apparently does 
not possess the truth-divining quality that the discussion is all about! (pp. 581-582) 

Here, as a side remark inside brackets within a footnote, Penrose is burying 
the point that decisively refutes what he is claiming. His case is not just “over-
stated” because of the fact noted in the brackets. That fact demolishes his case 
completely, because “the propositions in arithmetic that axioms of strong infinity 
are used for their proofs” are exactly of the type that Lucas and Penrose use in 
their arguments. Thus assume that Penrose has doubts about the strong infinity 
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axiom I, While W is a mathematician who “sees” or somehow feels s/he knows 
that I is true. Then W also knows the truth of the Π1

0-arithmetic proposition that 
states that ZFC+I is consistent—something that there seems to be no way for 
Penrose to know. So, according to Penrose’s own argument, the “mind” of 
W “surpasses the power” of Penrose to prove Π1

0-arithmetic propositions, and in 
particular—the “minds” of Penrose and W are different in an essential way. 

Note 1 Gödel too did not ignore the problems that are caused to his disjunc-
tion by the the existence of different schools of mathematics. Therefore he did 
his best to make his argument for GD independent of a mathematician’s philoso-
phy of mathematics: “It is of great importance that at least this fact [i.e. that the 
disjunction is ‘an established mathematical fact’] is entirely independent of the 
special standpoint taken toward the foundations of mathematics” (Godel, 1951, 
p. 310). 

However, what is in question here is whether the formulation of GD is mean-
ingful. Hence Gödel’s care for the independence of his argument from philosoph-
ical views is irrelevant to the point we are making. 

The upshot of this discussion is that [1-Koellner-A] and [1-Koellner-B] are 
not equivalent. What is more, it casts strong doubt on the meaning of the former. 
The only possibility that remains to try to give some meaning to it and to all the 
other formulations above that mention “the human mind”, is to understand “the 
mathematical outputs of the (idealized) human mind” as referring to the totality 
(that is: the union) of the true mathematical outputs of the (idealized) human 
“minds”.5 This interpretation is examined in the next Section. Meanwhile we turn 
to a further examination of [1-Koellner-B]. 

4.3. “The Mind” of a Particular Mathematician 

Let us turn to versions of GD that do not pretend to describe properties of the 
mythic “Human mind”, but instead claim that some given specific “mind” “is not 
a machine”. As is stated in [1-Koellner-B], and confirmed by Gödel and Penrose 
themselves, these versions do not really speak of the actual “mind” of someone 
like Gödel (say), but on the “mind” of an idealized Gödel, who lives for ever, 
and has other nice non-human qualities, but still is exactly like the real Gödel 
with respect to his mathematical abilities. Similarly, GD is not about any real 
finite machine, but about an idealized one. These facts, especially the first one, 
have been severely criticized in a very convincing way in (Feferman, 2006; Ko-
ellner, 2018b; Putnam, 2011), and especially in (Shapiro, 1998) and (Shapiro, 

 
5 As noted in (Feferman, 2006), an indication that this was not what Gödel himself 

had in mind is provided by what he said in a conversation with Hao Wang reported in 
p. 189 of (1996): “By mind I mean an individual mind of unlimited life span. This is still 
different from the collective mind of the species”. 
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2016). I am not going to repeat the arguments given in these papers here. Instead, 
I want to emphasize the following points (several of them new, as far as I know): 

• The mechanist and the computationalist theses are not about idealized hu-
man beings and idealized machines, but about real human beings and real 
machines. I have never seen any explanation (by either Gödel, Penrose, 
Lucas, or anybody else) how a claim like [1-Koellner-B] implies a claim 
like [1-Gödel-A], in case what is meant in the latter by “the human mind” 
is (say) “the mind of the real Gödel”. 

• It seems to me almost certain, and certainly possible, that an essential part 
of the permanent code that is built into any human machine ensures its 
mortality. Therefore the concept of an immortal human “mind” might well 
be an oxymoron! 

• The idealization of “a human mind” that is involved in the picture that Gö-
del had of this notion, goes far beyond imagining it to be able to work for 
ever. It is actually based on a very naive view of a “mind”, that for the task 
of doing mathematics is self-contained, and in principle independent of get-
ting external output. I see no reason to believe in this romantic picture. 
Thus no matter how genius Archimedes has been, his abilities were limited 
by the culture in which he was active. Because of this culture, he was una-
ble even to introduce the number zero. As for Gödel’s theorems—they were 
not a part of the mathematics which was accessible to him. In fact, it seems 
to me very likely that even had Archimedes been immortal, as long as he 
would have worked in complete isolation from other mathematicians, he 
might have never discovered Gödel’s theorems. 

• Let us go one step further. We maintain that not only talks about “the hu-
man mind” in general, but also talks about the “mind” of a particular per-
son like Gödel, are misleading. Is GD intended to tell us something about the 
“mind” of Gödel when he was four years old? Or even about his “mind” 
when he was 70 years old? Certainly not. The reason is that a person’s 
“mind” is something dynamic. T h e r e  i s  n o  s i n g l e  “ m i n d  o f  G ö -
d e l ”. T h e r e  i s  a t  m o s t  “ t h e  m i n d  o f  G ö d e l  a t  a  c e r t a i n  
t i m e  o f  h i s  l i f e ”. The “mind” of any particular living person changes 
all the time by its interaction with the world and by learning new things 
(and forgetting others—this is also an essential component of the develop-
ment of any actual “mind”). This, e.g. is the reason why it frequently hap-
pens that a problem one could not solve at one point of her life, she finds a 
solution to a few years later. 

Note 2 A particularly interesting implication of the dynamic nature of a hu-
man “mind” is given by the following scenario: suppose a certain person who 
understands Gödel’s incompleteness theorems and their proofs, e.g. Lucas, 
somehow learns at a certain time t2 of his life that the set of true arithmetic prop-
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ositions he could potentially have known at some previous time t1, is identical to 
the set of theorems of the formal system 𝒯𝒯. (This could happen if he is told so by 
“his creator”—a term used by Gödel in [1951]—or if he infers this with very 
high degree of certainty from new experimental data that he had meanwhile 
acquired.) This fact was not (and could not have been) a part of his knowledge at 
time t1. Hence the “mind” of Lucas at time t2 is different from his “mind” at time 
t1. This fact makes it possible for him to know at time t2 various Gödel’s sentenc-
es for 𝒯𝒯 that were not (and could not have been) known to him at time t1. 

Note 3 Interestingly, on another occasion Gödel himself noted the dynamic 
nature of a human “mind”. In a note, which was prepared for publication but 
never actually published, he wrote: 

Turing gives an argument which is supposed to show that mental procedures can-
not go beyond mechanical procedures. However, this argument is inconclusive. 
What Turing disregards completely is the fact that mind, in its use, is not static, 
but constantly developing. (Gödel, 1990, p. 306) 

I wonder why Gödel has not noticed the crucial importance of this correct 
observation to his own disjunction. (Or maybe he did? After all, [Gödel, 1951] 
has never been published by Gödel himself.) 

It follows from the discussion at the last item above that even in [1-Koellner-
B] the first disjunct is very vague, and should be reformulated, e.g., as “The 
(realistic) potential mathematical outputs of a given person at a given point of 
time cannot coincide with the (realistic) potential mathematical outputs of any 
finite machine (at some point of time)”. In my opinion, this formulation of the 
first disjunct is probably false. What is sure is that Gödel theorems have little to 
tell us about its truth value. 

In connection with this, it should be noted that it seems that almost all the 
participants, from both sides, in the debates about GD and LP have followed 
Gödel and Lucas in ignoring the dynamic nature of human “minds”, and so have 
discussed only the question whether it can be equivalent to some static Turing 
machine. The question should have been whether it can be equivalent to a robot 
whose “mind” (i.e. the combination of its hardware, software, and memory) 
continuously changed through learning (both from the experience it gets from its 
interaction with the neighborhood, and from direct teachers) and forgetting. Such 
robots already exist, and I do not see any “Gödel argument” that can prevent us 
from making in the future a robot that has even the same mathematical abilities 
that Gödel had when he was at his twenties. I suspect that the importance for the 
debate of the power of learning, and of the dynamic aspects of both “minds” and 
machines, was disregarded because of the continuing confusion noted above 
about what is meant by a “machine”: Is it just the device (i.e. hardware), or is it 
something bigger, like the device together with (a part of) the software and 
memory? 
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5. “Knowable”, “Demonstrable”, “Certain”, “Evident” 

In this section we examine the alternative interpretation (which was men-
tioned at the end of Section 4.2), of “the mathematical outputs of the (idealized) 
human mind” as referring to all the true mathematical facts that may be output 
by (idealized) human “minds”. This interpretation is explicitly reflected (with 
important amendments that Shipman has found necessary) only in [1-Shipman] 
and [2-Shipman]. However, it seems to stand also behind most (if not all) the 
formulations above that avoid the use of the notion of “human mind”, replacing 
it instead with some less ontologically committed notions, like: “human under-
standing”, “human mathematical reasoning”, “the collection of humanly knowa-
ble theorems”, and “all demonstrable mathematical propositions”. As was force-
fully argued in (LaForte, Hayes, & Ford, 1998), it should be clear that in this 
form, GD and LP have no real relevance to the mechanist (or even the computa-
tionalist) thesis, because the claim that (“knowable”) mathematics is r.e. (i.e. is 
encapsulated by some formal system) is completely different from the claim that 
the (“knowable”) mathematics of any specific mathematician is r.e. Nevertheless, 
the corresponding theses still have interest and philosophical implications of 
their own. So let us examine them. 

5.1. “Knowable” Versus “Demonstrable” 

The notions of “human understanding”, and “human mathematical reasoning” 
are too broad and fuzzy to be used in a logico-mathematical discussion. So let us 
concentrate on the two collections of mathematical objects that are mentioned in 
the previous paragraph. To make it more plausible that they describe definite 
mathematical objects themselves, we shall restrict ourselves to two less general 
(but sufficiently rich) sub-collections: “the collection of humanly knowable 
arithmetic propositions” and “the collection of humanly demonstrable arithmetic 
propositions”.6 Assuming, for the time being, that these two collections are well-
defined, let us discuss first the question whether they are identical. The obvious 
answer should be that they are not. Here are two examples: 

• Even children know that multiplication of natural numbers is commutative. 
In contrast, even the majority of the scientists do not know how to demon-
strate this mathematically. Their knowledge of it is based on a mixture of 
personal experience with what is taught in school. 

• A more subtle example is given by complexity theory. For all practical pur-
poses, the computer scientists behave as if they know that P ≠ NP. In fact, 
most of them feel that they indeed know this, even though none of them 
can mathematically demonstrate it. 

 
6 We may further restrict them by replacing “arithmetic” with “Π1

0-arithmetic”. 
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The obvious reply to this objection that one can implicitly find in the literature 
on the subject is that what is meant here by both “knowable” and “demonstrable” 
is “knowable with mathematical certainty” (Godel, 1951) or “logically derivable 
from evident axioms” (Godel, 1951, again), or “perceivable by mathematicians 
as unassailably true” (Penrose, 1994), or “demonstrably true by human reason 
and insight” (Penrose, 2011), or “knowable with unassailable mathematical cer-
tainty, via full mathematical rigor” (Shapiro, 2016). The use here of several dif-
ferent formulations (and several others can be found in the literature), employing 
different words which have similar but not identical meanings, is already suspi-
cious. True, when we need to express ourselves precisely, it is often helpful to 
have in our language different words whose meaning is close but not identical. 
However, this fact also makes it possible to obscure things by switching from 
one word to another. This is indeed what repeatedly happens in the papers on the 
subject, especially in papers that try to support LP. However, here I would like to 
give an example from an argument of an opponent: Stewart Shapiro. Usually, 
Shapiro is very careful in distinguishing between different concepts, and he uses 
this repeatedly and convincingly in order to show that there is no sufficiently 
precise mechanistic thesis that is undermined by Gödel’s theorems (Shapiro, 
1998; 2016). However, when he discusses the candidacy of ZFC as a formal 
system that encapsulates all “unassailably true arithmetic propositions” he is less 
careful. He writes: “Moreover, is Zermelo-Fraenkel set theory sufficient for all 
unassailable mathematical knowledge? If so, the mechanist wins. But ZFC clear-
ly isn’t sufficient. Don’t forget the Gödel sentence for ZFC. I presume we do 
know that” (Shapiro, 2016, p. 198). 

Notice that Shapiro does not write that he is presuming that the Gödel sen-
tence for ZFC belongs to our “unassailable mathematical knowledge”—he is 
careful to presume only that we know it. By this he is taking advantage of the 
crucial difference between “knowing” and “mathematically demonstrating” not-
ed above. Thus I, for one, feel that I know with very high degree of confidence 
(which is as least as high as my knowledge that all men are mortal, or that the 
sun will rise tomorrow), that ZFC is consistent. The reason is simple: I am con-
vinced that had it been inconsistent then this would have been discovered by now 
(more than a century after the best mathematicians in the world start to exten-
sively investigate and use it). 7  Moreover: even though I am not a platonist, 
I admit that the picture of the “Von Neumann universe” provides strong intuitive 
support to the belief in the consistency of ZFC, even though this support is not 
absolutely conclusive. Still, I definitely cannot demonstrate, or claim to know 
with “absolute mathematical certainty”, that ZFC is consistent.8 

 
7 Gödel himself notes in (1951) the possibility of empirical certainty that the brain 

works like a computer, or that the mathematical human “mind” is equivalent to a Turing 
machine. 

8 Actually, Shapiro himself observed in (1998) that given a system S, “for each axiom 
ψ of S, we can have good reason to think that ψ is true without having good reason to 
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5.2. Degrees of Certainty 

The discussion above shows that it is anything but clear what exactly is 
claimed in each of the above vague formulations of the first disjunction in case it 
is not (or may not be) about the “mind” of a single person, or whether they all 
say the same thing. In order to give some chance for a Gödel’s disjunction to 
mean something which is not just a trivial reformulation of Tarski’s theorem, and 
may follow from Gödel incompleteness theorems, we shall henceforth assume 
that all of these formulations indeed try to make the same claim: that the set of 
Π1

0-arithmetic propositions which are “provable with unassailable mathematical 
certainty” differs from the set of Π1

0-arithmetic theorems of any formal system. 
Does at least this formulation express a unique meaningful claim? Not really. 
The reason is that the notion of “unassailable mathematical certainty” does not 
have a determined unique meaning. The main problem with it was formulated in 
(Koellner, 2018b, p. 473) as follows: “justification and evidence in mathematics 
come in degrees”. In other words: there are different levels of mathematical 
certainty. They are mainly characterized by the role that infinity is allowed to 
have in proofs. Here are the most important groups of levels. (The reason why 
we speak here about g r o u p s  o f  l e v e l s  is explained in the sequel.) 

Finitistic mathematics. Here references to infinite objects and quantification 
over an infinite collection of objects are strictly forbidden in propositions and 
proofs. According to Hilbert, only the use of finitistic methods of proof provides 
absolute mathematical certainty. However, this position is shared now by very 
few mathematicians. Still, it should be noted that in (Ye, 2011) it is shown that 
Finitistic mathematics is quite rich and its power is far bigger than what one 
might have expected. 

Predicative mathematics (Feferman, 2005). Here potentially infinite objects are 
allowed. As noted above, this was the way infinity was viewed by most of the 
mathematicians throughout almost the whole history of mathematics; the change 
came only at the second half of the 19th century. The modern predicativist pro-
gram was initiated by Poincaré (1906; 1909), in his follow up on (Richard, 1905). 
Its viability was demonstrated by Hermann Weyl, who seriously developed it for 
the first time in his famous small book Das Kontinuum (1918; 1987). After Weyl, 
the predicativist program was extensively pursued by Feferman, who in a series 
of papers (see, e.g., 1964; 1998; 2005) developed proof systems for predicative 
mathematics. Weyl and Feferman have shown that a very large part of classical 
analysis can be developed within their systems. 

Feferman further argued that predicative mathematics in fact suffices for de-
veloping all the mathematics that is actually indispensable to present-day natural 

 
think that S is consistent”. Now take S to be ZFC, where by “good reason” we understand 
p r o v a b l e  w i t h  u n a s s a i l a b l e  m a t h e m a t i c a l  c e r t a i n t y… 
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sciences. Allow me to add to that my personal opinion (Avron, 2020): I believe 
that predicative mathematics is exactly the part of mathematics that deserves 
being called “absolutely certain”. 

For the predicativist program, the following well-known fact about Π1
0 -

sentences is very important: if ψ is such a sentence, and T ⊢ ψ (where T is some 
formal theory), then PA + Con T ⊢ ψ, where PA is first-order Peano’s Arithmetics. 
Since PA is a part of predicative mathematics, it follows that no matter how 
strong and large a formal theory T is, and to what extent it goes beyond predica-
tively acceptable mathematics, as far as Π1

0-sentences are concerned, the use of 
T in proofs is equivalent to the use in predicative mathematics of the single 
arithmetic sentence that expresses the fact that T is consistent. In other words: 
the degree of certainty, that a proof of a Π1

0-sentence ψ in a given formal theory 
T gives us about the truth of ψ, is identical to the degree of certainty that we have 
in the consistency of T. 

ZF(C). ZFC is the canonical system in which almost all of mathematics is offi-
cially developed. What is more: it is safe to say that the axioms of ZF include all 
the axioms of set theory that the great majority of the mathematicians in the 
world are ready to accept as uncontroversial (although there might be different 
opinions about what it means to say that they are “true”). It seems that nowadays 
most mathematicians think that the axiom of choice is true too. However, histori-
cally many great mathematicians have strongly objected to the use of that axiom. 
The fact that this situation has been changed might reflect cultural environ-
ment—hardly what justifies seeing something as “obviously true”. Luckily, since 
the consistency of ZFC follows in PA from the consistency of ZF, ZFC is as 
good as ZF for justifying the acceptance of the truth of Π1

0-sentences. Things are 
different with respect to other axioms of ZF that some mathematicians find du-
bious, like replacement or powerset. In any case, it seems to me that only few 
mathematicians would deny that proofs in PA of Π1

0-sentences provide higher 
degree of certainty than proofs in ZFC. 

Extensions of ZFC. Many set theorists feel that there is no reason to stop at 
ZFC, especially since the latter cannot prove its own consistency (which should 
be taken for granted by anybody who uses ZFC for showing the truth of some 
Π1

0-sentence). The natural direction of going beyond ZFC is to add to it stronger 
and stronger axioms of strong infinity. Thus in (1946) Gödel proposed provabil-
ity with regard to extensions of ZFC with true large cardinal axioms as a plausi-
ble concept of absolute demonstrability. Similarly, in (2005), Franzén wrote that 
ZFC+some infinity axiom may represent exactly the “human demonstrated 
mathematics”. Unfortunately, “The case for the axioms gets harder and more 
involved as one ascends to higher and higher reaches”. (Koellner, 2018b, p. 473). 
(Recall what Penrose himself has said about this in [1989, Section 4.2].) The 
situation with respect to the “absolute certainty” of large cardinal axioms was 
best described by Feferman as follows: 
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I don’t know of anyone who says that we can be assured that all the large-cardinal 
axioms that have been considered to date lead only to mathematical truths, let 
alone that they are “evident” as required by Gödel in his disjunctive formulation.
 (2006, p. 149) 

This state of affairs is obviously the reason why Shipman has turned to ac-
ceptance of set-theoretical statements not on the basis of their being evident, or 
“knowable with unassailable mathematical certainty”, but on the basis of future 
consensus. To see how vague is his notion of “human mathematics” it is enough 
to follow him word by word and define “machine mathematics” as the collection 
of formalized sentences in the language of set theory which are logical conse-
quences of statements that will eventually come to be accepted by a consensus of 
machine mathematicians as “true”. What can we infer from Gödel theorems 
about this “machine mathematics”? Actually, there might be reasons to believe 
that it includes all true arithmetical sentences: Call any machine which produces 
arithmetical sentences “a machine mathematician” iff all the arithmetical sen-
tences it produces are true. Let an arithmetical sentence be “accepted by a consen-
sus of machine mathematicians” once 1000 machine mathematicians have pro-
duced it. Then obviously all true arithmetical sentences belong to “machine math-
ematics” according to these definitions. Shipman might object, of course, that these 
are not good definitions or characterizations of “mathematicians” or “consensus”. 
I would agree, but I cannot see what better ones he might be able to offer. 

Another aspect of Shipman’s definition is its dependence on time (“eventual-
ly”). Similarly, on many occasions H. Friedman has expressed his belief that the 
use of strong cardinal axioms will necessarily become a part of humane mathe-
matics. So he too is speaking about the future. Why? Because nobody can claim 
that such axioms are “a part of humane mathematics” at present. It seems there-
fore that what the “human mind” can prove with “unassailable mathematical 
certainty” depends on time, consensus, etc. How can such a concept be connect-
ed with Gödel’s theorems? 

Note 4 As was noted already in Note 1, Gödel was aware of the difficulties 
that are caused to his disjunctive thesis by the existence of different views about 
what is evident and what is not. Therefore he explicitly tried to make his argu-
ment for his thesis independent of one’s views on the matter. In other words, he 
claimed that his argument should be acceptable not only to platonists, but also to 
finitists, constructivists, predicativists, etc. The difference, he wrote, between the 
various schools would be with respect to the truth-values of the two disjuncts; 
not with respect to the truth-value of their disjunction. However, Gödel missed 
the real problems here. First, it might be that because they all use the same vague, 
informal language, they all would accept a certain formulation of the disjunc-
tion—but each one would understand by this a completely different thesis. Since 
each group above includes many variants and non-identical theses, the number of 
theses here would be almost the same as the number of people who are interested 
in the subject. Second, as we have emphasized in Note 1, no matter what school 
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one is associated with, in most cases the main words involved in the formula-
tions of the disjunction would be extremely vague. (And again, the disjunction is 
trivial and totally uninteresting in the few cases in which its formulation can be 
taken as meaningful.) 

5.3. On Geometric Reasoning 

The discussion so far concentrated on the degree of certainty that can be 
achieved using formal reasoning about abstract notions like numbers and sets. 
What about geometric reasoning? Until the 19th century, it had a central part in 
mathematical reasoning (and for long periods—it was its main rigorous part). 
The invention/discovery of non-Euclidean geometries has changed this situation. 
Nowadays geometric reasoning is still taken to be useful for getting intuitive 
understanding of theorems in analysis, and for providing hints how they may be 
rigorously proved. However, direct use of them in proofs of arithmetical proposi-
tions is usually considered to be illegitimate. This approach may be questioned. 
It might be argued that geometric arguments do provide some degree of certainty. 
Thus Penrose gave in (1994) the (Euclidean) geometric proof that a × b = b × a 
as an elementary example of geometrical reasoning, and said that it is “a perfect-
ly good proof, though not a formal one” of a general property of natural numbers. 
However, on another occasion he described Euclidean geometry as inaccurate: 

The most ancient of the SUPERB theories is the Euclidean geometry that we learn 
something of at school. The ancients may not have regarded it as a physical theory 
at all, but that is indeed what it was: a sublime and superbly accurate theory of 
physical space—and of the geometry of rigid bodies. Why do I refer to Euclidean 
geometry as a physical theory rather than a branch of mathematics? Ironically, one 
of the clearest reasons for taking that view is that we now know that Euclidean 
geometry is not entirely accurate as a description of the physical space that we ac-
tually inhabit! (Penrose, 1989, p. 197) 

The reason that Euclidean geometry is described by Penrose as “inaccurate” 
(Popper would have simply said “false”) is that according to Einstein’s general 
relativity theory, the real geometry of our universe is actually a non-Euclidean 
one. Nevertheless, when he is talking about applying geometrical reasoning in 
demonstrating properties of the natural numbers, Penrose has only Euclidean 
geometry in mind:9 

The study of non-Euclidean geometries is something mathematically interesting, 
with important applications […] but when the term “geometry” is used in ordinary 

 
9 Also in Chapter 3 of (1989), where Penrose describes with fascination the amazing 

geometric properties of Mandelbrot set, saying then (p. 125) that “Like Mount Everest, 
the Mandelbrot set is just there!”, the set he is talking about exists in the Euclidean plane. 
So if it has a platonic existence, then necessarily so does the Euclidean plane itself. 
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language (as distinct from when a mathematician or theoretical physicist might 
use that term), we do indeed mean the ordinary geometry of Euclid. (1994, p. 111) 

These incoherent views on the role of geometry in mathematics, all of them 
in the “mind” of just one, a particularly brilliant mathematician, shows how 
uncertain is what the degree of certainty that the use of geometrical reasoning 
provides is. It also gives further strong evidence that there are several different 
levels of “mathematical certainty”. 

6. Some Remarks on Lucas-Penrose’s Theses 

What we did above is to question the meaningfulness of the various formula-
tions of the Gödel’s disjunction in general, and of the various Lucas-Penrose 
theses in particular. For completeness, in this section we assume, for the sake of 
argument, that at least one of the latter makes sense, and briefly describe the two 
main mistakes (that is: unjustified hidden assumptions) that were noted in the 
literature in its alleged “proof”. 

1. The assumption that the (or a) “human mind” is consistent. 
2. The assumption that in any case that we realize that the (or a) “human mind” 

is equivalent to a Turing machine, we should know this with mathematical 
certainty. 

Unlike what is sometimes argued (partially even in [Krajewski, 2020]), there 
is no conflict between those that have emphasized the first assumption, and those 
that have emphasized the second one. Actually, there are good reasons to serious-
ly take into account the possibility that our “mathematical mind” is based on 
a theory which is inconsistent, and we do not know this fact! 

Let us start with some reasons that were given in the literature to doubt the 
truth (to say nothing about the certainty) of the first assumption, that is: the con-
sistency of the mathematical “human mind”: 

Putnam: An actual mathematician makes mistakes, and her outputs contains 
inconsistencies (Putnam, 2011). 

Davis: Great logicians (Frege, Curry, Church, Quine, Rosser) have managed to 
propose quite serious systems of logic which later have turned out to be in-
consistent. “Insight” didn’t help (Davis, 1990). 

Franzén: ZFC+some infinity axiom may represent exactly the “human demon-
strated mathematics”, and we do not know whether that system is consistent 
(Franzén, 2005). 

Penrose’s reply to the first (Putnam’s) argument is: 
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The most usual kind of mistake that a mathematician might make is of no real con-
cern to us here, being something that is correctable by that mathematician on further 
contemplation or when the error is pointed out by someone else. (2011, p. 351) 

It is debatable whether this is indeed a satisfactory reply to Putnam. In any 
case, it is certainly irrelevant to Franzén’s argument, and actually to Davis’ one 
too. The inconsistencies in the systems suggested by the great logicians that 
Davis mentions were indeed pointed out to them by others, but it was not clear at 
all what their mistakes had been, and how to “correct” them. All of the principles 
they used seemed “certainly correct”, and yet the whole system of each of them 
was inconsistent. It follows that there was something deeply inconsistent in their 
collections of beliefs, and it is not certain at all that this deep inconsistency dis-
appeared after the obvious problems with their mistakes had been discovered. 
Therefore it is not inconceivable that some deep inconsistency exists in the 
mathematical “mind” of each of us.10 In this connection, the following fact is 
rather telling: throughout the second half of the 19th century (if not already be-
fore), mathematicians were implicitly working within an inconsistent theory: 
naive set theory.11 

Let us turn now to assumption 2 above. First, let us emphasize that it is in-
deed absolutely necessary for the argument of Lucas and Penrose to assume that 
our recognition of a certain formal system F as being equivalent to our “mind” 
(with respect to the (Π1

0)-arithmetic sentences) should be mathematically certain. 
Otherwise, even under the assumption that we know with certainty the con-
sistency of our mind, we would not be able to infer the consistency of F, or 
(equivalently) its Gödel’s sentence, with any more mathematical certainty than 
F itself can. However, already Gödel admitted in (1951) that it is possible that 
the “mathematical human mind” is equivalent to a Turing machine which is 
unable to understand itself, and that to demonstrate that this is indeed the case (or 
at least that this is highly plausible), it suffices to bring forward a machine that 
empirically seems to be equivalent to our “mind”. These observations of Gödel 
suffice to render the assumption of Lucas-Penrose under discussion as unwar-
ranted. However, we would like to go one step further: to note that plausible 
candidates for F do exist. (This is a possibility that Lucas has obviously taken as 
just theoretical.) Actually, such candidates were already mentioned above. Thus 
according to Franzén and Shipman, F might be ZFC extended with some infinity 
axioms. But if we talk about the set of (Π1

0)-arithmetic sentences that can be 
proved with certainty, then a much better candidate was already (partially) dis-
cussed in Section 5.1: it is ZFC itself. 

 
10 Note that that in Section 5.3 some incoherence, if not an inconsistency, is pointed 

out in the views of Penrose himself about the status of Euclidean geometry! 
11 Another interesting example is provided by the debate on the axiom of choice. 

Some of the great mathematicians that strongly objected to its use, like Borel and Lebes-
gue, did not notice that they had implicitly used it themselves in their work… 
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This explicit suggestion might immediately raise a particular case of the fol-
lowing standard objection: 

As long as we see mathematical theories, or algorithms, as fundamentally similar 
to what we know as mathematics, we tend to assume that all the theories that are 
encompassing our knowledge of the natural numbers must, in principle, be based 
on a series of transparent basic truths (axioms) and be developed due to the appli-
cations of known, correct logical rules. If so, every such theory, if presented to us, 
must be fully understood, or at least understandable. And this full understanding 
implies our knowledge of its consistency and presumably also soundness. There-
fore, out-Gödeling is, indeed, possible. (Krajewski, 2020, p. 41) 

Or in the words of Gödel himself, his second incompleteness theorem 

makes it impossible that someone should set up a certain well-defined system of 
axioms and rules and consistently make the following assertion about it: All of 
these axioms and rules I perceive (with mathematical certitude) to be correct, and 
moreover I believe that they contain all of mathematics. If someone makes such 
a statement, he contradicts himself. For if he perceives the axioms under consider-
ation to be correct, he also perceives (with the same certainty) that they are con-
sistent. Hence he has a mathematical insight not derivable from his axioms. (1951, 
p. 309) 

It seems to follow that it makes no sense to fully trust the (Π1
0)-arithmetic 

theorems of ZFC, but less than fully trust the consistency of ZFC. However, this 
conclusion is again based on a subtle confusion, the danger of which was again 
noted by Gödel himself. In a footnote to the last quote he observed about the 
person mentioned in it (the one who sets up a certain well-defined system of 
axioms and rules) that “If he only says ‘I believe I shall be able to perceive one 
after the other to be true’ he does not contradicts himself” (1951, p. 309). 

What Gödel means here is that there is a difference between knowing with 
certainty the truth of each theorem of some system considered alone, (which 
means knowing with certainty an infinite numbers of claims), and between 
knowing the single claim that all of those sentences are true (a claim which is 
different from every such sentence). Thus we may be able to know with certainty 
any instance of Goldbach’s conjecture, without ever knowing with certainty 
Goldbach’s conjecture itself. Similarly, what I claim about ZFC is not that 
I sufficiently understand it to take its (Π1

0)-arithmetic theorems as established 
with absolute certainty just because they are theorems of ZFC. I am only claim-
ing the following: 

• The fact that a certain arithmetics sentence ψ is a theorem of ZFC is a very 
good reason to believe its truth (for the reasons explained above, which are 
partially empirical). However, this theoremhood alone does not provide us 
absolute certainty in the truth of ψ. 
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• On empirical ground, I strongly believe that every (Π1
0)-arithmetic sentence 

that will ever be proved with absolute certainty belongs to the set of theo-
rems of ZFC. 

• On empirical ground again, I see it as very plausible that the converse is 
true too: for every theorem ψ of ZFC there is some absolutely certain for-
mal system F such that ψ is also a theorem of F. (F may e.g. be a system 
which we recognize as obtained from PA by the addition of some formal-
ized reflection principles; see Feferman, 1962.) 

• We do not know, and most probably we shall never know, the consistency 
of ZFC with absolute certainty. 

I suspect that many people (including perhaps Gödel) would claim that alt-
hough the situation I describe might in principle be possible, it is very unlikely to 
be the real one. I think that on the contrary, the facts as we know them at present 
support it. Nevertheless, I would like to end this section by pointing out an ex-
ample in which a very similar state of affairs is accepted by most specialists to 
actually be the case. This is the case of predicative mathematics that was de-
scribed above (and I personally take as identical to the “absolutely certain math-
ematics”). Without any connection to the debate on Lucas-Penrose theses, Fe-
ferman (1964) and Schütte (1965) independently characterized it by some 
(equivalent) formal systems that (so they claimed) prove exactly the arithmetic 
sentences that a real predicativist is able to prove with what s/he takes as abso-
lute certainty. In the case of Feferman this was done in (1964) using a transfinite 
sequence of formal theories. Feferman maintained that a true predicativist can 
prove with certainty each theorem of each theory in this sequence, but he is not 
capable of seeing that he is able to do so, or the adequacy of the union of those 
systems as a whole. In other words: according to Feferman, he can exactly char-
acterize what a predicativist (like me) can prove, although a real predicativist 
cannot do it (unless he abandons his principles). Feferman thinks therefore that 
he can know with full certainty a sentence which is equivalent to the consistency 
of my certain mathematics, while I myself cannot know it with certainty.12 If he 
is right, then from Feferman’s point of view (and almost every logician agrees) 
I (or at least my “mathematical mind”) am equivalent to a Turing Machine. I do 
not feel insulted by this, but it is still difficult for me to accept that I am equiva-
lent to a Turing Machine, while some other people (e.g. Lucas and Penrose) are 
not. Maybe this very human feeling is a sign that I am not exactly a Turing Ma-
chine after all… 

 
 

 
12 Although Feferman was very sympathetic with predicativism, and it is clear that it 

reflects his views better than any other known “ism”, he has declared that he is not a real 
predicativist himself. 
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7. Conclusions 

We have shown that the name “Lucas-Penrose thesis” encompasses several 
different theses. All these theses refer to extremely vague concepts, and so are 
either practically meaningless, or obviously false. The arguments for the various 
theses, in turn, are based on confusions with regard to the meaning(s) of these 
vague notions, and on unjustified hidden assumptions concerning them. All these 
observations are true also for all interesting versions of the much weaker (and by 
far more widely accepted) thesis known as “Gödel disjunction”. 

Now Penrose, e.g., has provided in (1994, and in other papers) “replies” to 
almost every argument made above. However, each of these “replies” is connect-
ed only to some of the theses he is trying to make (although he does not distin-
guish between them), and frequently they contradict each other. These and simi-
lar confusions, in turn, are frequently the result of the the inadequacy of natural 
languages for dealing with precise notions and propositions. My conclusion from 
this state of affairs is that a n  a r g u m e n t  t h a t  c a n n o t  b e  f u l l y  f o r m a l -
i z e d  c a n n o t  b e  t a k e n  a s  a  m a t h e m a t i c a l  p r o o f . What is more: if 
there is a debate about the soundness of an argument, then in order to resolve it 
one should first of all fully formalize it. One important outcome of such a full 
formalization is that it makes all the hidden assumptions explicit. 

Another conclusion of this paper is the following dictum of Feferman: “It is 
hubris to think that by mathematics alone we can determine what the human 
mind can or cannot do in general” (2009, p. 213). 

 
 

REFERENCES 
 

Avron, A. (2020). Why Predicative Sets? In A. Blass, P. Cégielski, N. Dershowitz, 
M. Droste, B. Finkbeiner (Eds.), Fields of Logic and Computation III, Eassys 
Dedicated to Yuri Gurevich on the Occasion of His 80th Birthday (pp. 30–45). 
Springer. 

Baaz, M., Papadimitriou, C. H., Putnam, H. W., Scott, D. S., & Harper, C. 
L. (Eds.). (2011). Kurt Gödel and the Foundations of Mathematics: Horizons 
of Truth. Cambridge: Cambridge University Press. 

Boolos, G. (1995). Introductory Note to Kurt Gödel’s “Some Basic Theorems on 
the Foundations of Mathematics and Their Implications”. In S. Feferman et al. 
(Eds), Collected Works, Volume III: Unpublished Essays and Lectures (pp. 
290–304). Oxford: Oxford University Press. 

Charlesworth, A. (2016). A Theorem about Computationalism and “Absolute” 
Truth. Minds and Machines, 26, 206–226. 

Davis, M. (1990). Is Mathematical Insight Algorithmic? Behavioral and Brain 
Sciences, 13, 659–660. 

Ewald, W. (1996). From Kant to Hilbert. London: Clarendon Press. 



 THE PROBLEMATIC NATURE OF GÖDEL’S DISJUNCTIONS… 107 
 

Feferman, S. (1962). Transfinite Recursive Progressions of Axiomatic Theories. 
Journal of Symbolic Logic, 27, 259–316. 

Feferman, S. (1964). Systems of Predicative Analysis I. Journal of Symbolic 
Logic, 29, 1–30. 

Feferman, S. (1998). In the Light of Logic. Oxford: Oxford University Press. 
Feferman, S. (2005). Predicativity. In S. Shapiro (Ed.), The Oxford Handbook of 

the Philosophy of Mathematics and Logic (pp. 590–624). Oxford: Oxford 
University Press. 

Feferman, S. (2006). Are There Absolutely Unsolvable Problems? Gödel’s Di-
chotomy. Philosophia Mathematica, 14, 134–152. 

Feferman, S. (2009). Gödel, Nagel, Minds, and Machines. Journal of Philosophy, 
106, 201–219. 

Franzén, T. (2005). Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. 
Wellesley: A.K. Peters. 

Gödel, K. (1946). Remarks Before the Princeton Bicentennial Conference on Prob-
lems in Mathematics. In S. Feferman et al. (Eds.), Collected Works, Volume II: 
Publications 1938–1974 (pp. 150–153). Oxford: Oxford University Press. 

Gödel, K. (1951). Some Basic Theorems on the Foundations of Mathematics and 
their Implications. In S. Feferman et al. (Eds), Collected Works, Volume III: 
Unpublished Essays and Lectures (pp. 304–323). Oxford: Oxford University 
Press, 1951. 

Gödel, K. (1990). Collected Works, Volume II: Publications 1938–1974. Oxford: 
Oxford University Press. 

Gödel, K. (1995). Collected Works, Volume III: Unpublished Essays and Lec-
tures. Oxford: Oxford University Press. 

Koellner, P. (2016). Gödel’s Disjunction. In L. Horsten & P. Welch (Eds.), Gö-
del’s Disjunction: The Scope and Limits of Mathematical Knowledge (pp. 
148–188). Oxford: Oxford university Press. 

Koellner, P. (2018a). On the Question of Whether the Mind Can Be Mechanized, 
I: From Gödel to Penrose. Journal of Philosophy, 115, 337–360. 

Koellner, P. (2018b). On the Question of Whether the Mind Can Be Mechanized, 
II: Penrose’s New Argument. Journal of Philosophy, 115, 453–484. 

Krajewski, S. (2020). On the Anti-Mechanist Arguments Based on Gödel Theo-
rem. Studia Semiotyczne, 34(1), 9–56. 

Horsten, L., & Welch, P. (Eds.). (2016a). Gödel’s Disjunction: The Scope and 
Limits of Mathematical Knowledge. Oxford: Oxford university Press. 

Horsten, L., & Welch, P. (2016b). Introduction. In L. Horsten & P. Welch (Eds.), 
Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge (pp. 
1–15). Oxford: Oxford University Press. 

LaForte, G., Hayes, P. J., & Ford, K. M. (1998). Why Gödel’s Theorem Cannot 
Refute Computationalism. Artificial Intelligence, 104, 265–286. 

Lucas, J. R. (1961). Minds, Machines and Gödel. Philosophy, 36, 112–137. 
Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, 

and the Laws of Physics. Oxford: Oxford University Press. 



108 ARNON AVRON  
 

Penrose, R. (1994). Shadows of the Mind: A Search for the Missing Science of 
Consciousness. Oxford: Oxford University Press. 

Penrose, R. (2011). Gödel, the Mind, and the Laws of Physics. In M. Baaz et al. 
(Eds.), Kurt Gödel and the Foundations of Mathematics: Horizons of Truth 
(pp. 339–358). Cambridge: Cambridge University Press. 

Poincaré, H. (1906). Les Mathématiques et la Logique, II, III. Revue de 
Métaphysique et Morale, 14, 17–34, 294–317. 

Poincaré, H. (1909). La Logique de l’infini. Revue de Métaphysique et Morale, 
17, 461–482. 

Richard, J. (1905). Les Principes des Mathematiques et les Problémes des En-
sembles. Revue general des sciences pures et appliqués, 16, 541–543. 

Putnam, H. W. (2011). Gödel Theorem and Human Nature. In M. Baaz et al. 
(Eds.), Kurt Gödel and the Foundations of Mathematics: Horizons of Truth 
(pp. 325–338). Cambridge: Cambridge University Press. 

Schütte, K. (1965). Predicative Well-Ordering. In J. Crossley and M. Dummett 
(Eds.), Formal Systems and Recursive Functions (pp. 279–302). Oxford: 
North-Holland. 

Shapiro, S. (1998). Incompleteness, Mechanism, and Optimism. Bulletin of Sym-
bolic Logic, 4, 273–302. 

Shapiro, S. (2016). Idealization, Mechanism, and Knowability. In L. Horsten & 
P. Welch (Eds.), Gödel’s Disjunction: The Scope and Limits of Mathematical 
Knowledge (pp. 189–207). Oxford: Oxford university Press. 

Wang, H. (1996). A Logical Journey. Cambridge: The MIT Press. 
Weyl, H. (1918). Das Kontinuum: Kritische Untersuchungen über die Grundla-

gen der Analysis. Leipzig: Veit. 
Weyl, H. (1987). The Continuum: A Critical Examination of the Foundation of 

Analysis. Kirksville, Missouri: Thomas Jefferson University Press. 
Williamson, T. (2016). Absolute Provability and Safe Knowledge of Axioms. 

L. Horsten & P. Welch (Eds.), Gödel’s Disjunction: The Scope and Limits of 
Mathematical Knowledge (pp. 243–253). Oxford: Oxford University Press. 

Ye, F. (2011). Strict Finitism and the Logic of Mathematical Applications. New 
York: Springer. 


	The Problematic Nature of Gödel’s  Disjunctions and Lucas-Penrose’s Theses
	1. Introduction
	2. Formulations of the Two Disjuncts
	2.1. The First Disjunct (“Lucas-Penrose Theses”)
	2.2. The Second Disjunct
	3. The Mathematically Valid “Gödel Disjunction”
	4. Mind(s)
	4.1. “Turing Machines” and “Church Thesis”
	4.2. “The Human Mind”
	4.3. “The Mind” of a Particular Mathematician
	5. “Knowable”, “Demonstrable”, “Certain”, “Evident”
	5.1. “Knowable” Versus “Demonstrable”
	5.2. Degrees of Certainty
	5.3. On Geometric Reasoning
	6. Some Remarks on Lucas-Penrose’s Theses
	7. Conclusions


