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S U M M A R Y : The alleged proof of the non-mechanical, or non-computational, character 
of the human mind based on Gödel’s incompleteness theorem is revisited. Its history is 
reviewed. The proof, also known as the Lucas argument and the Penrose argument, is 
refuted. It is claimed, following Gödel himself and other leading logicians, that anti-
mechanism is not implied by Gödel’s theorems alone. The present paper sets out this 
refutation in its strongest form, demonstrating general theorems implying the inconsisten-
cy of Lucas’s arithmetic and the semantic inadequacy of Penrose’s arithmetic. On the 
other hand, the limitations to our capacity for mechanizing or programming the mind are 
also indicated, together with two other corollaries of Gödel’s theorems: that we cannot 
prove that we are consistent (Gödel’s Unknowability Thesis), and that we cannot fully 
describe our notion of a natural number. 
 
K E Y W O R D S : Gödel’s theorem, mechanism, Lucas’s argument, Penrose’s argument, 
computationalism, mind, consistency, algorithm, artificial intelligence, natural number. 

 
 

1. Introduction 

Several philosophical consequences of the celebrated Gödelian incomplete-
ness results have been indicated by logicians and philosophers. Here, only one 
issue is examined: namely, the alleged Gödel-based proof of the non-mechanical 
character of the human mind. In more modern terms, this equates with the refuta-
tion of the (strong) computationalist thesis identifying the mind with a computer. 
According to that thesis, the mind can be imagined as a program, where this need 
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not necessarily correspond to a (computational) mechanism; therefore, “compu-
tationalism” seems to be a more appropriate term. Nevertheless, for historical 
reasons, I will continue using the term “mechanism”. Ever since Gödel himself, 
logicians have argued—against the claims of many non-logicians, including 
philosophers and mathematicians—that anti-mechanism is not implied by Gö-
del’s theorems alone. The present paper aims to set out the logicians’ argument in 
its strongest form. 

Recently, another problem relating to the computationalist thesis has ap-
peared: our thinking, or at least some manifestations of our intelligent behavior, 
no longer seem to be limited to human beings, in that they can be present in 
computers or networks of computers, too. The question, then, is whether Gödel’s 
limitative results imply limitations regarding our abilities to mechanize intelli-
gence. Here, again following Gödel himself, the answer would seem to be positive.  

Even if it should not be, the controversy surrounding the value of the anti-
mechanist corollaries of incompleteness results remains very much a live one, 
with scholars as prominent as Roger Penrose claiming, against Gödel, that the 
latter’s theorem proves the non-mechanical nature of the mind. This stance is 
also reiterated in popular expositions, such as Goldstein (2005). Indeed, the con-
tinuing widespread support for this claim provides one of the principle justifica-
tory motivations for the present paper.1 Here, the Gödel-based arguments for 
anti-mechanism, commonly referred to as the Lucas argument and the Penrose 
argument, will be reviewed once again. The refutations of both versions will be 
set forth in this context in a more explicit way than were those proposed by Gö-
del and, subsequently, by other leading logicians. Even so, the essence of these 
refutations was, in fact, revealed by Gödel himself. The present paper is based on 
Krajewski (2003), a book-length study in Polish (summarized in Krajewski, 
2004) where some topics are treated much more extensively and a wider range of 
authors are quoted, but also reflects this author’s presentation (also in Polish) of 
the anti-anti-mechanism arguments (Krajewski, 2012), as well as two other pa-
pers that further refine this critique (Krajewski, 2007; 2015). Compared to earlier 
publications, there will be more stress here on the generality of the anti-Lucas 
and anti-Penrose theorems and, following (Krajewski, 2015), on ways to explain 
Penrose’s approach by identifying an additional premise that he implicitly adopt-
ed. I also find it important to endorse the corollaries that do follow from Gödel’s 
theorems: that we cannot prove that we are consistent, and that we cannot fully 
describe our notion of a natural number. 

Section 2 contains some background. However, a standard knowledge of Tu-
ring machines, recursive functions, Church’s Thesis, and Gödel’s theorems will 
be assumed. To be specific, GT is Gödel’s sentence for any (first-order) theory 
T that includes elementary arithmetic. For any T that is consistent and (minimally) 
sound, GT is independent of T (unprovable and not refutable). Soundness means 

 
1 There exist, to be sure, competent presentations that avoid such errors, e.g., (Franzen, 

2005; Berto, 2009). 
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semantical adequacy: provable formulas are true. For those wishing to avoid the 
inherently unclear notion of truth, Gödel introduced a notion of restricted sound-
ness, referred to as ω-consistency: for no formula ϕ all of the following are prov-
able in T: (∃x)¬ϕ(x) and ϕ (S(n)0) for all n = 0, 1, 2, …; here, “S(n)0” denotes the 
n-th successor of zero—that is, the number n. Minimal soundness (the above 
principle being applied only to formulas with restricted number quantifiers) is 
called 1-consistency. GT can be seen as a natural formalization of the statement 
that T is consistent. It can be expressed as a Π1 formula: all the unrestricted 
number quantifiers are universal, and they all appear in front of the rest of the 
formula. Due to the Matiyasevich-Robinson-Davis-Putnam theorem, this state-
ment can be expressed as the absence of solutions to a specific (dependent on T) 
Diophantine equation. According to standard accounts, GT is independent and 
true. For those for whom the notion of truth is unclear, it would probably be 
easier to admit this notion for the purposes of the statement that there is no inte-
ger solution to a particular, logically simple equation.  

In Section 3, the history of the anti-mechanist argument is sketched. In Sec-
tion 4 the argument is reconstructed as a procedure performed in four steps, and 
each step is analyzed. Then, two main issues are discussed: the “dialectical” 
character of the argument and its algorithmic nature. Section 5 contains a general 
theorem demonstrating the inconsistency of anyone who systematically applies 
the Lucas-style argument, and Section 6 contains a similar theorem for Penrose-
style arguments. In Section 7, Gödel’s position is briefly described, including the 
well-known Gödel’s Disjunction. In Section 8, another well-known claim, the 
impossibility of a rigorous proof of our consistency, is mentioned, and I name 
this assertion Gödel’s Unknowability Thesis. Afterwards, a claim is presented to 
the effect that we human beings cannot fully define our (human) understanding 
of natural numbers. 

2. Background 

2.1. Mechanism 

Historically, mechanism arose in the age of Enlightenment. Earlier, Descartes 
had come close, saying that animals are machines. Humans, according to him, 
were more than machines, as “there are no men so dull […] as to be incapable of 
joining together different words, and thereby constructing a declaration by which 
to make their thoughts understood; and that on the other hand, there is no other 
animal […] which can do the like” (Descartes, 1637, Part 5). At the same time, 
Descartes was sure that no mechanism could imitate specifically human behavior: 
“although such machines might execute many things with equal or perhaps 
greater perfection than any of us, they would, without doubt, fail in certain others 
from which it could be discovered that they did not act from knowledge […]” 
(ibidem). Yet a hundred years later, La Mettrie, a doctor who saw himself as 
a follower of Descartes, in his work Man-Machine, turned Descartes’s argument 
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upside down: he claimed that man i s  a machine, in both body and mind. The 
body was likened to a huge, ingeniously built clock. It is no surprise that he 
chose the clock for comparison, as this was the most complicated artificial 
mechanism known at the time. Thinking seemed to him “so inseparable from 
organized matter that it appears to be one of its qualities as much as is electricity, 
movability, non-penetrability, extension” (La Mettrie, 1747). At that time, almost 
300 years ago, it was a matter of faith whether a machine could be constructed 
that would be like man—or that would actually b e  man. And, indeed, this re-
mains an open question, despite the progress in robotics. It is not surprising that 
a hundred years ago the brain was compared to a telephone switchboard, the 
most complicated network in use at that time, while in our own time the compar-
ison is made with a computer.  

2.2. Artificial Intelligence 

The ideology of Artificial Intelligence (AI) constitutes the modern version of 
mechanism as applied to the mind. We can discern two interpretations: either the 
computer is supposed to imitate the effects of our activities (the weaker thesis), 
or it should imitate the structure of our thinking—the way the mind operates (the 
stronger thesis). No involved analysis of the differences is needed here, as the 
argument based on Gödel’s theorem has always been used to demolish even the 
weakest AI thesis. For a similar reason, we should not be troubled by the fact that 
no definition of the mind seems to be possible. We just need to take advantage of 
a few well-known effects of the mind’s activity, and require no insight into its 
essence. Only some features of the mind are called for, and among these is the 
capacity to understand Gödel’s theorem.  

On the other hand, as we study the alleged refutation of the thesis that the 
mind is mechanical or can be simulated by a machine, we should be able to de-
fine what a machine is. For example, we would not accept as a machine a device 
with a little homunculus hidden inside it. We would accept computers, including 
their hitherto unknown versions. What, then, is a machine? A definition is diffi-
cult to formulate, though it may be easier than formulating a definition of the 
mind. However, we can happily refer to Church’s Thesis. Information processing 
machines, whatever they are, present a product that can be described as a recur-
sive function. So far, all attempts to define an abstract machine have produced 
concepts equivalent to recursive functions and Turing machines. Obviously, the 
equivalence here pertains to the results, not the way of operating. But this, fortu-
nately, is just what the weaker AI thesis is concerned with. 

The mechanist thesis in its fullest form amounts to the one advocated by La 
Mettrie: that the human being is a machine. A more restricted thesis concerns the 
mind only, while a still more restricted one applies only to mathematics. Ulti-
mately, moreover, we arrive at the most restricted thesis of all, which is applied 
to the arithmetic of natural numbers (integers): that the operation of the mind in 
the field of arithmetic is mechanical. 
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Each of these theses can be expressed in a weaker version speaking not about 
the activities of man and the mind, but only the results of those activities. The 
weaker mechanist thesis admits the possibility that something essentially non-
mechanical takes place there, but it claims that by using an appropriate machine 
we can simulate the mind so that exactly the same results are achievable. The 
weakest variant reads as follows: the operation of the mind in the field of arith-
metic can be simulated by a machine.  

To those theses we could add even more restricted versions, based on our 
knowledge of the shape of Gödelian formulas. Thus the weakest thesis could 
refer to the operations of the mind to the extent needed to establish the non-
existence of solutions of Diophantine equations. It follows from all the other 
ones, so to refute it is to refute them all. According to Lucas and Penrose, their 
arguments refute all of the above theses of mechanism and AI. 

3. The Anti-Mechanist Argument 

Many people who have learned about Gödel’s results have felt that they pro-
vide such a limitation on the capabilities of machines broadly conceived (i.e. 
computers and robots, as well as their networks) that the limitation cannot apply 
to humans. Consequently, it seems that a fundamental difference between the 
human mind and machines has been demonstrated. The basic idea is very simple 
indeed: if a machine produces mathematical truths, then it cannot produce the 
Gödelian sentence constructed for the totality of those truths without falling into 
a contradiction. On the other hand, we can prove that the Gödel sentence is true. 
Thus—hooray!—we are better than any machine. 

3.1. The History of the Gödel-Based Argument 

The first printed mention of some form of the argument can be found in Alan 
Turing’s fundamental paper (1950). It was not a new idea even then, as is indeed 
clear from his presentation. Turing wanted to convince the reader that machines 
can think—or, rather, that they can perform certain functions that we normally 
associate with intelligence. He admits that “mathematical” arguments, in the 
sense of considerations based on Gödel’s Theorem or directly on Turing’s theo-
rem, are relevant, as “it is argued” that they prove “a disability of machines to 
which the human intellect is not subject”. We feel we are better, and the feeling is 
not “illusory”, writes Turing, and adds, “I do not think too much importance 
should be attached to it” (Feigenbaum & Feldman, 1995, p. 22). What is this 
added remark supposed to mean? It seems that what Turing wanted to say was 
that the building of robots was such a worthwhile undertaking that it would re-
main so even if robots were subject to some limitations.  

Even before Turing, and also around the same time, similar thoughts were 
expressed by Emil Post, one of the pioneers of modern mathematical logic. In 
1941, the latter wrote that “[a] m a c h i n e  would never give a complete logic; for 



14 STANISŁAW KRAJEWSKI  
 

once the machine is made w e  could prove a theorem it does not prove” (Post, 
1941, p. 417). He claimed that he had entertained a thought of this sort already in 
1924. Only later did he take Gödel’s results into account. Post’s paper was pub-
lished much later, in the anthology of Davis (1965). The quoted sentence is not 
a straightforward expression of the thesis that the mind is not mechanical, but we 
can see that this is suggested by the phrase “we could prove”. 

At the end of his exposition of mathematical logic, Rosenbloom wrote that 
Gödel’s theorem shows that “some problems cannot be solved by machines, that 
is, brains are indispensable” (Rosenbloom, 1950, p. 208). Man, he says, “cannot 
eliminate the need to use intelligence” (p. 163). Similar in spirit, only much more 
comprehensive and penetrating, are the considerations put forward later by 
Douglas Hofstadter (1979) in his bestseller, which served to make the general 
public aware of Gödel’s results. 

Before Hofstadter, the most popular exposition of Gödel’s achievements for 
a wider public was that available in the book by Nagel and Newman (1989). The 
authors write there that “the brain appears to embody a structure of rules of oper-
ation which is far more powerful than the structure of currently conceived artifi-
cial machines […] the structure and the power of the human mind are far more 
complex and subtle than any non-living machine yet envisaged” (Nagel, New-
man, 1989, pp. 101–102). The reservations expressed by the phrases “currently 
conceived” and “yet envisaged” testify to the authors’ caution. It could seem that 
their approach was manifesting a certain hesitancy as regards the thesis concern-
ing the non-mechanical character of the mind, in that it allows for the appearance 
of machines in a new, hitherto unknown, sense; Gödel’s method would not apply 
to those machines, and they could, in fact, be equivalent to the mind. However, 
the authors refrain from drawing this conclusion. Their attitude is also apparent 
in their response to the criticism of Putnam, who wrote that theirs was a “misap-
plication of Gödel’s theorem, pure and simple” (Putnam, 1960a, p. 207). Accord-
ing to them, Putnam “dogmatically” assumed that every conceivable proof of the 
consistency of a machine hypothetically equivalent to human mind could also be 
constructed by the machine (Nagel and Newman, 1961, p. 211). This remark 
seems to mean that for Nagel and Newman, some capabilities of the mind are 
assumed to be—or at least are allowed to be—fundamentally non-mechanical. 
This early controversy makes it clear that our attitude to Lucas’s argument may 
depend strongly on a basic assumption about whether or not it is possible for 
a machine to imitate arguments created by the mind.  

The debate was continued by, among others, Kemeny (1959) and Smart 
(1960). In the 1950s, more and more analytic philosophers saw the anti-
mechanist consequences of the limitative theorems as quite apparent, though 
probably only a few would swear that the argument contained no mistakes. It was 
Lucas who, with no hesitation whatsoever, presented the allegedly indubitable 
mathematical proof of man’s superiority over machines—and even over matter. 

The anti-mechanist argument was by no means universally accepted. On re-
flection, Post had fundamental doubts: “The conclusion that man is not a ma-
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chine is invalid. All we can say is that man cannot construct a machine which 
can do all the thinking he can” (Post, 1941, p. 423). Later, many authors would 
draw attention to the weak points of Lucas-style arguments. As a matter of fact, 
amongst mathematical logicians the currently dominant view is that Lucas’s 
argument is wrong. In addition to Gödel himself saying so in his 1951 Gibbs 
lecture (though this analysis was published much later), the first published criti-
cal mentions of Lucas’s argument (which in fact preceded Lucas’s paper) were 
Putnam’s (1960) and (1960a). Boolos called them “classic” (Boolos, 1995, 
p. 254). Criticism was voiced by, among others, Quine, Benacerraf (1967), and 
Wang (1974). Later, criticism was directed against Penrose’s version of the ar-
gument; among the most important papers were those by Feferman (1995) and 
Putnam (1995). Further criticism was offered by several logicians, for example 
Shapiro (1998) and Lindström (2001). A recent account of the debate is available 
in the collection of papers edited by Horsten and Welch (2016).  

The argument based on Gödel’s theorem retains its “mystical” charm. Many 
a philosophically minded scientist labors under its spell—as, increasingly, do 
other authors who refer to Gödel in order to state general theses not just about 
the mind, but also the limits of rationality, the incomprehensibility of the world, 
etc.2 For some, the motivation is de facto religious: a desire to confirm with 
mathematical rigor the existence of the soul and free will. This is explicit in 
Lucas’s later book (1970).  

Roger Penrose, an outstanding mathematician and theoretical physicist, de-
veloped his own version of Lucas’s argument in his books The Emperor’s New 
Mind (1989) and Shadows of the Mind (1994). His position remains scientific: he 
speculates that the quantum-mechanical level can provide an explanation of the 
non-mechanical character of the mind and consciousness. According to Putnam, 
Penrose “mistakenly believes that he has a philosophical disagreement with the 
logical community” (Putnam, 1995, p. 370).  

3.2. Two Ways of Criticizing Lucas’s and Similar Arguments 

Although logicians mostly agree that Lucas’s (and also Penrose’s) argument 
must be rejected, one must admit that a certain disconcerting ambiguity keeps on 
arising. There is more than one way to demonstrate the error in the Lucas or 
Penrose arguments. Two main approaches are used, both well summarized by 
John Burgess. For some, “the mistake lies in overlooking the possibility that it 
might in actual fact be the case that the procedure generates only mathematical 
assertions we can see to be true, without our commanding a clear enough view of 
what the procedure generates to enable us to see that this is the case”. (Burgess, 
1998, p. 351) For others, the error results from the fact that “even if we do see 
that the procedure generates only mathematical assertions we think we see are 

 
2 Chapter IV of the present author’s book-length study in Polish (Krajewski, 2003) 

treats this phenomenon at length. 
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true, it might be rational to acknowledge human fallibility by refraining from 
concluding that the procedure generates only mathematical assertions that are in 
actual fact true” (Burgess, 1998, p. 351). To put it in a simpler and more pictur-
esque way, the first line of attack reveals that it is not excluded that we are con-
sistent machines but don’t know it, and the second line shows that it is not ex-
cluded that we are inconsistent machines. The first method was introduced by 
Gödel, while the second—though also mentioned by Gödel—was made known 
by Putnam. 

This ambiguity engenders a perplexing consequence: no criticism of Lucas’s 
argument seems definitive. The first method assumes our consistency, and the 
other allows for the opposite to be the case. The assumptions contradict each 
other, so a supporter of Lucas can use this to say that the matter is not settled, 
since the opponents cannot agree among themselves. Still, the two methods taken 
together constitute a strong refutation: either we are consistent or not, and in both 
cases Lucas is wrong.  

In this paper, both approaches will be taken into account, and in addition Lu-
cas’s argument will be refuted in yet another way: without assuming anything 
about our, or Lucas’s, consistency, we will show (in Section 5.2) how every Lu-
cas-style argument leads to either a vicious circle or a contradiction. 

It is important to stress that all methods of refuting Lucas- and Penrose-style 
arguments are based on the insights expressed by Gödel himself, especially in 
1951. (For more details, see Section 7 below.) According to the one-sentence 
summary of the argument given in (1951) that Gödel presented to Wang in 1972, 

[O]n the basis of what has been proved so far, it remains possible that there may 
exist (and even be empirically discoverable) a theorem-proving machine which in 
fact i s  equivalent to mathematical intuition, but cannot be p r o v e d  to be so, nor 
even be proved to yield only c o r r e c t  theorems of finitary number theory. (Wang, 
1974, p. 324; 1996, pp. 184–185)3 

The present paper may be seen as constituting a somewhat extended footnote to 
the above sentence.  

4. Analysis of the Gödel-Based Arguments 

4.1. Steps (L1)–(L4) 

Lucas’s argument reads as follows: no machine is equivalent to the mind, be-
cause the mind can recognize the truth of the Gödelian formula for the machine, 
while a machine cannot do so—due to Gödel’s theorem—without being incon-
sistent, in which case it would certainly not be equivalent to the mind. To per-
form a critical analysis of Lucas’s argument, we must present its main points, or 

 
3 The term “finitary” has its proper meaning in the framework of Hilbert’s program. 

Here it means the Π1 statements of elementary “finite” number theory. 
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reconstruct it. While some degree of arbitrariness is unavoidable, my version, to 
the best of my knowledge, is faithful and accurate. It can be presented as four 
simple steps, from (L1) to (L4). The division into steps makes it much easier to 
incorporate in an orderly fashion all the considerations and critical points made 
in the literature. The aim is to “out-Gödel” the machines. 

(L1) First of all, we can see that machines—referred to by Lucas as “cyber-
netical machines”—are necessarily equivalent to formal systems. Each ma-
chine M has a definite finite number of states and instructions, and therefore 
corresponds to a specific formal system S of the kind studied in logic: S is 
given by axioms formulated in a specific formal language and by formal rules 
of inference. A calculation, or a sequence of operations performed by M, cor-
responds to a formal proof in S. 
(L2) If the machine M models the mind, it “must include a mechanism which 
can enunciate truths of arithmetic”. The formulas M can “produce as being 
true” correspond to the theorems of S.  
(L3) Now, we can use Gödel’s technique to construct a formula G that is not 
provable in S—i.e. not a theorem of S. We assume, of course, that S, or at 
least its arithmetical part, Sar, is consistent. (Otherwise, G is a theorem, since 
in an inconsistent theory every formula is derivable using classical logic.) If 
S were inconsistent, it would obviously be inadequate as a model of the mind. 
Thus, due to Gödel’s theorem, M cannot produce G as being true.  
(L4) On the other hand, we can see that the formula G is true. We can follow 
Gödel’s proof and see that G is not a theorem of S and that it is true. Its truth 
is a consequence, even an expression, of its unprovability in S. We, our mind, 
can do something that M cannot. It is impossible to simulate all of the mind’s 
capabilities at once. The mind is not equivalent to M, so it is equivalent to no 
machine. “The Gödelian formula is the Achilles’ heel of the cybernetical ma-
chine” (Lucas, 1961, p. 116). 

These four steps constitute a careful rendering of the argument proposed in 
Lucas (1961). The case has not changed since then. No essentially new elements 
of logical r e a s o n i n g  appear in his subsequent publications containing replies 
to criticism—i.e. Lucas (1968) and (1970), followed by Lucas (1996; 1997; 
1998). To be sure, various points are discussed and some aspects are emphasized: 
for example, the “dialectical” character of the argument (see Section 4.6 below). 
In a later book he briefly repeats the Gödelian argument, noting only that it is 
“highly controversial” (2000, p. 219). 

Essentially the same argument is presented by other authors—most notably 
Penrose (1989). Later, in his (1994) and (1996), the latter presented a modified 
version as well: one which includes a defense against critical voices and takes 
into account Gödel’s own position. (See below, Section 6.) 

However, each step in Lucas’s reasoning can be questioned. In the discussion 
below, I analyze each of points (L1) to (L4) in turn. Then I consider Lucas’s 
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main line of defense, the “dialectical” nature of the argument. It turns out that the 
initially disregarded problem of consistency is fundamental. Finally, I present 
a theorem demonstrating that the threat of inconsistency is fatal to both Lucas’s 
original argument and every argument of a similar character, even when the 
concept of truth is not utilized.  

4.2. Re (L1): Must Machines be Equivalent to Turing Machines? 

Step (L1) seems to be the least controversial of the four. A machine that has 
a finite number of states and instructions, and operates sequentially—one opera-
tion after another—is essentially equivalent to a Turing machine. To be more 
precise, Turing machines constitute mathematical idealizations of those physical-
ly possible machines because they disregard all practical limitations: in using 
Turing machines, we admit a fixed but arbitrary (that is, limitless) number of 
states and an arbitrary number of instructions, as well as a boundless amount of 
input (so that the number of the states or instructions or the size of the input can 
even transcend the number of elementary particles in the universe, according to 
current physics). We also make another important idealization: we assume that 
the tape, or memory, of the Turing machine is (potentially) infinite. The output of 
every such machine can be described as the totality of theorems of a certain 
formal system. To prove this, it is enough to note that the output is a recursively 
enumerable (r.e.) set—and that, due to Craig’s lemma, each such set of elemen-
tary arithmetical sentences is recursively axiomatizable in the standard logical 
calculus. Thus, if Lucas’s argument—that is, its remaining points—were correct, 
we would agree that the mind is equivalent to no idealized machine, as the mind 
beats each such machine at least in some respect: so, a fortiori, the mind beats 
each real machine. That conclusion depends upon the assumption that there are 
no machines of a different nature, ones not reducible to Turing machines. This is 
essentially Church’s Thesis. Is it incontestable? 

It seems that the gradual progress made possible by parallel processing, ge-
netic algorithms, neural nets, and machine learning brings no breakthrough: the 
class of computable functions remains the same. Of course, we are considering 
idealized computability, without limitations of time, space or memory. If we 
were to consider practical computability, new kinds of machines would make 
more functions practically computable. Yet with Lucas’s argument, we are deal-
ing with computability in principle, not in practice. 

How does a mind emerge? So far, we have known only naturally created 
minds; but are we sure that above a certain level of complexity, a machine cannot 
acquire a mind? Even Lucas admits this possibility. However, in such a case, he 
claims, “it would cease to be a machine” (Lucas, 1961, p. 126). On this approach, 
the controversy over mechanism would turn, at least in part, into a disagreement 
over the use of words. To preserve the real problem, let us consciously and ex-
plicitly assume that to be a machine means to operate according to rules that can 
be reduced to steps equivalent to those described by Turing. In applying this to 
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the problem of mechanism, we should beware of a circularity: if we simply as-
sume that the mind, which is self-conscious, does not operate according to those 
rules, then we a s s u m e  what we are supposed to prove by means of Lucas’s 
argument, and the whole business connected with Gödel’s theorem becomes 
superfluous. To avoid this, we should assume as little as possible about the nature 
of the mind. We shall therefore accept only those features clearly discernible on the 
basis of introspection. (For an example, we may refer to the diagonal construction, 
in which we treat as obvious the fact that from a recursive sequence of recursive 
functions we can effectively form a diagonal function that is also recursive.)  

To sum up, step (L1) can be confirmed in the sense that it, and thereby the 
whole of Lucas’s argument, can apply to a machine M belonging, at least, to the 
very extensive class of machines that—considered as idealized structures—are 
equivalent to Turing machines. We can assume that the input is absent or fixed, 
or is even itself recursively enumerable. Inputs that are not recursively enumera-
ble must not be allowed, because in that case the non-recursive complexity of the 
input could be expressed in the output. An input of sorts is mathematically un-
necessary, because it could be positioned as a part of the (program of the) ma-
chine. However, we will allow for it, as it may prove necessary when considering 
the “dialectical” character of Lucas’s argument.  

4.3. Re (L2): What Does “True” Mean for a Machine? 

The machine must qualify some output expressions as “true”. Following Lu-
cas, one can say that they are “produced as being true”. While this manner of 
speaking is not particularly neat, at first glance it seems to be innocuous. It is, 
however, perceived as an equivocation by Benacerraf (1967), Wang (1974) and, 
in a more detailed treatment, Slezak (1982). The point is that we use at the same 
time an expression suitable for a machine (“produce”) and an expression proper 
to humans (“true”). We must describe an act that the mind—and no machine—
can carry out, so it must fit both the machine mode (hence the cold terms “pro-
duce”, “generate”, “print”, or the matter-of-fact “output”) and human perception, 
which includes understanding and acceptance (hence “true”, “ascertain”, etc.). 
The equivocation is not due to carelessness; it is, instead, inherent to the founda-
tions of an argument that is supposed to consider machines and humans at the 
same time, but never allow their identification. “Hence the (Lucas) argument 
requires the conflation of truth and provability to reach its conclusion” (Slezak, 
1982, p. 45).  

If we speak about machines as counterparts to formal systems, then it is 
enough to talk about (formal) derivability. The notion of truth is not needed as 
a prerequisite to state Gödel’s theorem; it is enough to say that a consistent sys-
tem is (syntactically) incomplete: i.e. for some formula, neither it nor its negation 
is derivable in the system. Gödel’s theorem makes sense on the syntactic level: to 
apply it to a theory T we do not even need to know what “true” means when 
applied to T’s formulas.  
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There seem to be two ways of overcoming the equivocation—understood as 
the use of truth and derivability in the same statement. First, perhaps the notion 
of truth can be applied to machines? Second, in the context of Lucas’s argument, 
maybe we can dispense with truth altogether?  

It would be incorrect, if tempting, just to assume that a machine cannot use 
the notion of truth and other semantic concepts. Possibly, further scientific pro-
gress will lead to an increasing level of sophistication on the part of computers in 
the area that, for us, constitutes the realm of meaning and sense. If we assume 
that “genuine” truth does not apply to machines, but does apply to humans, then 
Lucas’s argument is completely dispensable, because we are simply assuming 
our superiority over machines, which is the thesis that was to be demonstrated.  

As much as it is incorrect to assume our superiority over machines, it would 
be wrong to refute Lucas’s argument by, again, merely assuming that machines 
can understand, and that when they are developed far enough the whole semantic 
realm will emerge automatically—in other words, by supposing that “the Chinese 
palace”, due to its size, will overcome the limitations of “the Chinese room”. For-
tunately, we need no such assumption to continue our analysis.  

While analyzing the argument of Lucas we should be neutral towards the 
problem of the applicability of the concept of truth to the relations between lin-
guistic objects and machines, both present and future. In the present context, to 
make the Lucas argument as easy-going as possible (and then to demolish it), we 
can assume that the machine either has access to truth or just pretends that it does.  

We can assume that the machine has a green light that lights up only when 
the output expression is “produced as being true”. Rather than truth itself, we 
simply have a green light pretending to correspond to truth. Clearly, rather than 
the suggestive light, we can assume that the output expression is accompanied by 
some other special symbol indicating “truth”. This is done by Penrose (1994), in 
his version of the argument; yet he also begins by saying that the purported ma-
chine “ascertains truths”. Then a little star is used as the “imprimatur” symbol. It 
is enough to use the device for arithmetical formulas. Whatever their truth means 
to us, whatever it may “mean” for a machine, we are left with the problem of 
whether Gödel’s theorem excludes the existence of a machine that lists precisely 
those arithmetical formulas that can be perceived as true by humans.  

We have just shown that in (L2) the reference to truth is not necessary. Later, 
it will be shown that we can allow the anti-mechanist to reformulate the argu-
ment so that the notion of truth is not used at all, but the argument remains bound 
to collapse. 

4.4. Re (L3): The Consistency of a Machine and of a Human Being 

The construction of the Gödelian formula for the relevant theory is the key 
point in Lucas’s argument itself, and in its other variants. If out-Gödeling is not 
carried out as indicated in (L3), reference may be made to a formula expressing 
consistency, or another incompleteness result can be utilized—in particular, Tu-
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ring’s theorem, as, for example, Penrose does. All these approaches are basically 
equivalent.  

It is not hard to see that two facts undermine the philosophical significance of 
Lucas’s argument—though Lucas (1961) hardly showed any awareness of those 
facts, and he also clearly underestimated their impact in later works. The first 
fact is that the method of constructing Gödel’s formula is algorithmic, and thus 
in a broad sense mechanical; the second is that its application depends on the 
consistency of the theory for which the formula is constructed. Leaving the first 
point, the algorithmic nature of out-Gödeling, for later, let us take up the second 
issue. The reasoning performed in step (L3) can be divided into two cases: 

Case I: The theory S is consistent. In that case the Gödelian formula is used 
to out-Gödel the machine M. 
Case II: The theory S is inconsistent. In that case machine M is disqualified 
(as a model of the mind).  

The main difficulty is how to distinguish Case I from Case II. Before consid-
ering this problem, let us note that Case II is not itself as unproblematic as is 
claimed above. 

If a system were to be equivalent to the mind, it would necessarily be con-
sistent, says Lucas. Why? Because we are rational. While we commit mistakes, 
rationality means logic, and this means avoiding contradictions. If we believed in 
two contradictory sentences, we would infer arbitrary statements. This is a way 
to affirm our rationality, but serious doubts remain. After all, we hardly infer an 
arbitrary sentence as a consequence of our beliefs, even though we often happen 
to fall into contradictions: we change opinions, tend to say “yes” and “no” at the 
same time, and find ourselves being reminded by others that we have just said 
something quite the opposite of what we said sometime earlier. What is more, 
although our minds seem very similar to each other, our opinions are often not: 
people with the same degree of rationality, and with similar knowledge, are 
sometimes convinced of the truth of opposing propositions. Clearly, for us—that 
is, for our minds—contradiction does not lead to the acceptance of every sen-
tence. (And there exist logical systems that formalize such situations.) 

Lucas disposes of the problem in two ways. First, jokingly: Humans are in-
consistent? Well, “certainly women are, and politicians” (Lucas, 1961, p. 120). 
Let us keep this opinion in mind. Second, our inconsistencies are temporary, 
because once we learn about them, we correct them. “They correspond to occa-
sional malfunctioning of a machine” (ibidem, p. 121) rather than to a genuine 
inconsistency. We are fallible, but self-correcting. This sounds convincing, but 
the issue does not stop here.  

While we do indeed try to correct mistakes, we may still be fundamentally 
inconsistent. Could not some principles of thought lead to contradictions, just as 
soon as they are used in particularly unfavorable circumstances? How could we 
exclude this prospect? There are examples of contradiction in the thought pro-
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cesses of outstanding thinkers—and not just philosophers: even the greatest 
mathematicians have committed mistakes and created contradictions. What is 
more, according to William Byers (2007), inconsistencies are unavoidable, and 
also fruitful, in mathematics. Even logicians, who are particularly sensitive to the 
danger of contradictions, are not immune. The example of Frege is well known: 
his system of logic turned out to be inconsistent. And the danger has not disap-
peared. One can imagine that a contradiction arose, but mathematics continued to 
function as smoothly as ever, without difficulty, in normal domains and applica-
tions. Actually, precisely this did happen when the set-theoretical paradoxes 
appeared over a hundred years ago.  

Although we cannot exclude a worst-case scenario—in which a contradiction 
arises and nobody knows how to eliminate it—it is beyond doubt that mathemat-
ics must not abandon the struggle for consistency. Consistency, even when we 
cannot be absolutely sure of it, is for mathematics something like a regulative 
idea in Kant’s sense. Consistency in this sense guides all of our intellectual en-
deavors that are subject to the rigors of logic. In some fields, it is possible to 
overcome contradictions by pointing to the metaphorical character of the expres-
sions involved (e.g., “I am myself and I am not myself”). Nevertheless, in the 
realm of natural numbers contradiction proves fatal. 

Lucas, Penrose, and all those who employ Gödel’s theorem to refute mecha-
nism or computationalism, as well as Gödel himself and many others, assume 
that our mind is (i.e. we are) fundamentally consistent—and often, also, that we 
are fundamentally sound. However, it is one thing is to believe this and another 
to know it for sure. The fact is we cannot know such a thing with absolute cer-
tainty. In other words, we cannot demonstrate it in, to use Penrose’s terms, an 
unassailable manner. This makes sense independently of Lucas’s argument. (See 
Section 8.1 below.) 

And what happens, let us ask, if we are not consistent? In that case, one could 
say, everything would be provable. This is, however, unconvincing, writes Wang 
(1974, p. 319). We do not function as a Turing machine, even if, deep down, 
something equivalent to a Turing machine underlies our functioning. Also, we 
are back with the problem of hidden inconsistency here. As with those large 
computer programs that contain bugs but function well in regular applications, 
contradiction, too, can be hidden or indirect and provoke no destructive conse-
quences in normal life. Perhaps, then, we are inconsistent? Maybe we are incon-
sistent machines?  

While the conclusion that we are really, hopelessly inconsistent cannot be ex-
cluded, it is very implausible to many people, including myself. Lucas is right 
that any proper modeling of thinking must contain, in some way, propositional 
calculus and elementary arithmetic, including the belief in the consistency of 
arithmetic. I also agree with Lucas that a serious acceptance of the idea of the 
unavoidable inconsistency of our mind reflects irrational views that make ration-
al polemics with mechanism impossible (Lucas, 1996, p. 121–122). 
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It should not be surprising that we humans are not able to answer all ques-
tions concerning our mind. The statement of consistency has a special status: we 
really do seem to arrive at a positive answer just through contemplating our own 
minds. It is beyond doubt, though, that we can be mistaken. As explained before, 
even the sharpest minds can commit errors. In that case, out-Gödeling leads to 
another inconsistency. In fact, it will be shown below (in Section 5) that every 
procedure similar to out-Gödeling inevitably leads to a contradiction. 

If we assume our fundamental consistency, then either (a) this is not formally 
expressible, or (b) it is, but in that case it is not provable (unless the proof is by 
methods not susceptible to formalization), as will be shown in due course in 
Section 8.1. In the case of (a), we basically assume that the mind is not a ma-
chine, while in that of (b), we do not exclude it being one. If we choose (a), then 
the aim of Lucas and like-minded thinkers—that of demonstrating that humans 
are better than machines—is achieved; however, the argument is circular, and we 
add little to the initial conviction that evidently we are not machines. Much the 
same has been observed by many commentators; for example, in connection with 
the version proposed by Penrose, Minsky says: “In effect, it seems to me, Pen-
rose simply assumes from the start precisely what he purports to prove” (Brock-
man, 1995, p. 256). If, on the other hand, we opt for (b), then the analysis of 
Lucas’s argument must be carried further.  

4.5. Re (L4): How Do We Know the Truth of Gödel’s Sentence? 

Step (L4) consists in the realization that we see the truth of the formula G. Lu-
cas invoked the phrase often exploited by believers in the metaphysical conse-
quences of Gödel’s theorem, asserting that while G is not provable (derivable) in 
the system in question, “we, standing outside the system, can see (it) to be true” 
(Lucas, 1961, p. 113). Some people think we are talking here about truth in 
a special sense. Standing outside a formal system would then correspond to some 
sort of extraordinary fact: one that mysteriously enables us to grasp unusual 
truths. These truths must be atypical, they would seem to think, if they cannot be 
proven even within a very strong system S. Our power to “see truth” thus ac-
quires a quasi-mystical character. This, I believe, is a major source—possibly the 
main source—of the attractiveness of Lucas-style arguments. Yet the position is 
surely misguided. The sheer fact of being “outside the system” affords us no 
mysterious advantage, even though global properties of formal systems do exist. 
The truth of G is not specific; G is true in a normal mathematical sense, much as 
the statement that a given equation has no solutions is true.  

Rather than explicating these points in more detail,4 let us observe that even 
if the theory is consistent, we may be unable to know this. The problem, thus, is 
to determine the truth of ConsS. Even when the output S of the machine that 
Lucas’s argument is aimed at dealing with is consistent, we can lack sufficient 

 
4 This is done in (Krajewski, 2003) and, e.g., (Franzen, 2005). 
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grounds to know this. To ascertain the consistency of a theory can be very diffi-
cult. For instance, take Quine’s set theory NF. We do not know whether it is 
consistent; therefore, we cannot tell if the arithmetical sentence ConsNF is true. 
No amount of “standing outside”, of following the course of the proof of Gödel’s 
theorem, of thinking at different levels at the same time, can help here. Even 
though the formula ConsNF is arithmetical, its truth is difficult to settle, because it 
codes a property involving the whole of the theory. 

In regard to (L4), we have noted that the truth of G for Sar is a consequence of 
our assumption concerning consistency—rather than of some unusual insight. 
The problem of the truth of Gödel’s formula (as distinct from the unquestionable 
truth of Gödel’s theorem) boils down to the question of whether we know that 
the theory for which the Gödelian construction is made is consistent. We need to 
k n o w  that the machine M, or theory S, is consistent. Still, even if it is, says 
Putnam, we can be unaware of this reality.  

We turn now to the two most fundamental and decisive ways of criticizing 
Lucas’s argument: first, that it is impossible to determine in general terms pre-
cisely when Case I or Case II applies, and second, that the trick utilized by Lucas 
can also be carried out by some machines themselves.  

4.6. The “Dialectical” Character of Out-Gödeling 

In a relatively recent paper, Lucas deploys an argument against the claim that 
in order to know that the Gödelian formula is true one must know the consisten-
cy of the corresponding theory. He states that “Putnam’s objection fails on ac-
count of the dialectical nature of the Gödelian argument” (Lucas, 1996, p. 117). 
This is his favorite argument, traceable right back to his original 1961 paper and 
stressed as the central point in Lucas (1968), which is an answer to his critics—
in particular Benacerraf (1967). The point is that his argument is not a normal 
argument demonstrating a thesis, but is instead a “dialectical”, or conditional, 
argument: if somebody claims that a machine is equivalent to the human mind, 
then it is shown to him that he falls into a contradiction.  

Let us accept the dialectical character, in this sense, of the argument. In fact, 
the points (L1) to (L4) are consistent with this interpretation. Why, however, 
should it be the case that it overcomes Putnam’s criticism that we may be unable 
to know that the relevant theory is consistent, even if it is? 

In the argument conceived as a game, the opponent—let us call him or her “the 
mechanist”—indicates some machine (cf. L2) as being equivalent to the human 
mind (in the realm of arithmetic), and Lucas responds by pointing to the appropri-
ate Gödelian formula (cf. L3 and L4). In the game, the consistency of the pro-
posed machine should be granted: “The consistency of the machine is established 
not by the mathematical ability of the mind but on the word of the mechanist” 
(Lucas, 1996, p. 117). Thus the mechanist is only required to present consistent 
machines M (i.e. those machines for which the corresponding theory S is con-
sistent). Yet can we really impose such a requirement?  
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One major problem with doing so stems from the fact that there is no deci-
sion procedure for determining consistency. Therefore, it is not only difficult on 
a practical level, but also theoretically impossible to have an algorithm that al-
ways correctly decides whether (the set of arithmetical sentences produced by) 
a given machine is consistent. To be more precise, if M1, M2, …, Mn, … is an 
effective listing of all Turing machines, then the set C, C = {n: Mn is consistent} 
of all indices of consistent machines is not recursive. Moreover, 

Fact: C is not recursively enumerable. 

A proof of the Fact can be based on Gödel’s Theorem. If C were to be r.e., 
then so would be the set D = {Gn: n ∈ C} of all Gödelian formulas for consistent 
theories T(Mn) corresponding to machines Mn. But then, for some k, we would 
have D = T(Mk). D consists of true sentences, so it is consistent, which means 
that k ∈ C. Given the definition of D, Gk is in D, and so in T(Mk), which contra-
dicts Gödel’s Theorem. The argument based on the above Fact was first used in 
the context of Lucas-style reasoning in Wang (1974), before being further 
strengthened in Bowie (1982) and Krajewski (2003). To require the mechanist to 
present only consistent machines means that we assume he or she has “superhu-
man” capabilities—or, at least, non-mechanical capabilities. This would mean 
that in order to prove the non-mechanical character of the mind, we would have 
to assume that the human mind is non-mechanical: an obviously circular way of 
thinking!  

Lucas tries to defend himself by saying that what is needed is not the full 
power to determine consistency, but only the ability to do so in some circum-
stances: namely, when one is seriously presenting a machine as a model of the 
mind. Such a machine would need an appropriate recommendation, and that 
would include a certificate of consistency. However, the problem remains: the 
opponent must have access to a recommending authority that can—correctly!—
determine consistency. The circularity remains: if out-Gödeling assumes that 
human beings are somehow in the position of being able to decide about a non-
recursive property, the conclusion that they are in some sense better than ma-
chines is immediate, but it remains an assumption. In reply, Lucas (1996, p. 118; 
cf. also 1968) proposed an additional trick, which was to ask the mechanist an 
insidious question: Would the machine proposed by him ascertain as true its own 
Gödelian sentence? If he or she answers “Yes”, the machine is inconsistent, so it 
cannot be equivalent to the mind. If the answer is “No”, the machine is con-
sistent, and then it can be out-Gödeled by the mind. 

Yet the above trick does not do the job—for several reasons. First, because 
again we need to assume that the mechanist knows whether or not the machine 
really proves the appropriate Gödelian sentence, or whether or not it is consistent, 
which brings us back to the previously mentioned problem of circularity, the 
assumption of the non-mechanical character of the opponent. Second, the trick is 
dubious because Lucas himself can be asked precisely the same question. Would 
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he be able to prove his own Gödelian formula, or, in other words, determine his 
own consistency? We are back with the problem discussed above. Maybe he 
cannot prove his own consistency, but does this say anything significant about 
him? Third, and this is the most fundamental issue, the trick can also be executed 
by a machine. To ask the right question (this being that of whether GS is provable 
in the theory S corresponding to the machine M), and respond as explained above 
(if “Yes”, then S is inconsistent, if “No”, then GS is unprovable and true), is algo-
rithmic, completely mechanical! It requires no special capabilities, and can be 
executed by a suitably defined machine. This observation lands one of the most 
serious blows against every version of the Lucas-style argument. 

4.7. The Algorithmic Character of Lucas’s Argument 

To produce the Gödelian formula, no insight into the nature of the theory is 
needed; it is enough to execute a certain algorithm, and Lucas’s argument can 
therefore be performed by a machine. The dialectical character of the argument 
does not help. The effective nature of Gödel’s construction was clear to its inven-
tor. Judson Webb even claimed that the mechanization of the diagonalization can 
be considered the essence of Gödel’s work (Webb, 1980, p. 151). I am not sure 
who first exploited that fact in connection with Lucas. Among early mentions are 
Irving Good (1967, p. 144), and Paul Benacerraf, who wrote that even if a Göde-
lian weak spot can be found in every machine, “it is conceivable that a machine 
could do that as well” (Benacerraf, 1967, p. 22). 

Based on this observation, Webb (1980) built an elaborate defense of mecha-
nism. In fact, the matter is more general than just the problem of analyzing Gö-
del’s work. This “is the basic dilemma confronting anti-mechanism: just when 
the constructions used in its arguments become effective enough to be sure of”, 
then, thanks to Church’s Thesis saying that the humanly effective is recursive, 
“a machine can simulate them” (Webb, 1980, p. 232). Post made that observation 
in 1924, before Gödel began his research. If we can be “completely conscious” 
of something, he wrote, it can be mechanized. He called this principle the “Axi-
om of Reducibility for Finite Operations” (Davis, 1965, p. 424), and it can be 
seen as an early version of Church’s Thesis.  

The algorithmic nature of the procedure consisting in the reference to the 
Gödelian formula is not preserved in the unlimited iteration of the procedure. 
The mechanist can always add the appropriate Gödelian sentence to the (theory 
corresponding to the) machine, and Lucas can always apply his procedure to the 
extended machine. Therefore it would seem natural to add at once all subsequent 
Gödelian sentences; but then Lucas would apply the procedure again to the ma-
chine extended by all those sentences. And so on. Transfinite processes arise 
naturally. The situation was analyzed, independently of the issue of mechanism, 
by Turing (1939), and then by Feferman (1962).5 It turns out that while all Π1 

 
5 A review is offered in (Feferman, 1988), and another in (Franzen, 2004a). 
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sentences are eventually decided, the result depends on the way transfinite ordi-
nal numbers are presented. For Good (1969), this means that the point is not 
Gödel’s theorem, but transfinite counting. This argument was employed also in 
Hofstadter (1979). According to the latter, the problem for Lucas results from the 
Church-Kleene theorem stating that there exists no recursive method to describe 
constructive ordinal numbers (corresponding to recursive well-orderings). There-
fore, “no algorithmic method can tell how to apply the method of Gödel to all 
possible kinds of formal systems […] any human being simply will reach the 
limits of his own ability to Gödelize at some point” (Hofstadter, 1979, p. 476).6 
The transfinite iteration of the addition of Gödel’s sentence, or stronger reflec-
tion principles, provides an intricate extension of the picture of incompleteness. 
Yet, says Shapiro, who considered the issue in (1998) and (2016), it is of no help 
in the debate about mechanism: “What we do not get, so far as I can see, is any 
support for a mechanist thesis, nor do we get any support for a Lucas-Penrose-
Gödel anti-mechanist perspective” (Shapiro, 2016, p. 200). 

Whatever is done in regard to the out-Gödeling is done according to a simple 
algorithm, and therefore is mechanical. And our attitude towards Church’s Thesis 
is irrelevant as long as the machine, or rather its code, or, equivalently, its num-
ber in the accepted listing of all Turing machines, is known. (Usually, effective 
listings make the number directly dependent on the machine’s specification and 
program.) This algorithm can be presented in technical detail, as is done by 
Webb (1980, p. 230). Moreover, the recursive function that generates “Achilles 
heels” of recursive functions can, with no problem, be applied to itself—that is, 
to its own number, resulting in its own “Achilles heel”.  

The Lucas argument against mechanism appears weak as soon as it becomes 
clear that it is itself mechanical. To counter that, Lucas attempts to distinguish 
two senses of the Gödelian argument: first, when we know an exact specification 
of the argument so that it can be carried out by a machine, and second, “a certain 
style of arguing, similar to Gödel’s original argument in inspiration, but not 
completely or precisely specified, and therefore not capable of being pro-
grammed into a machine, though capable of being understood and applied by an 
intelligent mind” (Lucas, 1996, p. 113). Even so, I do not think that out-Gödeling 
involves any informal move; to use Gödel’s theorem is to make a definite math-
ematical step. And again, if the informal, unspecified arguing is not algorithmic, 
then Lucas has assumed the non-recursive capabilities of the human mind—
which is just what he was supposed to demonstrate. If, on the other hand, the 
argument is algorithmic, he stands refuted, as we will see in a moment. As 
a matter of fact, differentiation between the strict and the loose senses of out-
Gödeling is rejected, due to the Theorem in Section 5.2, which applies to both 
the strict and the other senses, as long as the looser one does not beg the question 
by assuming the non-recursive capabilities of the mind.  

 
6 Hofstadter seems to have been unaware of the problem we have with establishing 

consistency. Therefore his analysis is not cogent.  
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Lucas admits that “an air of paradox remains” (Lucas, 1996, p. 114). A co-
gent, unformalizable argument, then? No, says Lucas: we are not talking about 
“absolutely unformalizable” arguments. Yet something must remain unformal-
ized—for example, the use of the rules of inference. This is undoubtedly true, but 
the same can be said about machines: in computers, some rules are simply con-
tained in the processors. Second, continues Lucas (1996, p. 117), the range of 
possible applications of his argument remains informal. He does not elaborate, 
but the remark misses the point in our context. We have considered all possible 
Turing machines, and they all are listed in a recursive sequence. The appropriate 
Gödelian formula depends only on the place in the sequence occupied by the 
machine in question. To out-Gödel, one must know that place, or the code, the 
program of the machine. However, it is fair to ask whether to know the machine 
means to know its code. This is highly improbable, even if many idealizations 
are made. Lucas rejects the issue, saying that we can know the code in principle. 
Well, then, this will be assumed in Section 5 below, where every Lucas-style 
argument is shown to involve a contradiction. 

Putnam believed that in order “to simulate mathematicians who sometimes 
change their minds about what they have proved, we would need a program 
which is also allowed to change its mind”. While there are such programs, he 
writes, “they are not of the kind to which Gödel’s Theorem applies” (Putnam, 
1995, p. 373).  

Meanwhile, Benacerraf (1967) presents a precise version of the Lucas argu-
ment in order to show that we cannot exclude our mind being a machine, where 
we nevertheless do not know which one. I shall skip over that analysis, as the 
general anti-Lucasian argument of Section 5 cuts deeper. 

In fact, what has been said so far does not exclude the possibility that our 
mind is a machine, but we do not know which one. This is the first of the two 
basic lines of attack against Lucas that were mentioned by Burgess (see Section 
3.2). Gödel alluded to such possibilities in (1951)—which, of course, is not to 
say that he actually believed in their truth. Benacerraf’s analysis seems to be 
a commentary on that remark by Gödel.  

The second line of attack mentioned by Burgess is that it is not excluded that 
we are inconsistent machines. This was expressed by Putnam and by Benacerraf; 
the first mention is also in Gödel (1951). It turns out that it is Lucas himself who 
is inconsistent—see the next section. And it also transpires that Penrose is “un-
sound”—see Section 6.  

5. Lucas’s Inconsistency 

To make the analysis as general as possible, we will first consider the as-
sumptions made by Lucas, or, more generally, by the anti-mechanist (Mr. A), in 
order to out-Gödel his opponent, the mechanist. Four possibly weak conditions 
will be formulated that seem necessary for the application of some variant of the 
Lucas-style procedure, and it will then be proved that those general conditions 
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are sufficient to defeat Mr. A by showing his inconsistency. (Of course, the claim 
is not that the mechanist is right, but only that he cannot be out-Gödeled.) The 
Inconsistency Theorem also applies to all reasonable modifications of the out-
Gödeling procedure.  

5.1. The Necessary Conditions for Out-Gödeling  

Let us imagine a “dialectical” procedure, this being the most convenient one 
for Mr. A: he responds to every machine proposed by the opponent. What ma-
chines are admissible? All are, but in order to make Mr. A’s life easier we assume 
that nobody will come up with machines that are not equivalent to Turing ma-
chines. In addition, we assume that the opponent must be able know the code of 
the machine and at least the number (in some fixed listing of Turing machines) 
of the Turing machine equivalent to the proposed one—either equivalent to it in 
general terms or, as a minimum, equivalent to it in the realm of the arithmetic of 
natural numbers. This is a limitation on the mechanist, because it excludes the 
possibility of the machine being a huge box, a network of unknown computers, 
or a fat volume containing the program. Otherwise we would paralyze Mr. A. 
The excluded cases amount to a reproach along the lines of “You are a machine, 
but you don’t know which one”. So, to avoid the paralysis we assume the follow-
ing condition:  

Condition 1. Each machine proposed by the mechanist is equivalent to a Tu-
ring machine, and it is possible to exhibit one such machine. 

We assume that each proposed machine can “prove” some statements in the 
language of arithmetic. The nature of this “proof” is not essential, nor is its con-
nection to real proofs; it may be either the result of understanding or just 
a thoughtless calculation. Some arithmetical statements are considered “proven” 
by the machine. Say, a green light goes on, as in Section 4.3. We may not limit in 
advance the set of admissible Turing machines that can be proposed by the 
mechanist. We have to assume that Mr. A must respond to each consistent ma-
chine—that is, the machine whose arithmetical output (the set of “proven” 
statements) is consistent. What happens when an inconsistent machine is pro-
posed is irrelevant: Mr. A either responds or disregards it. Inconsistency, accord-
ing to Lucas and all who adopt his approach, makes the machine unsuitable as 
a model of our mind’s capacity—and, certainly, of his own mind, as he assumes 
his consistency as obvious. In other words, that response is needed in relation to 
Case I from Section 4.4; in Case II, meanwhile, anything is allowed. Thus we 
assume: 

Condition 2.  The anti-mechanist must respond to every (arithmetically) con-
sistent machine. 
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The response to the supposition that the proposed machine is equivalent to 
the human mind, at least in the realm of arithmetic, must consist in the presenta-
tion of an arithmetical statement that is not “provable” by the machine. Normally, 
we would assume that the presented statement must be true. This is how Lucas’s 
procedure, or any similar procedure based on Gödel’s theorem, works. Let us, 
however, be much more charitable to Mr. A and demand nothing as regards the 
truth of the statement. He may present a false statement as long as inconsistency 
is avoided. This is conceivable. After all, we can’t assume that true sentences are 
known to us as being true. The Gödel-Rosser theorem gives examples of inde-
pendent sentences, each of which could be chosen. The liberalized demand re-
garding the response of Mr. A makes his life much easier; in particular, he can 
ignore problems with equivocation, with establishing the truth of Gödel’s formu-
la, and all the problems concerning the relation of the theory to metatheory that 
usually appear in discussions of Gödel’s construction. For Lucas, it was essential 
that we could “see” the truth of G (Lucas, 1996, p. 103). While his approach is 
allowed by our conditions, we permit many more responses, since we do not 
require any use or mention of the notion of truth. The sentence presented as the 
response to the machine need not be provable in any system. Therefore, we ig-
nore the problem of whether the construction of the Gödelian formula from the 
code of the machine is practical, and also whether Mr. A must be a logician. Our 
condition is minimal: 

Condition 3. The anti-mechanist’s response to an (arithmetically) consistent ma-
chine consists in presenting a statement that is not “provable” by the machine. 

For procedures closer to the original out-Gödeling, we could assume that the 
statement given in response is—as with Gödelian formulas—not derivable using 
the usual logic from the sentences “provable” by the machine, or even from those 
sentences together with basic arithmetic.  

There is, however, one important limitation that we must impose on Mr. A: 
namely, that his response must not be arbitrary; it has to be systematic, which 
here means effective. Moreover, we adopt Church’s Thesis, and assume that the 
procedure underlying the response must be recursive. Otherwise, we would be 
allowing a non-mechanical, because non-recursive, procedure, which would 
mean that Mr. A has non-mechanical powers. This would be exactly the thesis he 
wants to demonstrate, and such circularity is clearly unacceptable. A random 
response is not acceptable, because we would not know how to make sure that 
the proposed sentence is not “provable” by the machine. It must also be assumed 
that the response is fully determined and not dependent on additional external 
circumstances. For example, if Mr. A could demand that his opponent propose 
only consistent machines—as Lucas himself has proposed in some later publica-
tions—we would again fall into the trap of assuming non-mechanical human 
powers—this time those of the mechanist; this follows from the fact that the set 
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of consistent machines is a non-recursive subset of all machines (cf. the Fact, in 
Section 4.6). In order to avoid circularity, we assume:  

Condition 4. The response to the machine is effectively determined in advance. 

The requirement of effectiveness must refer to the number (code) of the ap-
propriate Turing machine, in accordance with Condition 1, because it is unclear 
what could be used if a machine were to be proposed empirically. Thus, first the 
number of the Turing machine must be found in an effective way, and then 
a predetermined response can be given, depending solely on this number. 

Let me remark that some people have been dissatisfied with the last condition. 
If we believe that qua humans we are non-mechanical, they say, why should we 
assume that an effectively determined answer is given? In response to this, it is 
important to realize that Lucas, Penrose and all who have used the Gödel-based 
anti-mechanist argument always refer to some form of Gödel’s theorem. Their 
answer is effective, known in advance, expressed as a recursive function of the 
number (code) of the machine. So Condition 4 fits their strategy. In addition, we 
allow other strategies as long as they are predetermined and effective. If we 
dropped this requirement, we would be allowing Mr. A to use his alleged non-
mechanical powers, and the whole argument would be superfluous. Therefore, 
Condition 4 is justified. Together with the other conditions, it turns out, it implies 
the inconsistency of the anti-mechanist. 

5.2. The Theorem Concerning Lucas’s Inconsistency  

The above conditions can be translated into the terms of mathematical logic. 
We may assume that all Turing machines are listed in an effective way: M1, 
M2, …, Mn, … Let us further assume that a Lucas-style method is given—that is 
to say, a method showing the non-mechanical character of the human mind in 
a way that satisfies Conditions 1 through 4. As explained above, we are dealing 
with a “dialectical” procedure, and due to Condition 1, we can assume that when 
applied to the n-th Turing machine Mn it shows that the mind is not equivalent to 
Mn. This means we have a function F such that for each n, its value, F(n), is 
sufficient to demonstrate that the mind is not equivalent to Mn. More specifically, 
in accordance with Condition 3, F(n) is an arithmetical formula not “provable” 
by Mn. Using “S(Mn)” to denote the set of sentences “provable” by Mn, we get: 
F(n)∉S(Mn). This is assumed for n’s with consistent S(Mn) (briefly, when ma-
chine Mn is consistent), because to such machines Mr. A must respond. This is 
exactly what is stated by Condition 3.  

While the scheme is similar to the use of Gödel’s theorem, many aspects of 
Gödel’s formula are ignored. Nothing is assumed about the complexity of F(n), 
and no understanding of the formula is required, on whatever level this might be. 
As was mentioned before, we do not require that F(n) be true, even though its 
truth is essential to Lucas’s original argument, as is the demonstrability of the 
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Gödelian formula in a stronger theory. In the present framework, false F(n)’s are 
allowed, which admits many more out-Gödeling procedures. The only assump-
tion is that F(n) is not in S(Mn), if the latter set is consistent. This is a modest 
requirement of non-equivalence for the mind and the given machine.  

Now we have to decide to what machines the generalization of the out-
Gödeling procedure must be applied. The natural stipulation, that it be applicable 
to all consistent machines, must not be weakened, because no consistent machine 
may be a priori excluded as a simulation of the mind.7 No restriction on the 
formula F(n) is imposed for inconsistent Mn. The only limitation is global. As 
was shown before, consistency is a non-recursive condition—in other words, the 
set of consistent machines is not decidable: C = {n: S(Mn) is a consistent theory} 
is non-recursive.  

This means that we may not assume that F is defined only on C. Were we to 
do so, we would be assuming Mr. A’s power to flawlessly decide whether n be-
longs to C or not, which would mean his non-mechanical competence—which is 
precisely the thesis he wants to demonstrate using the hypothetical procedure F. 
Circularity must be avoided. Fortunately, we do not need to decide in advance 
what the domain of F is. The only assumption needed to satisfy Condition 2 is 
that F be a partial function defined at least for consistent machines: C ⊆ dom(F). 

As explained above, the most important assumption, that of the effectiveness 
of any hypothetical out-Gödeling procedure, is necessary to avoid circularity, or 
the assumption that at the very beginning Mr. A’s mind is non-mechanical. This 
means that we assume that F is a partial recursive function, which obviously 
satisfies Condition 4 if Church’s Thesis is accepted. If not, then some effective 
methods could exist that are not captured by recursive functions.  

To sum up, what we must do here is deal with every function F defined for 
some natural numbers (considered as indices of Turing machines listed in some 
recursive way) with values that are (Gödel numbers of) arithmetical formulas, so 
that: 

(i) F is partial recursive 
(ii) C ⊆ dom(F), 
(iii) For each n ∈ C:  F(n)∉S(Mn). 

These assumptions are very weak, but sufficient to prove the following unex-
pected theorem: 

The Inconsistency Theorem. Under the above assumptions, the set of values of 
F is inconsistent. 

 
7 The situation differs in Penrose’s argument; see below, Section 6. 
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P r o o f :  Assume that the set of F ’s values, A = {F(n): n ∈ dom(F )}, is consistent. 
It is recursively enumerable, due to (i), so it can be enumerated by a Turing ma-
chine. We may assume that for some k, A = S(Mk). By assumption, A is con-
sistent, so k ∈ C, and due to (ii), F(k) is defined. By (iii), F(k) ∉ S(Mk); that is, 
F(k) ∉ A, which contradicts the definition of A. The contradiction shows that A is 
inconsistent. 

The above theorem is a far-reaching strengthening of the observation that 
C is non-recursive, and that there is therefore no effective way to distinguish 
between Case I and Case II in the Lucas procedure. This observation was made 
in Wang (1974, p. 317), while the set of Gödelian formulas for theories S(Mn) 
was considered in Webb (1980). Then, Bowie (1982) showed that an analysis of 
the set was enough to demonstrate that Lucas was inconsistent. The generaliza-
tion to include other possible Lucas-style procedures was mentioned in Krajew-
ski (1983), and the general sufficient conditions (i), (ii), (iii) were formulated in 
(Krajewski, 1988; 1993). 

Some further features of the above proof are worth mentioning:  
a) The proof shows that even the most sophisticated possible modifications of 

the “out-Gödeling” procedure, including those that would not use Gödel’s theo-
rem but another, perhaps still unknown independence result, all fall into the trap 
of global inconsistency. The latter is global, because while the set A is incon-
sistent, we cannot necessarily tell which of its finite subsets is. Moreover, the 
global inconsistency implies that some F(n)’s are false. This by itself need not be 
fatal in a general case, in contrast to the cases where Gödelian formulas them-
selves are used. In those cases, a single false response entails contradiction: 
when F(n) is the Gödel formula for some n ∉ C, a specific contradiction is im-
plied; that is to say, the false Gödel formula—let us now call it “Gn”—is prova-
ble (precisely because it says it isn’t); thus, there exists a formal proof for it in 
the theory T(Mn). If k codes this proof, then the arithmetical statement “the num-
ber k is the proof of Gn in T(Mn)” has only restricted quantifiers and is true. It is 
provable in basic arithmetic, so T(Mn)├ Prf(S(k), ⸢φ⸣⸢Gn⸣), and this contradicts the 
provability of Gn, as on account of the definition of Gn, T(Mn)├ ¬(∃x) Prf(x,⸢Gn⸣). 

b) The assumption (ii) does not exclude a priori the equality of C and dom(F), 
or that F is defined just for n ∈ C. That this is impossible, since C is not recursive, 
and not even recursively enumerable, must be demonstrated independently (as 
was done above, in Section 4.6).  

c) It is worth mentioning that in Condition 1, the phrase “one such machine” 
cannot be replaced by, for example, the first such machine (in the given listing). 
If this were to be required, we would fall into a subtle trap. The function m(n) = 
min {k: S(Mk) = S(Mn)} is not recursive. Hence, requesting the first appropriate 
Turing machine would amount to assuming in advance a non-mechanical power 
with respect to the mechanist.  

d) One could conceivably question assumption (ii), the global applicability of 
the hypothetical procedure. Its dialectical character would then mean that a re-
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sponse is required only in the few cases where the mechanist really proposes 
a machine M. In that case, we would not consider an arbitrary procedure satisfy-
ing general conditions; we should restrict our attention to the original out-
Gödeling, as advocated by Lucas—that is, the Gödelian formula as the response. 
Then, as mentioned in a) above, offering even one Gödelian formula in response 
to an inconsistent machine implies inconsistency.  

e) Instead of assumption (iii), we could require something stronger, S(Mn) 
non├ F(n), as I did in my early papers on the subject. This is in fact satisfied by 
the original out-Gödeling in which the Gödelian formula is given in response.  

The Inconsistency Theorem is so general that we can be sure that not only 
Lucas, but everyone attempting some systematic version of out-Gödeling, neces-
sarily falls into a contradiction. It is ironic that someone who is otherwise con-
sistent (or, to put it more precisely, for whom the set of arithmetical statements 
they are ready to accept is consistent) automatically becomes inconsistent as 
soon as they decide to adopt some Lucas-style procedure. Hence, it seems to 
have been demonstrated—leaving aside questions about the consistency of wom-
en and politicians—that the class of inconsistent humans encompasses at the 
very least the philosophers who believe in the Gödel-based proof of their superi-
ority over machines.  

5.3. Possible Relations between the Mind and Machines: Robot Luke  

While the anti-mechanist cannot prove his point by some sort of out-
Gödeling, he can still be right. And he can still attempt out-Gödeling. Let us see 
what possible relations between the mind and machines are not excluded by the 
previous considerations, and how they could arise. Actually, all the possibilities 
were mentioned or alluded to by Gödel, especially in the remark quoted below in 
Section 7. Later, they were described by Putnam, Benacerraf, and others.  

If the mind is not mechanical, which is the thesis that was obvious to every-
one only a few decades ago and is still believed by most of us—and not just by 
Lucas, Penrose and of course Gödel—then, if faced with a machine (claimed to 
be equivalent to the mind), the mind either cannot find its number (Gödel, Put-
nam, Benacerraf) or it can, and in this case would present the machine’s Gödeli-
an formula. The formula will either be true and will serve as an example of the 
difference between the mind and that machine (Lucas), or it will be false, which 
would be the case if the machine was inconsistent but we were unable to know 
this (Putnam). 

If the mind is mechanical or computational, and is equivalent to a machine M, 
then either it is (arithmetically) consistent or it is not so. If not, then our mind is 
an inconsistent machine, and the presentation of the Gödel formula as true only 
confirms our inconsistency. If M is consistent, then we cannot find its number, or 
code, or program. This was admitted as a possibility by Gödel, and then by Be-
nacerraf, Putnam and, for example, Kripke, who said that there is nothing para-
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doxical about the impossibility of finding the program of M, because if it was 
found we would be able to distinguish “what I can really prove (absolutely) from 
what I merely think I can prove” (Chihara, 1972, p. 524). If, however, the num-
ber of M could be found, we would not be able to prove that the Gödelian formu-
la is true. We couldn’t exclude its falsity. The only situation excluded by Gödel’s 
theorem is this: our mind is equivalent to a consistent machine, and we can prove 
the (Gödelian) formula expressing that consistency. 

To put it even more informally, either (a) the mind is not a machine, and there 
are no Gödelian limitations on it, or (b) the mind is a machine and is inconsistent, 
and then no limitation based on Gödel’s theorem applies, or (c) the mind is 
a machine and is consistent, and it cannot then prove the Gödelian formula for 
the machine—that is to say, for itself. This description is close to Gödel’s Dis-
junction (see Section 7). 

Assuming that a machine equivalent to the mind is possible, how can it come 
into being? To manufacture it, a laboratory unimaginably better than anything 
that is now available would be needed. There is another possibility, however: 
evolution. It was shown by von Neumann that a machine can replicate itself or 
produce a more complicated machine. He proposed that we imagine some evolu-
tion caused by natural selection (Von Neumann, 1966, Part II, Point 1.8; see also 
Smart, 1959; Anderson, 1964, p. 104). Random mutations could also take place. 
Scriven suggested imagining representatives of a robot civilization from another 
planet.8 Rudy Rucker develops more fully fantasies about a civilization of robots 
on the Moon (Rucker, 1982, p. 181). Such a civilization could be initiated by us, 
humans, and then undergo a Darwinian evolution. Let us imagine that after many 
generations a robot is born—call him Luke—whose mathematical capabilities 
are exactly equivalent to those of Lucas. What would then happen?  

First of all, we would not know the number of the machine on the list of all 
Turing machines. We would have no doubt that it is a Turing machine, but even 
if we could meet it, or even talk with it, we would not be able to analyze its pro-
gram and make it transparent to us. No description would be available, as it 
would be too intricate—even if its distant ancestor had been fully described and 
given a specific number on the list of machines. Second, there would be no way 
to detect the equivalence of Luke with Lucas. A hypothetical super-mind could 
do that, if it could analyze and understand human mathematical powers, but the 
super-mind would not be able to demonstrate the equivalence in a way compre-
hensible to Lucas or the robot. Third, it would not be excluded that both Lucas 
and Luke are inconsistent, even if they do their best to fix any malfunctioning. 

Now if Lucas really wanted to overcome each contradiction, he ought, in 
view of the Inconsistency Theorem and its consequences, to abandon any attempt 
to out-Gödel Luke. Maybe Lucas would still want to maintain that if Luke is 
consistent, then the Gödelian formula for Luke, which exists somewhere out 
there in the wide world, is true. However, Lucas would not be able to establish 

 
8 This appears in a text from 1953; see (Anderson, 1964, p. 38). 
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the consistency of Luke. Actually, Luke could say exactly the same: if he, Luke, 
is consistent, his Gödelian formula is true. What is more, Luke could say the 
same about Lucas! And there is little doubt that Luke would be tempted to try to 
out-Gödel Lucas. He would be convinced that he is better than Lucas and any 
human mind. Only it is rather unclear what Luke would say about the incon-
sistency of female robots and lunar robot politicians. 

6. Penrose’s “Unsoundness” 

Roger Penrose, in books (1989; 1994) and articles (notably 1996),9 has pro-
posed a new version of the Lucas argument. The point remains the same, even if 
he is speaking about the non-algorithmic, rather than the non-mechanical, char-
acter of our mind or thinking, and even if he uses Turing’s theorem on the unde-
cidability of the halting problem rather than Gödel’s theorem. Penrose is a well-
known mathematician and theoretical physicist who writes with ease; he has 
presented his version of out-Gödeling in a more comprehensive way than Lucas, 
and has done so in part as entertaining literature. Both the attractive form of his 
writing and his scientific authority have made many readers think that a new 
kind of conclusion has been drawn from the incompleteness theorems. 

Penrose attacks both AI and the idea that the mind cannot be grasped scientif-
ically. According to him, conscious processes are different from what goes on in 
computers. Consciousness does not, however, go beyond the laws of physics—
though it may go beyond the physical laws known to us. His speculations on the 
role of quantum effects and microtubules have met with criticism. Whatever one 
may think about it, the logical part of Penrose’s argument calls for analysis as 
much as that constructed by Lucas. On it rests everything else, so if it is wrong, 
everything else becomes doubtful, independently of direct criticism of the physi-
cal and biological aspects.  

6.1. Penrose’s Argument 

The logical ingredient of Penrose’s work is a variant of the Lucas argument. He 
commits some mathematical errors: for example by presenting the Gödel sentence 
as if it were meant to express ω-consistency. Even so, if the ω-consistency schema 
is expressed as a single sentence, it is Π3 rather than Π1, and 1-consistency can be 
expressed as a Π2 sentence. Responding to the criticism in Feferman (1995), 
Penrose not only agrees, but admits that the introduction of “Ω(F )” was “essen-
tially a red herring. In fact, the presentation in Shadows would have been useful-
ly simplified if ω-consistency had not even been mentioned” (Penrose, 1996, 
paragraph 2.2). Feferman lists more errors in the field of mathematical logic: the 

 
9 This is an online article that gives a long and detailed reply to important criticisms 

put forward by David Chalmers, Solomon Feferman, Daryl McCullogh, Drew McDermott, 
and others in the same issue of PSYCHE. 
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lack of any distinction between the full soundness of a theory (1994, pp. 90–92) 
and the soundness for Π1 sentences (1994, pp. 74–75); the substitution of the 
cases where consistency is needed with those needing ω-consistency; stating 
a false theorem that for every system F, its consistency implies the consistency 
of F + ConsF (1994, p. 108), and other inaccuracies.10 Other errors are made in 
references to the literature of the subject, and in historical comments. It is hard 
not to ask the question whether the lack of competence demonstrated makes the 
whole argument of negligible significance. Well, I do not think so, because all 
those mistakes can be corrected, and the basic point remains—says Penrose: 
there is no reason to give up. 

His first book, The Emperor’s New Mind (1989), is less logically advanced, 
and contains none of the logic-related errors mentioned above. It reads very well, 
but fails for reasons mentioned earlier here in the analysis of Lucas’s argument in 
Sections 4 and 5: the out-Gödeling procedure is algorithmic, and it depends on 
the consistency of the relevant theory. The way out would be to assume the con-
sistency or a non-algorithmic insight, but that would amount to a circularity in 
reasoning. Interestingly, Penrose mentions the idea of “natural selection of algo-
rithms”, but rejects it because of the practical improbability of such evolution, as 
“the slightest ‘mutation’ of an algorithm […] would tend to render it totally use-
less” (Penrose, 1989, p. 415). Granted, but what we are dealing with is logical 
possibility rather than practical probability. 

In Shadows of the Mind (1994), Penrose reasserted all his opinions, and gave 
a comprehensive reply to the critics of his first book. “I believe that my form of 
presentation is better able to withstand the different criticisms that have been 
raised against the Lucas argument, and to show up their various inadequacies” 
(p. 49). In one of his papers (1996), Penrose attempts to defend himself against 
the next wave of criticism. Generally speaking, he is more cautious in his later 
writings than at the beginning. His aim is to give “a very clear-cut argument for 
a non-computational ingredient in our conscious thinking” (ibid.). 

Penrose takes into consideration the main aspects of the criticisms of the Lu-
cas argument and the statements made by Gödel himself—especially Gödel’s 
Disjunction (see Section 7), according to which we cannot rule out our being 
a machine. If we were, we would be able neither to ascertain the fact nor to de-
tect the consistency of the machine. Schematically, assuming that a machine, 
algorithm or formal theory T is equivalent to the human mind as far as mathe-
matical thinking is concerned, there are three possible cases, I, II, and III, as 
follows: 

  

 
10 See (Feferman, 1995, Part 3). Only for 1-consistent theory F does its consistency 

guarantee the consistency of F + ConsF. 
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I. T is knowable,11 and its equivalence to the mind is knowable. 
II. T is knowable, but the equivalence is not.  
III. T is not knowable. 

We can say that III refers to Luke on the moon, and II to Luke carefully ana-
lyzed in a human laboratory. Both options are rejected (1994, Chapter 3), and 
Penrose claims that we are left with case I, the situation of complete knowledge. 
After an investigation of possible errors or contradictions, he rejects the cases in 
which T is unsound, and then is able, invoking Gödel’s Theorem, to conclude 
that there exists no “knowably sound” system equivalent to the mind (in the 
realm of Π1 sentences). Now, this conclusion seems justified. No knowable sys-
tem—that is, no such system transparent to us and demonstrably consistent—can 
be equivalent to us. And since Penrose believes himself to have rejected II and 
III, he can claim that there exists no T. 

Penrose works under more or less the same assumptions as Lucas, and it 
would seem that the Inconsistency Theorem applies to Penrose as well as to 
Lucas: after all, he does seem to accept Conditions 1 through 4 (of Section 5.1). 
However, in the course of his reasoning, Penrose argues that he would have to 
respond only to semantically adequate machines. This means that assumption (ii) 
of the Inconsistency Theorem, the requirement to respond to each consistent 
machine, is too strong. That is why a new version of the theorem is needed. 

6.2. The Theorem Concerning Unsoundness  

Let us assume that we have to deal with Lucas-style procedures that are to be 
applied to semantically adequate, or sound, machines or theories. To recall, an 
arithmetical theory is sound if all its theorems are true under the standard inter-
pretation in the natural numbers. This is a condition of semantic adequacy. 
A Turing machine will be called sound if its arithmetical output is sound. Let us 
put S = {n: S(Mn) is a sound theory}. 

Obviously, S ⊆ C. If we suppose, after Penrose, that Mr. A must only respond 
to sound machines, we arrive at the following assumptions:  

(i)    F is partially recursive, 
(ii’)  S ⊆ dom(F), 
(iii’) For each n ∈ S: F(n) ∉ S(Mn). 

 
11 Cf. (Penrose, 1994, pp. 130–131). I put “knowable” where the original has “con-

sciously knowable” for brevity, and also because it is not clear what unconscious 
knowledge could mean. 
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These assumptions12 are even weaker than before, but they suffice to prove 
a theorem with a somewhat weaker but similarly unexpected and equally devas-
tating thesis:  

The Unsoundness Theorem. Under the above assumptions, the set of values of 
F is unsound. 

P r o o f :  Assume that the set of F’s values, A = {F(n): n ∈ dom(F)}, is sound. It 
is recursively enumerable, due to (i), so it can be enumerated by a Turing ma-
chine. We may assume that for some k, A = S(Mk). A is sound by assumption, so 
k ∈ S, and due to (ii’), F(k) is defined. By (iii’), F(k) ∉ S(Mk), that is, F(k) ∉ A, 
which contradicts the definition of A. The contradiction shows that A is unsound. 

The set A can be a priori consistent even if, being unsound, it contains a false 
sentence. The unsoundness is sufficient to defeat Penrose’s claims, because it 
means that using his method, or any similar one, he is unsound, as he must ac-
cept a false arithmetical statement. His belief in the demonstration of the non-
algorithmic character of the mind was based on the conviction that the methods 
used by him and other mathematicians are fundamentally adequate. Ultimately, 
no false statement is accepted, he maintains. This belief, coupled with out-
Gödeling, results in something that is in contradiction with this very belief. The 
answer to the question “Do mathematicians unwittingly use an unsound algo-
rithm?” that serves as the title of Section 3.4 in (Penrose, 1994) seems to be 
“Sometimes yes; for example, Penrose himself”.  

Thus, as soon as Penrose applies some Gödel-based method of refuting 
mechanism and algorithmism, he in fact contradicts his belief in the adequacy of 
the methods of proof he is ready to admit. Having shown his “unsoundness” we 
could stop here, but let us examine in more detail how the rejection of II and III 
goes, and why Putnam reproached Penrose for having ignored a possible Case IV.  

6.3. The Missed Case, and How to Save Penrose 

As has been stated above, the thesis that “we do not ascertain mathematical 
truth by means of knowably sound” (Penrose, 1994, p. 86) and, let us add, know-
able, algorithms is justified, but it is still not excluded that there is a program that 
does what we do, but where we are not aware of this equivalence because of the 
program’s complication and lack of transparency. Think of Luke.  

Next, Penrose maintains that if we used an unsound rule that could produce 
a false theorem, then this would be fundamentally dubious, since we believe in 
our soundness. This takes care of Case I.  

Penrose assumes that the system underlying our mathematical understanding 
“is supposed to be simple enough that we are able, at least in principle, to appre-
ciate it in a perfectly conscious way” (Penrose, 1994, p. 132). Here, according to 

 
12 In (Krajewski, 2003), a slightly stronger assumption (iii’) is adopted: S(Mn) non├ F(n). 
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Putnam, Penrose commits the same mistake as Lucas. Before explaining why, let 
us see how this assumption is used to eliminate Case II. The point here is that 
this case is said to be very implausible because, first, the algorithm T must be 
correctable, and therefore sound (1994, Point 3.4), and, second, if the axioms and 
rules are knowably sound, then all theorems are seen as true, including the Göde-
lian formula, which is not possible. It must be admitted, however, that Penrose is 
careful not to say too much; he admits, quoting a remark made by Gödel, that 
there is “no clear way of ruling out Case II on rigorous logical grounds alone” 
(1994, p. 133). Penrose also rejects Case III, the unknowable T equivalent to the 
mind. The main reason is that AI works with knowable programs and, in addition, 
that Case III would reduce to II or I anyway (1994, p. 144.). This is unsatisfacto-
ry, as what is at stake here is the theoretical possibility, and not the practical 
implementations, of AI. The most important element lacking in Penrose’s con-
siderations—to come back to Putnam’s point—is the lack of awareness that there 
might be a program that cannot be understood by us. This would be Case IV. 
Imagine Luke’s program being investigated by human computer scientists. They 
would never be able to tell what the program does. Actually, this lack of certainty 
is routine with respect to real-life large programs, which comprise numerous 
separate subprograms, as well as bugs. 

It is worth indicating more explicitly how Case IV can arise. After all, Cases I 
to III seem to encompass all contingencies. To simplify the formulation as much 
as possible, let us see what can happen: I. T is known and we know T ≡ mind; II. 
T is known and we do not know T ≡ mind; III. T is not known. Indeed, nothing 
else is possible. However, the lacuna emerges when we note that in II it is tacitly 
assumed that if T is known, then T must be fully graspable. But no: we can, in 
fact, be faced with a complete description of a program and still have no idea 
what it does. If it is not “perspicuous” enough, we may be unable to say anything 
plausible about its consistency. This makes for Case IV.  

According to Putnam, Penrose, who indirectly admits the possibility of Case 
IV,13 is wrong in claiming that it reduces to Case III. In Penrose’s book, Case III 
applies when we have no knowledge of the program. Therefore, “to reject the 
possibility that such a formal system might simulate the output of an idealized 
mathematician (as involving something ‘somewhat miraculous’ or ‘essentially 
dubious’) is to give no argument at all” (Putnam, 1995, p. 372). Putnam con-
cludes that despite the book’s strong points, he “regards its appearance as a sad 
episode in our current intellectual life”. 

Despite all the criticisms, Penrose maintains that his argument works. He 
tries to overcome the objections in two ways. One is to limit the possibilities of 
doing mathematics to familiar ways, while the other is to refer to the so-called 

 
13 In a letter to the New York Times of January 15th, 1995, which is a response to the 

review of Penrose (1994) by Putnam (New York Times Book Review of November 20th, 
1994), on which (1995) is based. 
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“new argument”—considered below, in Section 6.4. For now, let us consider the 
former, which reveals whence Penrose’s conviction comes.14 

In his first book, Penrose takes into account the hypothesis (first formulated 
by Gödel, though Penrose was clearly unaware of that) that our mathematical 
capabilities are equivalent to an algorithm that is “so complicated or obscure that 
its very validity can never be known to us”. Penrose’s reply is that “this flies in 
the face of what mathematics is all about!” (1989, p. 418). This naïve response 
comes easily if one makes the assumption, as Penrose does, that the putative 
algorithm is the one actually used by mathematicians. Then we may refer to the 
fact that mathematics is built from “simple and obvious ingredients”. What is 
disregarded is any possibility of a h i d d e n  algorithm. We are not talking about 
algorithms taught or acquired at universities, but about, say, the program of Luke.  

The existence of Luke, or another complex, intractable formal system equiva-
lent to the human mind, cannot be disproved. On the other hand, from a mathe-
matician’s—as opposed to a logician’s—standpoint the considerations offered by 
Penrose seem convincing. The reason, mentioned in his first book as a remark on 
“what mathematics is all about”, was actually expressed by him during the dis-
cussion at a conference in Kraków in May 2010. It is that he seems to believe 
that a mathematical theory of a very different character than the ones we know 
would be “essentially dubious”, and the emergence of Luke’s mathematical pow-
er would be too “miraculous” to really take it into account. This is a perfectly 
natural attitude for a mathematician, even if it looks somewhat naïve from the 
logician’s—and perhaps also the computer scientist’s—perspective. The re-
striction of the range of theories to the “natural” ones does offer a way to over-
come the controversy between Penrose and, to use Putnam’s phrase again, “the 
logical community” (Putnam, 1995, p. 370). 

As long as we view mathematical theories, or algorithms, as fundamentally 
similar to what we know as mathematics, we tend to assume that all the theories 
that are encompassing our knowledge of the natural numbers must, in principle, 
be based on a series of transparent basic truths (axioms) and be developed due to 
the applications of known, correct logical rules. If so, every such theory, if pre-
sented to us, must be fully understood, or at least understandable. And this full 
understanding implies our knowledge of its consistency and, presumably, also 
soundness. Therefore, out-Gödeling is, indeed, possible. 

Thus the “natural” view of the nature of mathematics—which Penrose seems 
to consider the only admissible one—can serve as an assumption that implies 
anti-computationalism when added to Gödel’s results. This is by no means 
a great discovery. Even so, when one is aware of it and, in addition, of Gödel’s 
Unknowability Thesis (see below, Section 8.1), many of the disputes about out-
Gödeling become understandable as being based essentially on misunderstanding.  

 

 
14 This section is based on (Krajewski, 2015). 
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6.4. The “New” Argument  

In Chalmers (1995), David Chalmers wrote that a “novel” argument was pro-
posed, or rather “deeply buried”, in Chapter 3 of Penrose’s second book. Penrose 
(1996) welcomed this unexpected praise with obvious pleasure. While he ex-
pressed disappointment that the point was taken note of by almost nobody, and in 
particular was missed by Putnam, Penrose’s words suggest that the new argu-
ment was not really even noted by the author himself! 

This “new” argument is supposed to demonstrate that mathematicians cannot 
consistently believe (know) that their capabilities are algorithmically describable, 
or even that the set of humanly provable Π1-sentences is recursively enumerable. 
In other words, what Penrose really wants us to believe is a thesis stronger than 
the one he argued for in his book: namely, that “Human mathematicians are not 
using a knowably sound algorithm in order to ascertain mathematical truth” 
(1994, p. 76). Later (in Sections 3.16 and 3.23 of [Penrose, 1994], and more 
explicitly in Section 3 of [Penrose, 1996]) he dropped the adverb “knowably” in 
order to claim that “Human mathematicians are not using a sound algorithm in 
order to ascertain mathematical truth; and, obviously, they cannot use an un-
sound one”. Criticisms of this argument in (Chalmers, 1995; Lindström, 2001; 
2006; Shapiro, 2003), and the writings of others, have not prevented Penrose 
from defending it (as he did in [Penrose, 1996] and, for example, at the 2006 
Gödel Centenary Conference in Vienna, as reported in [Feferman, 2007], or in 
[Penrose, 2011].) 

The novelty is that the argument does not depend on the claim that we are 
able to see that T is sound. Rather, the soundness of T is derived. That is to say, if 
we know that the mind is equivalent to T—in short, “the mind ≡ T”—and that 
the mind is sound (that is, proves only true statements), where this is something 
that is supposedly obvious to all of us and was taken for granted by Gödel and 
Penrose, then we can conclude that T is sound. That, according to Chalmers 
(1995, paragraph 3.2),15 means the argument goes as follows: 

(1) it is known that the mind ≡ T, 
(2) it is known that the mind is sound, 
(3) so T is sound; 
(4) hence T’ = (T + “the mind ≡ T”) is sound, 
(5) whence Cons(T ’) is true, but T’ does not prove that (by Gödel’s Theorem); 
(6) we know that Cons(T’) is true, 
(7) a contradiction, because if we know that the mind ≡ T then T proves 

Cons(T’). 

 
15 Chalmers “decodes” the reasoning from a dialogue in (Penrose, 1994, 3.23). Here, 

I further simplify its formulation. 
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Having accepted the above proof of contradiction, how can we conclude that 
there exists no T equivalent to the mind? To reject (1) is not enough, as it only 
says that while we do not know the equivalence, it can in fact be true. “This is 
still a strong conclusion”, says Chalmers (1995, paragraph 3.3), “threatening to 
the prospects of AI”. Well, but rather than reject (1), we could reject (6): that is, 
we could admit that we do not know that the consistency statement is true. 
Moreover, we could reject (2). In fact, as Chalmers himself wrote, the assump-
tion (2) by itself leads to contradiction: if we know—unassailably—that we are 
consistent, we get a contradiction very similar to the way in which it can be ar-
gued that our consistency is not provable (see below, Section 8.1). Chalmers 
(1995, paragraph 3.14) concludes that “perhaps we are sound, but we cannot 
know unassailably that we are sound”.  

Penrose (1996, paragraph 3.4) replies that it is enough to replace (1) with 
a weaker assumption, the mind ≡ T. He also claims that the contradiction pointed 
out by Chalmers would be avoided if we took into account only the arithmetical 
Π1 sentences. Penrose is, however, wrong. The argument sketched above can be 
further simplified even if the weaker assumption is also considered.  

(1’) the mind ≡ T; (This is the weaker assumption postulated by Penrose.) 

Let us define A as the set of all humanly provable arithmetical Π1 sentences. By 
(1’) A is recursively enumerable, since it consists of the sentences provable by T.  

(1) we know that the mind ≡ T; (The previous assumption.) 

If (1), then we know that A consists of Π1 sentences that are accessible to the 
mind—i.e. unassailably provable.16 Further, we put 

(2) we know that the mind is sound (at least for Π1 sentences); 
(2’) we know that T is sound in the sense that A consists of true sentences; 

(G) as stated by Gödel’s theorem, the Gödelian formula for a consistent 
(a fortiori, sound) r.e. set of arithmetical sentences, is Π1, true, and outside the 
set. 

C l a i m :  Whether we assume (1), (2), (G) or (1’), (2’), (G), we get a contradiction. 

P r o o f :  By (1’) A is r.e., and by (2’) A is sound. Due to (G) the Gödelian formula 
G is well defined and outside A. We know, however—because we know Gödel’s 
proof—that G is a true Π1 sentence. The mind has demonstrated it, so G is in A, 

 
16 If ¬(1) and (1’), then A is equal to the set of provable sentences but possibly we do 

not know it. 
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a contradiction. If (1) and (2) are assumed, we have the weaker (1’) too, and we get 
(2’), so we can refer to the previous case.  

To avoid the contradiction resulting from (1’) ∧ (2’), we can either reject (1’), 
as Penrose originally wanted, or, going against him, reject (2’)—that is, assume 
our lack of knowledge concerning the soundness of T. The contradiction does not 
follow so simply from (1’) ∧ (2). This analysis fits Putnam’s criticism. Assuming 
that (1) ∧ (2) corresponds to Case I (presented above, in Sections 6.1–6.3), the 
assumption (1’) ∧ (2’) corresponds to Case II as it was understood by Penrose. 
And further, the apparently safer assumption (1’) ∧ (2) corresponds to Case IV; 
it does not involve (2’), our understanding of the algorithm T.  

While (1’) ∧ (2) seems safer, we should remember Chalmers’s warning, go-
ing back to Gödel himself, that (2) itself is problematic, independently of any 
assumptions concerning T, and independently even of the very existence of T. 
This will be our next topic—see Section 8.1.  

7. Gödel’s Disjunction 

In 1951, in his Gibbs Lecture entitled “Some Basic Theorems on the Founda-
tions of Mathematics and their Implications”, Gödel presented the philosophical 
consequences of his incompleteness theorem, including the problem of mecha-
nism. He believed that over the previous twenty years the philosophical implica-
tions of his results had not been understood deeply enough. Since then, his views 
have been in the process of being disseminated, very slowly, amongst wider 
professional circles. That progress has been due mostly to the efforts of Wang, 
Putnam and Benacerraf, and ultimately to Feferman and other editors of his col-
lected works, with his lecture from 1951 being eventually published in 1995. As 
of now, his views are well-known, but it is still worth summarizing them. 

Gödel firmly believed that the mind is not a machine, and he wanted to sup-
port this thesis using his formal results. He came to the conclusion, however, that 
his theorem alone was insufficient for this purpose. The theorem allows a weaker 
thesis to be demonstrated—what is known as “Gödel’s disjunction”. When one 
tries to understand Gödel’s views, it is essential to remember that he was certain 
that we are fundamentally consistent. What is more, he believed that we prove 
objectively true theorems, at least at times. He distinguished objective from sub-
jectively human mathematics. Proper mathematics in the objective sense consists 
of all (objectively) true propositions; in the subjective sense it is comprised of all 
demonstrable propositions, or propositions provable by humans by whatever 
methods. This is the distinction between, so to say, mathematics in itself and 
mathematics for us. It is conceivable that the mathematics accessible to humans, 
not only at a given moment but also potentially, forms just a fragment of the 
absolute, objective mathematics. 

According to Gödel, his theorem implies that mathematics in the objective 
sense cannot be determined by a well-defined (recursive) system of axioms, which 
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means that it cannot be produced by a Turing machine. And yet it is not excluded 
that mathematics in the subjective sense could be. In that case, everything that 
can be proved by humans could be produced by a “finite rule”—that is, by 
a Turing machine. “However, if such a rule exists, we with our human under-
standing could certainly never know it to be such”. Also, “we could never know 
with mathematical certainty that all propositions it produces are correct” (Gödel, 
1995, p. 309). To put it in other terms, the human mind, at least in the realm of 
mathematics, would be “equivalent to a finite machine that, however, is unable to 
understand completely its own functioning” (p. 310). Here, “understanding” 
means, in particular, the ability to “see” or detect consistency. Gödel later told 
Wang that one cannot exclude the existence of a machine with powers equivalent 
to our intuition, and, as quoted in Section 3.2, that such a machine could “even 
be empirically discoverable” (Wang, 1996, p. 184). This is the source of all later 
speculations about robot mathematicians, including our friend Luke. Thus, either 
there exists no Luke, or it (he? she?) can exist, and this produces a Diophantine 
problem absolutely unsolvable (by us). This is the sense of Gödel’s famous Dis-
junctive Conclusion, a statement that seems to him to be “of great philosophical 
interest”. To quote: 

Either mathematics is incompletable in this sense, that its evident axioms can never 
be comprised in a finite rule, that is to say, the human mind (even within the realm 
of pure mathematics) infinitely surpasses the powers of any finite machine, or else 
there exist absolutely unsolvable diophantine problems. (Gödel, 1995, p. 310) 

Here, “absolutely” means “by any mathematical proof the human mind can 
conceive”. Gödel described a simpler formulation of the disjunction to Wang: 
“Either subjective mathematics surpasses the capability of all computers, or else 
objective mathematics surpasses subjective mathematics, or both alternatives 
may be true” (1996, p. 186, quotation 6.1.4). 

The last clause reveals that the thesis is meant as a non-exclusive disjunction. 
However, Gödel did not believe that both are true. He—independently of his 
theorem—was deeply convinced that the second clause is false, meaning that 
there is, to use Hilbert’s dictum, no ignorabimus in mathematics, and that the 
first clause holds, meaning that the mind goes beyond the mechanical, the algo-
rithmic, and indeed the material. He wanted to establish this claim no less pas-
sionately than Lucas, Penrose and many others amongst us. He did not, however, 
want to accept logically flawed arguments.  

In the present paper, the phrase “we know that…” has been treated until now 
in an informal way. The development of epistemic arithmetic—that is, formal-
ized arithmetic extended by the addition of a predicate K, where K(x) means 
“x is known”—was initiated by William Reinhardt (1986), and further examined 
by Shapiro and others, especially Peter Koellner. This last, in (2016) and the 
accompanying papers (2018a; 2018b), showed that in a natural epistemic arith-
metic Gödel’s disjunction is provable. Furthermore, using such a framework he 
demonstrated that strict counterparts of Penrose’s and Lucas’s arguments fail, as 
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does Penrose’s “new” argument. An earlier classic argument in this style is pre-
sented below, in Section 8.1. 

8. On What Does Follow from Gödel’s Theorem 

There are various philosophical consequences of Gödel’s incompleteness re-
sults and the technique utilized in their proofs: for example, the creative role of 
formalization and the equally unexpected—before Gödel—power of elementary 
arithmetic. Here it seems appropriate only to consider the consequences directly 
related to anti-mechanist arguments.  

8.1. A Warranted Conclusion: Our Consistency is Not Provable 

Gödel’s Second Theorem implies that we cannot unassailably prove our con-
sistency. That is to say, whatever the mind is, if we could establish our consisten-
cy in a completely precise, undeniable way, more geometrico, the proof would be 
formalizable; this means that it could be simulated on an appropriate machine 
containing a part of our abilities, i.e. the part that was used in the proof. Such 
a machine, being weaker than the mind, would be able to prove its own con-
sistency. According to Gödel’s results, it would be inconsistent. If it, or rather the 
formal system corresponding to it, were inconsistent, a larger system—that cor-
responding to the whole mind, even if not formal—would also be inconsistent. 
Thus, if we assume the strict provability of our consistency, we arrive at the 
provability of our inconsistency. This argument ad absurdum proves a philosoph-
ical thesis. It is that even if we are consistent, we cannot prove this in a precise 
mathematical way! 

The first person to realize this curious limitation was Gödel himself.17 Later, 
many philosophers repeated the thesis in one way or another, not always with 
a full awareness of the history of this statement. I think it deserves a name, such 
as “Gödel’s Thesis of the Undemonstrability of our Consistency”, or, more suc-
cinctly, “Gödel’s Unknowability Thesis” (it being assumed that what is meant 
here is knowability achievable through rigorous, mathematical-like demonstra-
tion). 

Gödel’s Unknowability Thesis. We cannot unassailably demonstrate our own 
consistency (let alone soundness).  
(NB: Our consistency/soundness is assumed here.) 

 
17 Even though the thesis was not stated explicitly in (Gödel, 1951), it is certain that 

the idea comes from him. Cf., however, a fragment in (Gödel, 1995, p. 309), and the notes 
made by Wang (1974, p. 319) after conversations with him. The thesis is stated in (Wang, 
1974, p. 324), and later on in (Wang, 1993, p. 119). 
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So, one can only conclude that we feel we are consistent, but cannot prove it. 
Of course, the thesis is not as simple as it looks. As Wang noted, in (1974), it is 
even unclear whether it is possible to formulate the statement “I am consistent” 
in terms suited to a mathematical-like demonstration. Shapiro (1998) and Fefer-
man (2007), meanwhile, point to other assumptions needed to make the above 
sketch work. Things become clearer and stricter when we operate within a more 
formal framework. In that case, another, more abstract version of the thesis is 
possible, modeled on the proof of Gödel’s second theorem from Löb’s derivabil-
ity conditions. Within the framework of the debate about out-Gödeling and, more 
specifically, Penrose’s new argument, this version was invoked by Chalmers 
(1995, Section 3). Let knowability be denoted by “B(.)”, and unconditional (and 
unassailable) provability (which, of course, implies knowability) by “├ ”. The 
difference between the two is that whereas knowability is something potential, 
“├ ” means something stronger—namely, that we actually have a proof. Now, 
assuming three natural conditions, one can directly derive inconsistency and 
knowledge of inconsistency.  

The Abstract Form of the Unknowability Thesis. Assuming ├ Cons, which 
means, to be specific, ├ ¬B(⸢0 = 1⸣), and the conditions 

(1) if ├ φ then ├ B(⸢φ ⸣), 
(2) ├ B(⸢φ⸣) ∧ B(⸢φ → ψ ⸣) → B(⸢ψ ⸣),  
(3) ├ B(⸢φ⸣) → B(⸢B(⸢φ⸣)⸣),  

one can derive ├ Inconsistency. 

P r o o f  s k e t c h :  Using the diagonal lemma, one can construct Gödel’s sentence 
G (equivalent to ¬B(⸢G⸣)), and then, from (1), (2) and (3), derive ├ (Cons → G). 
From ├ Cons it follows that ├ G, so, by (1), ├ B(⸢G⸣), but at the same time, by 
construction, ├ ¬B(⸢G⸣). 

Thus, if we can prove our consistency we are forced to believe a direct con-
tradiction! Many considerations, including also those made by or in relation to 
Lucas or Penrose, become more transparent once the above thesis is clearly 
grasped. That is to say, there is a major point of confusion, often encountered in 
connection with out-Gödeling arguments, that reflects a lack of awareness of it. 
Hence, the contradiction derived from (Gödel’s theorem and) the existence of 
a machine/program equivalent to the mind is interpreted as furnishing a refuta-
tion of the possibility of the existence of such a machine, while the contradiction 
can already follow from the very assumption that we (unassailably) know our 
consistency. 

In addition to Gödel’s results, at least two assumptions that are not self-
evident are used in the above reasoning. First, that every exact proof of our con-
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sistency can be formalized, and second, that it is possible to express “our con-
sistency”. The first point results from a general principle: complete precision 
means formalizability. This principle cannot be irrefutably proved, but it makes 
sense as it is related to Church’s Thesis, and because the thesis is so well ground-
ed the principle seems difficult to refute. If this is accepted, one could question 
the second point: it is not clear at all how one can express “our consistency”. 
Basically, there are two options for doing so: either (i) by the common sense 
statement “I am consistent”, or (ii) by a formal counterpart to this statement. Let 
us consider them in turn.  

In (i), we refer to a common sense statement that has no connection to formal 
considerations. Wang reflected on just this statement (1974, pp. 317–320),18 and 
believed it not provable. The justification for this stance is independent of the 
reasoning presented above; instead, a more general reason is given: we do not 
know how to make formal derivations that would lead to a statement about “us”. 
If the statement “I am consistent” were provable, it would represent provability 
in a non-formal sense. If that were possible, it would mean that we are not ma-
chines, or that we are not even equivalent to machines in the realm of proof-
generating reasoning. We certainly may believe that, but it is no more than 
a general feeling.  

In (ii), we consider the formal counterpart to a loose statement expressing 
consistency; the counterpart cannot be about “me” or “us”, but must rather con-
cern a theory S that corresponds to my (or our) mathematical abilities. In that 
case, we are dealing with a formula that is a formal expression of, say, “Sar is 
consistent”. The reasoning in question demonstrates that the formula is not prov-
able if S is consistent (that is, I am). It is, however, rather doubtful if a sentence 
of the type ConsS is a proper rendering of the statement “I am consistent”. The 
usual meaning of the statement refers to the will to avoid contradictions, the 
reliability of our vision of the world, and the claim that the methods used by 
mathematicians are unfailing. The sentence Cons, or any other similar arithmeti-
cal formula, is rather far from those ideas. Thus, while something is strictly 
proved, it is unclear to what extent the conclusion conveys our consistency.  

8.2. We Cannot Define the Natural Numbers 

The point is that we cannot define numbers. The concept of natural numbers 
seems perfectly natural. When we consider only the successor function, which 
seems to define the numbers, the resulting theory is complete and decidable. 
Adding addition does not change the situation, as was shown by Presburger 
(1929). Introducing multiplication changes everything, as we have known since 
Gödel (1931): the resulting theory is incomplete, as are its recursive extensions. 
They are also undecidable. This is surprising—even, I guess, for those who have 
been used to the fact and know how to prove it. This phenomenon deserves to be 

 
18 The sentence “I am consistent” is denoted there by “A”.  
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called “mathematical emergence” (Krajewski, 2012a). As soon as we have both 
addition and multiplication, the natural numbers turn out to be extremely com-
plicated. They seem simple, but their structure is objectively complex. At the 
same time, it seems that we know what numbers are, and that we should be able 
to define them. The Peano axioms constituted such an attempt but, as we have 
seen thanks to Gödel, they are not exhaustive. Second-order axioms give a com-
plete theory, but their foundation, the concept of a set of natural numbers, is not 
completely defined, so the incompleteness reemerges. This means that our axi-
oms define numbers only when taken together with some background knowledge 
or apparatus that makes possible our intuitive grasp of numbers. We all seem to 
develop this intuition at some point, if we have normal intellectual capacities. 
Whatever mechanism is responsible for this development—and we should not 
pretend that we know it—we can conclude that a complete description of this 
intuition is impossible. If so, no computer can be taught our concept of a number.  

This conclusion is striking, and can be seen as actually another variant of the 
position defended by Lucas and Penrose. It essentially says that we are better 
than any machine. If so, we should beware: there must be present here the same 
subtlety that plagues the arguments of Lucas and Penrose: namely, that the inde-
scribability of the concept of natural numbers means there is no complete de-
scription k n o w n  t o  u s . However, this does not exclude the possibility of 
a full recursive description of our concept of a number—that is, to use Gödel’s 
term, of subjective arithmetic. This description can be buried in the program of 
Luke, but we would not be able to formulate it. If presented with the program, 
we would not know that it does the job, and we would not be able to show that it 
defines a consistent concept, let alone a sound one. All the limitations treated in 
the previous sections apply here, as well. Still, the fact that we cannot give 
a definition of the natural numbers as we understand them is of interest. I suspect 
that this fact encompasses most of the attractive aspects of Gödel’s discoveries 
so vigorously defended by adherents of the Gödel-based argument for human 
superiority over machines/programs/robots. 

Because no algorithm that we can produce can be known to include our un-
derstanding of numbers, we can be sure that creativity is necessary in arithmetic. 
On the other hand, this conclusion seems certain independently of Gödel, was 
obvious in the past, and remains convincing to everyone—apart, that is, from 
some of those who have become believers in the full success of the AI program.  

8.3. The Doubtful Impact of the Gödel-Based Anti-Mechanist Argument  

Our attitude toward the arguments of Lucas, Penrose, and others is shaped 
mostly by our general vision of machines and minds, where this in turn must 
adjust to civilizational changes. For the youth of today, if I may judge from lis-
tening to my students, our computerized world makes it easier to accept the idea 
that anything is mechanizable—including the mind. Now, if the basic assump-
tions are more important than proofs—which is typically the case where philo-
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sophical views are concerned, anyway—it should be expected that the anti-Lucas 
argument presented here will hardly convince anyone. Moreover, when pointing 
out contradiction or circularity in Lucas-style arguments, I am not claiming that 
a proof can be offered—either of the thesis concerning the mechanical character 
of the mind, or of its contradictory. Generally, I share the opinions of Penrose 
about the need for intuition and insight in mathematics, and in thinking overall. 
Nevertheless, I believe that Gödel’s results furnish only limited support—though 
they certainly do offer some: they eliminate the naïve belief in a system of math-
ematics or an algorithm that is all-encompassing, created by us, and fully under-
stood up to and including the insight of it being contradiction-free.  

One can doubt the value of the whole anti-mechanist endeavor by noting that 
no mathematical result can decide a philosophical issue. Shapiro expresses the 
concerns of many when he states that the problems with the alleged refutations 
of the mechanist thesis lie “in the idealizations we need in order to make sense of 
the issues and then apply the incompleteness theorem” (Shapiro, 2016, p. 189). 
A major problem is caused by the circumstance that the set of knowable, unas-
sailably provable arithmetical sentences seems to have no sharp boundaries. The 
notion of ideal (available in principle) human (arithmetical) abilities has no clear 
meaning. Even if we assume, as with machines, the presence of unlimited 
lifespans, energy and memory, and an absence of mistakes—ideas that are very 
strange when applied to humans—this is not enough: we need to consider arith-
metical sentences that have “an adequate backing”, and this is a vague concept; 
in addition, it seems that we have no adequate backing for the claim that the set 
of sentences that have an adequate backing is consistent (Shapiro, 2016, p. 199). 
Further problems with the idealization of the human mind are indicated in Koell-
ner (2018b, Section 5). For example, in science, idealizations involve attributing 
to some parameters an extreme value, which is often zero; when we consider the 
“idealized” mind, this is hardly the case. In what principled sense can humans, 
even on an idealized construal, perform calculations longer than the number of 
particles in the known physical universe? Such arguments lead Koellner to 
a disjunctive conclusion:  

Either the statements that “the mind can be mechanized” and “there are absolutely 
undecidable statements” are indefinite (as the philosophical critique maintains) or 
they are definite and […] are about as good examples of “absolutely undecidable” 
propositions as one might find. (2018b, p. 477) 

The vagueness of the concepts used in the Lucas-Penrose arguments is a rea-
son to question the whole procedure of demonstrating the superiority of the mind 
over machines. Still, it makes sense to assume an interpretation that is charitable 
(to the proponents of the arguments): that is, to accept the possibility of proce-
dures of the kind deployed by Lucas and Penrose. And the present paper then 
provides a refutation of these procedures, due to the inevitable inconsistency or 
unsoundness produced by that very reliance on them. 
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The Lucas-style or Penrose-style argument does not seem to have converted 
anyone. Those who believe in the fundamentally non-mechanical or non-
algorithmic nature of the mind may be glad to witness a mathematical proof of 
their belief, but such proof will not convince those who posit that a machine can 
be equivalent to our mind. If pressed, Lucas would, I imagine, say the following: 
“If I were a machine, then, I am sure, the sentence Cons made for me would be 
true. Whence do I know that? Because I know I am consistent. How do I know? 
I just know; I feel it. How can the consistency be proved? Well, I feel it; so I am 
not a machine after all!” Circularity is unavoidable. And, on the other hand, if 
someone believes that deep down we are complicated machines of some sort, 
then—even granting the consistency—it is not surprising that we may be unable 
to prove this consistency. After all, we are not an omniscient machine! As should 
be clear from the preceding sections, a subtle algorithm, such as Luke’s program, 
is not logically impossible. Indeed, much the same position has been expressed 
by Feferman when he writes that 

Even though I am convinced of the extreme implausibility of a computational 
model of the mind, Penrose’s Gödelian argument does nothing for me personally 
to bolster that point of view, and I suspect the same will be in general true of read-
ers with similar convictions. On the other hand, I’m sure that those whose sympa-
thies lie in the direction of the computational model of mind will find reasons to 
dismiss the Gödelian argument quickly. (Feferman, 1995, Part 1.2) 
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