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PREFACE 
 
 

Cantor’s set theory combined with the development of formal logic changed 
the foundations of mathematics forever. In the late 1920s, David Hilbert, who 
was one of the most influential mathematicians of his time, was advancing 
a program the aim of which was to establish once and for all the validity of infi-
nitistic methods that proved to be so powerful in various areas of classical math-
ematics. Hilbert’s program suffered a fatal blow when Kurt Gödel announced his 
incompleteness theorems. Some, including John von Neumann, instantly grasped 
the importance of Gödel’s results, but it took the mathematical community much 
longer to realize what the results meant for the foundations of mathematics and 
for mathematical practice. Craig Smoryński tells an interesting story about it in 
Hilbert’s Programme (1988). 

It was only in 1950’s, after seminal work in proof theory and computability 
theory, by Ackerman, Bernays, Church, Gentzen, Hilbert, Kleene, Post, Turing, 
and many others, that one could say with confidence that we now know how to 
formalize mathematics. Equipped with the new conceptual framework, certain 
foundational issues became approachable, and one could hope to establish results 
about them with mathematical precision. In this vein, John Lucas in the 1960s 
and later Roger Penrose in the 1990s came up with arguments, based on Gödel’s 
theorems, to show that mathematics as human activity cannot be reduced to 
a single algorithmic procedure, or, more poetically, that human minds are not 
machines. Prior to that, Gödel himself, in his Gibbs lecture in 1951, formulated 
and argued for what is now known as Gödel’s disjunction: 
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Either the human mathematical mind cannot be captured by an algorithm, or 
there are absolutely undecidable problems. 

Gödel believed that both disjuncts were true, and was convinced that a rigorous 
confirmation of the disjunction could be given, but he could not see a way to do it 
for either of the disjuncts. Lucas and Penrose argued that the first disjunct holds. 
Recently, in a series of articles, Peter Koelner provided a formal framework to 
validate Gödel’s disjunction (2016; 2018a; 2018b); but, after a thorough analysis, 
the arguments of Lucas and Penrose have been rejected by the logic community. 
Stanisław Krajewski’s essay in this collection provides a detailed analysis of Lucas’ 
proof and two proofs given by Penrose. It was the initiative of the editors of Semi-
otic Studies to invite mathematicians and philosophers to respond to Krajewski’s 
essay and to comment on related issues from todays perspective. 

While not much can be added the logical analysis of the arguments of Lucas 
and Penrose, the question of mechanization of mathematics gives rise to a dis-
cussion that touches upon central problems in the philosophy of mathematics. As 
computer-assisted proofs become routine, it is also relevant to current mathemat-
ical practice. In the June/July 2018 issue of the Notices of the American Mathe-
matical Society, Jeremy Avigad gives a survey of recent advances in automated 
theorem proving, and in the conclusion he writes: 

The history of mathematics is a history of doing whatever it takes to extend our 
cognitive reach, and designing concepts and methods that augment our capacities 
to understand. The computer is nothing more than a tool in that respect, but it is 
one that fundamentally expands the range of structures we can discover and the 
kinds of truths we can reliably come to know. This is as exciting a time as any in 
the history of mathematics, and even though we can only speculate as to what the 
future will bring, it should be clear that the technologies before us are well worth 
exploring. (2018) 

The role of proof in mathematics is not just to discover mathematical truths, 
but rather to provide insights into why this or that particular statement is true. 
Surely, such insights cannot be provided by a machine that only spits out true 
mathematical statements one by one; most of them are simply uninteresting. 
However, it would be a mistake to underestimate what machines can actually do. 
Stephen Wolfram, the founder of Mathematica, discusses this in his blog: 

At some level I think it’s a quirk of history that proofs are typically today present-
ed for humans to understand, while programs are usually just thought of as things 
for computers to run. Why has this happened? Well, at least in the past, proofs 
could really only be represented in essentially textual form—so if they were going 
to be used, it would have to be by humans. But programs have essentially always 
been written in some form of computer language. And for the longest time, that 
language tended to be set up to map fairly directly onto the low-level operations 
of the computer—which meant that it was readily “understandable” by the com-
puter, but not necessarily by humans. But as it happens, one of the main goals of 
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my own efforts over the past several decades has been to change this—and to de-
velop in the Wolfram Language a true “computational communication language” 
in which computational ideas can be communicated in a way that is readily under-
standable to both computers and humans. (2018) 

The articles in this issue can be divided into three groups. Krajewski’s article, 
Yong Cheng’s contribution, and a short note by Rudy Rucker, provide detailed 
mathematical analysis of Lucas-Penrose type arguments. In the second group, 
with articles by Arnon Avron, Stepan Holub, Panu Raaikiainen, and Albert Visser, 
the authors discuss the status and various methodological and technical problems 
of the anti-mechanist arguments. In essence: what does the problem of “minds vs. 
machines” really mean, and how can it, and how should it, be formulated? 
Moreover: How to evaluate the merit of arguments that mix formal mathematics 
and philosophical considerations? The third group consists of the articles that, 
while including issues from the other two groups, concentrate of more specific 
themes: an analysis of Georg Kreisel’s observation that it does not logically 
follow from the fact that a formal system is subject to the second Gödel incom-
pleteness theorems that there are absolutely no means available to prove its con-
sistency (Jeff Buechner); Per Martin-Löf’s proof that there are no absolute un-
knowables in constructive mathematics (V. Alexis Peluce); diagonal arguments and 
Chomsky’s approach to linguistic competence as contrasted with arithmetic com-
petence (David Kashtan); and the role in the anti-mechanist arguments of difficul-
ties in capturing the nature of natural numbers in formal systems (Paula Quinon). 

All articles in this issue, directly or indirectly, address the limits of mathemat-
ical knowledge. While we have a precise definition of provability in formal sys-
tems, the question of what is knowable is vague. In a series of recent papers, Peter 
Koelner approached this problem, by formalizing aspects of mathematical truth 
and knowability in a way that allows him to give a rigorous argument validating 
Gödel’s disjunction. This theme is taken up in Yong Cheng’s article in this issue. 

Finally, Wilfred Sieg’s article gives a historical account of the seminal contri-
butions of Gödel and Turing that made possible all later developments partially 
described in this issue. 
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ON THE ANTI-MECHANIST ARGUMENTS 

BASED ON GÖDEL’S THEOREM 
 
 
S U M M A R Y : The alleged proof of the non-mechanical, or non-computational, character 
of the human mind based on Gödel’s incompleteness theorem is revisited. Its history is 
reviewed. The proof, also known as the Lucas argument and the Penrose argument, is 
refuted. It is claimed, following Gödel himself and other leading logicians, that anti-
mechanism is not implied by Gödel’s theorems alone. The present paper sets out this 
refutation in its strongest form, demonstrating general theorems implying the inconsisten-
cy of Lucas’s arithmetic and the semantic inadequacy of Penrose’s arithmetic. On the 
other hand, the limitations to our capacity for mechanizing or programming the mind are 
also indicated, together with two other corollaries of Gödel’s theorems: that we cannot 
prove that we are consistent (Gödel’s Unknowability Thesis), and that we cannot fully 
describe our notion of a natural number. 
 
K E Y W O R D S : Gödel’s theorem, mechanism, Lucas’s argument, Penrose’s argument, 
computationalism, mind, consistency, algorithm, artificial intelligence, natural number. 

 
 

1. Introduction 

Several philosophical consequences of the celebrated Gödelian incomplete-
ness results have been indicated by logicians and philosophers. Here, only one 
issue is examined: namely, the alleged Gödel-based proof of the non-mechanical 
character of the human mind. In more modern terms, this equates with the refuta-
tion of the (strong) computationalist thesis identifying the mind with a computer. 
According to that thesis, the mind can be imagined as a program, where this need 

 
* University of Warsaw, Faculty of Philosophy. E-mail: stankrajewski@uw.edu.pl. 

ORCID: 0000-0002-1142-8112. 



10 STANISŁAW KRAJEWSKI  
 

not necessarily correspond to a (computational) mechanism; therefore, “compu-
tationalism” seems to be a more appropriate term. Nevertheless, for historical 
reasons, I will continue using the term “mechanism”. Ever since Gödel himself, 
logicians have argued—against the claims of many non-logicians, including 
philosophers and mathematicians—that anti-mechanism is not implied by Gö-
del’s theorems alone. The present paper aims to set out the logicians’ argument in 
its strongest form. 

Recently, another problem relating to the computationalist thesis has ap-
peared: our thinking, or at least some manifestations of our intelligent behavior, 
no longer seem to be limited to human beings, in that they can be present in 
computers or networks of computers, too. The question, then, is whether Gödel’s 
limitative results imply limitations regarding our abilities to mechanize intelli-
gence. Here, again following Gödel himself, the answer would seem to be positive.  

Even if it should not be, the controversy surrounding the value of the anti-
mechanist corollaries of incompleteness results remains very much a live one, 
with scholars as prominent as Roger Penrose claiming, against Gödel, that the 
latter’s theorem proves the non-mechanical nature of the mind. This stance is 
also reiterated in popular expositions, such as Goldstein (2005). Indeed, the con-
tinuing widespread support for this claim provides one of the principle justifica-
tory motivations for the present paper.1 Here, the Gödel-based arguments for 
anti-mechanism, commonly referred to as the Lucas argument and the Penrose 
argument, will be reviewed once again. The refutations of both versions will be 
set forth in this context in a more explicit way than were those proposed by Gö-
del and, subsequently, by other leading logicians. Even so, the essence of these 
refutations was, in fact, revealed by Gödel himself. The present paper is based on 
Krajewski (2003), a book-length study in Polish (summarized in Krajewski, 
2004) where some topics are treated much more extensively and a wider range of 
authors are quoted, but also reflects this author’s presentation (also in Polish) of 
the anti-anti-mechanism arguments (Krajewski, 2012), as well as two other pa-
pers that further refine this critique (Krajewski, 2007; 2015). Compared to earlier 
publications, there will be more stress here on the generality of the anti-Lucas 
and anti-Penrose theorems and, following (Krajewski, 2015), on ways to explain 
Penrose’s approach by identifying an additional premise that he implicitly adopt-
ed. I also find it important to endorse the corollaries that do follow from Gödel’s 
theorems: that we cannot prove that we are consistent, and that we cannot fully 
describe our notion of a natural number. 

Section 2 contains some background. However, a standard knowledge of Tu-
ring machines, recursive functions, Church’s Thesis, and Gödel’s theorems will 
be assumed. To be specific, GT is Gödel’s sentence for any (first-order) theory 
T that includes elementary arithmetic. For any T that is consistent and (minimally) 
sound, GT is independent of T (unprovable and not refutable). Soundness means 

 
1 There exist, to be sure, competent presentations that avoid such errors, e.g., (Franzen, 

2005; Berto, 2009). 
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semantical adequacy: provable formulas are true. For those wishing to avoid the 
inherently unclear notion of truth, Gödel introduced a notion of restricted sound-
ness, referred to as ω-consistency: for no formula ϕ all of the following are prov-
able in T: (∃x)¬ϕ(x) and ϕ (S(n)0) for all n = 0, 1, 2, …; here, “S(n)0” denotes the 
n-th successor of zero—that is, the number n. Minimal soundness (the above 
principle being applied only to formulas with restricted number quantifiers) is 
called 1-consistency. GT can be seen as a natural formalization of the statement 
that T is consistent. It can be expressed as a Π1 formula: all the unrestricted 
number quantifiers are universal, and they all appear in front of the rest of the 
formula. Due to the Matiyasevich-Robinson-Davis-Putnam theorem, this state-
ment can be expressed as the absence of solutions to a specific (dependent on T) 
Diophantine equation. According to standard accounts, GT is independent and 
true. For those for whom the notion of truth is unclear, it would probably be 
easier to admit this notion for the purposes of the statement that there is no inte-
ger solution to a particular, logically simple equation.  

In Section 3, the history of the anti-mechanist argument is sketched. In Sec-
tion 4 the argument is reconstructed as a procedure performed in four steps, and 
each step is analyzed. Then, two main issues are discussed: the “dialectical” 
character of the argument and its algorithmic nature. Section 5 contains a general 
theorem demonstrating the inconsistency of anyone who systematically applies 
the Lucas-style argument, and Section 6 contains a similar theorem for Penrose-
style arguments. In Section 7, Gödel’s position is briefly described, including the 
well-known Gödel’s Disjunction. In Section 8, another well-known claim, the 
impossibility of a rigorous proof of our consistency, is mentioned, and I name 
this assertion Gödel’s Unknowability Thesis. Afterwards, a claim is presented to 
the effect that we human beings cannot fully define our (human) understanding 
of natural numbers. 

2. Background 

2.1. Mechanism 

Historically, mechanism arose in the age of Enlightenment. Earlier, Descartes 
had come close, saying that animals are machines. Humans, according to him, 
were more than machines, as “there are no men so dull […] as to be incapable of 
joining together different words, and thereby constructing a declaration by which 
to make their thoughts understood; and that on the other hand, there is no other 
animal […] which can do the like” (Descartes, 1637, Part 5). At the same time, 
Descartes was sure that no mechanism could imitate specifically human behavior: 
“although such machines might execute many things with equal or perhaps 
greater perfection than any of us, they would, without doubt, fail in certain others 
from which it could be discovered that they did not act from knowledge […]” 
(ibidem). Yet a hundred years later, La Mettrie, a doctor who saw himself as 
a follower of Descartes, in his work Man-Machine, turned Descartes’s argument 
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upside down: he claimed that man i s  a machine, in both body and mind. The 
body was likened to a huge, ingeniously built clock. It is no surprise that he 
chose the clock for comparison, as this was the most complicated artificial 
mechanism known at the time. Thinking seemed to him “so inseparable from 
organized matter that it appears to be one of its qualities as much as is electricity, 
movability, non-penetrability, extension” (La Mettrie, 1747). At that time, almost 
300 years ago, it was a matter of faith whether a machine could be constructed 
that would be like man—or that would actually b e  man. And, indeed, this re-
mains an open question, despite the progress in robotics. It is not surprising that 
a hundred years ago the brain was compared to a telephone switchboard, the 
most complicated network in use at that time, while in our own time the compar-
ison is made with a computer.  

2.2. Artificial Intelligence 

The ideology of Artificial Intelligence (AI) constitutes the modern version of 
mechanism as applied to the mind. We can discern two interpretations: either the 
computer is supposed to imitate the effects of our activities (the weaker thesis), 
or it should imitate the structure of our thinking—the way the mind operates (the 
stronger thesis). No involved analysis of the differences is needed here, as the 
argument based on Gödel’s theorem has always been used to demolish even the 
weakest AI thesis. For a similar reason, we should not be troubled by the fact that 
no definition of the mind seems to be possible. We just need to take advantage of 
a few well-known effects of the mind’s activity, and require no insight into its 
essence. Only some features of the mind are called for, and among these is the 
capacity to understand Gödel’s theorem.  

On the other hand, as we study the alleged refutation of the thesis that the 
mind is mechanical or can be simulated by a machine, we should be able to de-
fine what a machine is. For example, we would not accept as a machine a device 
with a little homunculus hidden inside it. We would accept computers, including 
their hitherto unknown versions. What, then, is a machine? A definition is diffi-
cult to formulate, though it may be easier than formulating a definition of the 
mind. However, we can happily refer to Church’s Thesis. Information processing 
machines, whatever they are, present a product that can be described as a recur-
sive function. So far, all attempts to define an abstract machine have produced 
concepts equivalent to recursive functions and Turing machines. Obviously, the 
equivalence here pertains to the results, not the way of operating. But this, fortu-
nately, is just what the weaker AI thesis is concerned with. 

The mechanist thesis in its fullest form amounts to the one advocated by La 
Mettrie: that the human being is a machine. A more restricted thesis concerns the 
mind only, while a still more restricted one applies only to mathematics. Ulti-
mately, moreover, we arrive at the most restricted thesis of all, which is applied 
to the arithmetic of natural numbers (integers): that the operation of the mind in 
the field of arithmetic is mechanical. 
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Each of these theses can be expressed in a weaker version speaking not about 
the activities of man and the mind, but only the results of those activities. The 
weaker mechanist thesis admits the possibility that something essentially non-
mechanical takes place there, but it claims that by using an appropriate machine 
we can simulate the mind so that exactly the same results are achievable. The 
weakest variant reads as follows: the operation of the mind in the field of arith-
metic can be simulated by a machine.  

To those theses we could add even more restricted versions, based on our 
knowledge of the shape of Gödelian formulas. Thus the weakest thesis could 
refer to the operations of the mind to the extent needed to establish the non-
existence of solutions of Diophantine equations. It follows from all the other 
ones, so to refute it is to refute them all. According to Lucas and Penrose, their 
arguments refute all of the above theses of mechanism and AI. 

3. The Anti-Mechanist Argument 

Many people who have learned about Gödel’s results have felt that they pro-
vide such a limitation on the capabilities of machines broadly conceived (i.e. 
computers and robots, as well as their networks) that the limitation cannot apply 
to humans. Consequently, it seems that a fundamental difference between the 
human mind and machines has been demonstrated. The basic idea is very simple 
indeed: if a machine produces mathematical truths, then it cannot produce the 
Gödelian sentence constructed for the totality of those truths without falling into 
a contradiction. On the other hand, we can prove that the Gödel sentence is true. 
Thus—hooray!—we are better than any machine. 

3.1. The History of the Gödel-Based Argument 

The first printed mention of some form of the argument can be found in Alan 
Turing’s fundamental paper (1950). It was not a new idea even then, as is indeed 
clear from his presentation. Turing wanted to convince the reader that machines 
can think—or, rather, that they can perform certain functions that we normally 
associate with intelligence. He admits that “mathematical” arguments, in the 
sense of considerations based on Gödel’s Theorem or directly on Turing’s theo-
rem, are relevant, as “it is argued” that they prove “a disability of machines to 
which the human intellect is not subject”. We feel we are better, and the feeling is 
not “illusory”, writes Turing, and adds, “I do not think too much importance 
should be attached to it” (Feigenbaum & Feldman, 1995, p. 22). What is this 
added remark supposed to mean? It seems that what Turing wanted to say was 
that the building of robots was such a worthwhile undertaking that it would re-
main so even if robots were subject to some limitations.  

Even before Turing, and also around the same time, similar thoughts were 
expressed by Emil Post, one of the pioneers of modern mathematical logic. In 
1941, the latter wrote that “[a] m a c h i n e  would never give a complete logic; for 



14 STANISŁAW KRAJEWSKI  
 

once the machine is made w e  could prove a theorem it does not prove” (Post, 
1941, p. 417). He claimed that he had entertained a thought of this sort already in 
1924. Only later did he take Gödel’s results into account. Post’s paper was pub-
lished much later, in the anthology of Davis (1965). The quoted sentence is not 
a straightforward expression of the thesis that the mind is not mechanical, but we 
can see that this is suggested by the phrase “we could prove”. 

At the end of his exposition of mathematical logic, Rosenbloom wrote that 
Gödel’s theorem shows that “some problems cannot be solved by machines, that 
is, brains are indispensable” (Rosenbloom, 1950, p. 208). Man, he says, “cannot 
eliminate the need to use intelligence” (p. 163). Similar in spirit, only much more 
comprehensive and penetrating, are the considerations put forward later by 
Douglas Hofstadter (1979) in his bestseller, which served to make the general 
public aware of Gödel’s results. 

Before Hofstadter, the most popular exposition of Gödel’s achievements for 
a wider public was that available in the book by Nagel and Newman (1989). The 
authors write there that “the brain appears to embody a structure of rules of oper-
ation which is far more powerful than the structure of currently conceived artifi-
cial machines […] the structure and the power of the human mind are far more 
complex and subtle than any non-living machine yet envisaged” (Nagel, New-
man, 1989, pp. 101–102). The reservations expressed by the phrases “currently 
conceived” and “yet envisaged” testify to the authors’ caution. It could seem that 
their approach was manifesting a certain hesitancy as regards the thesis concern-
ing the non-mechanical character of the mind, in that it allows for the appearance 
of machines in a new, hitherto unknown, sense; Gödel’s method would not apply 
to those machines, and they could, in fact, be equivalent to the mind. However, 
the authors refrain from drawing this conclusion. Their attitude is also apparent 
in their response to the criticism of Putnam, who wrote that theirs was a “misap-
plication of Gödel’s theorem, pure and simple” (Putnam, 1960a, p. 207). Accord-
ing to them, Putnam “dogmatically” assumed that every conceivable proof of the 
consistency of a machine hypothetically equivalent to human mind could also be 
constructed by the machine (Nagel and Newman, 1961, p. 211). This remark 
seems to mean that for Nagel and Newman, some capabilities of the mind are 
assumed to be—or at least are allowed to be—fundamentally non-mechanical. 
This early controversy makes it clear that our attitude to Lucas’s argument may 
depend strongly on a basic assumption about whether or not it is possible for 
a machine to imitate arguments created by the mind.  

The debate was continued by, among others, Kemeny (1959) and Smart 
(1960). In the 1950s, more and more analytic philosophers saw the anti-
mechanist consequences of the limitative theorems as quite apparent, though 
probably only a few would swear that the argument contained no mistakes. It was 
Lucas who, with no hesitation whatsoever, presented the allegedly indubitable 
mathematical proof of man’s superiority over machines—and even over matter. 

The anti-mechanist argument was by no means universally accepted. On re-
flection, Post had fundamental doubts: “The conclusion that man is not a ma-
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chine is invalid. All we can say is that man cannot construct a machine which 
can do all the thinking he can” (Post, 1941, p. 423). Later, many authors would 
draw attention to the weak points of Lucas-style arguments. As a matter of fact, 
amongst mathematical logicians the currently dominant view is that Lucas’s 
argument is wrong. In addition to Gödel himself saying so in his 1951 Gibbs 
lecture (though this analysis was published much later), the first published criti-
cal mentions of Lucas’s argument (which in fact preceded Lucas’s paper) were 
Putnam’s (1960) and (1960a). Boolos called them “classic” (Boolos, 1995, 
p. 254). Criticism was voiced by, among others, Quine, Benacerraf (1967), and 
Wang (1974). Later, criticism was directed against Penrose’s version of the ar-
gument; among the most important papers were those by Feferman (1995) and 
Putnam (1995). Further criticism was offered by several logicians, for example 
Shapiro (1998) and Lindström (2001). A recent account of the debate is available 
in the collection of papers edited by Horsten and Welch (2016).  

The argument based on Gödel’s theorem retains its “mystical” charm. Many 
a philosophically minded scientist labors under its spell—as, increasingly, do 
other authors who refer to Gödel in order to state general theses not just about 
the mind, but also the limits of rationality, the incomprehensibility of the world, 
etc.2 For some, the motivation is de facto religious: a desire to confirm with 
mathematical rigor the existence of the soul and free will. This is explicit in 
Lucas’s later book (1970).  

Roger Penrose, an outstanding mathematician and theoretical physicist, de-
veloped his own version of Lucas’s argument in his books The Emperor’s New 
Mind (1989) and Shadows of the Mind (1994). His position remains scientific: he 
speculates that the quantum-mechanical level can provide an explanation of the 
non-mechanical character of the mind and consciousness. According to Putnam, 
Penrose “mistakenly believes that he has a philosophical disagreement with the 
logical community” (Putnam, 1995, p. 370).  

3.2. Two Ways of Criticizing Lucas’s and Similar Arguments 

Although logicians mostly agree that Lucas’s (and also Penrose’s) argument 
must be rejected, one must admit that a certain disconcerting ambiguity keeps on 
arising. There is more than one way to demonstrate the error in the Lucas or 
Penrose arguments. Two main approaches are used, both well summarized by 
John Burgess. For some, “the mistake lies in overlooking the possibility that it 
might in actual fact be the case that the procedure generates only mathematical 
assertions we can see to be true, without our commanding a clear enough view of 
what the procedure generates to enable us to see that this is the case”. (Burgess, 
1998, p. 351) For others, the error results from the fact that “even if we do see 
that the procedure generates only mathematical assertions we think we see are 

 
2 Chapter IV of the present author’s book-length study in Polish (Krajewski, 2003) 

treats this phenomenon at length. 
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true, it might be rational to acknowledge human fallibility by refraining from 
concluding that the procedure generates only mathematical assertions that are in 
actual fact true” (Burgess, 1998, p. 351). To put it in a simpler and more pictur-
esque way, the first line of attack reveals that it is not excluded that we are con-
sistent machines but don’t know it, and the second line shows that it is not ex-
cluded that we are inconsistent machines. The first method was introduced by 
Gödel, while the second—though also mentioned by Gödel—was made known 
by Putnam. 

This ambiguity engenders a perplexing consequence: no criticism of Lucas’s 
argument seems definitive. The first method assumes our consistency, and the 
other allows for the opposite to be the case. The assumptions contradict each 
other, so a supporter of Lucas can use this to say that the matter is not settled, 
since the opponents cannot agree among themselves. Still, the two methods taken 
together constitute a strong refutation: either we are consistent or not, and in both 
cases Lucas is wrong.  

In this paper, both approaches will be taken into account, and in addition Lu-
cas’s argument will be refuted in yet another way: without assuming anything 
about our, or Lucas’s, consistency, we will show (in Section 5.2) how every Lu-
cas-style argument leads to either a vicious circle or a contradiction. 

It is important to stress that all methods of refuting Lucas- and Penrose-style 
arguments are based on the insights expressed by Gödel himself, especially in 
1951. (For more details, see Section 7 below.) According to the one-sentence 
summary of the argument given in (1951) that Gödel presented to Wang in 1972, 

[O]n the basis of what has been proved so far, it remains possible that there may 
exist (and even be empirically discoverable) a theorem-proving machine which in 
fact i s  equivalent to mathematical intuition, but cannot be p r o v e d  to be so, nor 
even be proved to yield only c o r r e c t  theorems of finitary number theory. (Wang, 
1974, p. 324; 1996, pp. 184–185)3 

The present paper may be seen as constituting a somewhat extended footnote to 
the above sentence.  

4. Analysis of the Gödel-Based Arguments 

4.1. Steps (L1)–(L4) 

Lucas’s argument reads as follows: no machine is equivalent to the mind, be-
cause the mind can recognize the truth of the Gödelian formula for the machine, 
while a machine cannot do so—due to Gödel’s theorem—without being incon-
sistent, in which case it would certainly not be equivalent to the mind. To per-
form a critical analysis of Lucas’s argument, we must present its main points, or 

 
3 The term “finitary” has its proper meaning in the framework of Hilbert’s program. 

Here it means the Π1 statements of elementary “finite” number theory. 
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reconstruct it. While some degree of arbitrariness is unavoidable, my version, to 
the best of my knowledge, is faithful and accurate. It can be presented as four 
simple steps, from (L1) to (L4). The division into steps makes it much easier to 
incorporate in an orderly fashion all the considerations and critical points made 
in the literature. The aim is to “out-Gödel” the machines. 

(L1) First of all, we can see that machines—referred to by Lucas as “cyber-
netical machines”—are necessarily equivalent to formal systems. Each ma-
chine M has a definite finite number of states and instructions, and therefore 
corresponds to a specific formal system S of the kind studied in logic: S is 
given by axioms formulated in a specific formal language and by formal rules 
of inference. A calculation, or a sequence of operations performed by M, cor-
responds to a formal proof in S. 
(L2) If the machine M models the mind, it “must include a mechanism which 
can enunciate truths of arithmetic”. The formulas M can “produce as being 
true” correspond to the theorems of S.  
(L3) Now, we can use Gödel’s technique to construct a formula G that is not 
provable in S—i.e. not a theorem of S. We assume, of course, that S, or at 
least its arithmetical part, Sar, is consistent. (Otherwise, G is a theorem, since 
in an inconsistent theory every formula is derivable using classical logic.) If 
S were inconsistent, it would obviously be inadequate as a model of the mind. 
Thus, due to Gödel’s theorem, M cannot produce G as being true.  
(L4) On the other hand, we can see that the formula G is true. We can follow 
Gödel’s proof and see that G is not a theorem of S and that it is true. Its truth 
is a consequence, even an expression, of its unprovability in S. We, our mind, 
can do something that M cannot. It is impossible to simulate all of the mind’s 
capabilities at once. The mind is not equivalent to M, so it is equivalent to no 
machine. “The Gödelian formula is the Achilles’ heel of the cybernetical ma-
chine” (Lucas, 1961, p. 116). 

These four steps constitute a careful rendering of the argument proposed in 
Lucas (1961). The case has not changed since then. No essentially new elements 
of logical r e a s o n i n g  appear in his subsequent publications containing replies 
to criticism—i.e. Lucas (1968) and (1970), followed by Lucas (1996; 1997; 
1998). To be sure, various points are discussed and some aspects are emphasized: 
for example, the “dialectical” character of the argument (see Section 4.6 below). 
In a later book he briefly repeats the Gödelian argument, noting only that it is 
“highly controversial” (2000, p. 219). 

Essentially the same argument is presented by other authors—most notably 
Penrose (1989). Later, in his (1994) and (1996), the latter presented a modified 
version as well: one which includes a defense against critical voices and takes 
into account Gödel’s own position. (See below, Section 6.) 

However, each step in Lucas’s reasoning can be questioned. In the discussion 
below, I analyze each of points (L1) to (L4) in turn. Then I consider Lucas’s 
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main line of defense, the “dialectical” nature of the argument. It turns out that the 
initially disregarded problem of consistency is fundamental. Finally, I present 
a theorem demonstrating that the threat of inconsistency is fatal to both Lucas’s 
original argument and every argument of a similar character, even when the 
concept of truth is not utilized.  

4.2. Re (L1): Must Machines be Equivalent to Turing Machines? 

Step (L1) seems to be the least controversial of the four. A machine that has 
a finite number of states and instructions, and operates sequentially—one opera-
tion after another—is essentially equivalent to a Turing machine. To be more 
precise, Turing machines constitute mathematical idealizations of those physical-
ly possible machines because they disregard all practical limitations: in using 
Turing machines, we admit a fixed but arbitrary (that is, limitless) number of 
states and an arbitrary number of instructions, as well as a boundless amount of 
input (so that the number of the states or instructions or the size of the input can 
even transcend the number of elementary particles in the universe, according to 
current physics). We also make another important idealization: we assume that 
the tape, or memory, of the Turing machine is (potentially) infinite. The output of 
every such machine can be described as the totality of theorems of a certain 
formal system. To prove this, it is enough to note that the output is a recursively 
enumerable (r.e.) set—and that, due to Craig’s lemma, each such set of elemen-
tary arithmetical sentences is recursively axiomatizable in the standard logical 
calculus. Thus, if Lucas’s argument—that is, its remaining points—were correct, 
we would agree that the mind is equivalent to no idealized machine, as the mind 
beats each such machine at least in some respect: so, a fortiori, the mind beats 
each real machine. That conclusion depends upon the assumption that there are 
no machines of a different nature, ones not reducible to Turing machines. This is 
essentially Church’s Thesis. Is it incontestable? 

It seems that the gradual progress made possible by parallel processing, ge-
netic algorithms, neural nets, and machine learning brings no breakthrough: the 
class of computable functions remains the same. Of course, we are considering 
idealized computability, without limitations of time, space or memory. If we 
were to consider practical computability, new kinds of machines would make 
more functions practically computable. Yet with Lucas’s argument, we are deal-
ing with computability in principle, not in practice. 

How does a mind emerge? So far, we have known only naturally created 
minds; but are we sure that above a certain level of complexity, a machine cannot 
acquire a mind? Even Lucas admits this possibility. However, in such a case, he 
claims, “it would cease to be a machine” (Lucas, 1961, p. 126). On this approach, 
the controversy over mechanism would turn, at least in part, into a disagreement 
over the use of words. To preserve the real problem, let us consciously and ex-
plicitly assume that to be a machine means to operate according to rules that can 
be reduced to steps equivalent to those described by Turing. In applying this to 
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the problem of mechanism, we should beware of a circularity: if we simply as-
sume that the mind, which is self-conscious, does not operate according to those 
rules, then we a s s u m e  what we are supposed to prove by means of Lucas’s 
argument, and the whole business connected with Gödel’s theorem becomes 
superfluous. To avoid this, we should assume as little as possible about the nature 
of the mind. We shall therefore accept only those features clearly discernible on the 
basis of introspection. (For an example, we may refer to the diagonal construction, 
in which we treat as obvious the fact that from a recursive sequence of recursive 
functions we can effectively form a diagonal function that is also recursive.)  

To sum up, step (L1) can be confirmed in the sense that it, and thereby the 
whole of Lucas’s argument, can apply to a machine M belonging, at least, to the 
very extensive class of machines that—considered as idealized structures—are 
equivalent to Turing machines. We can assume that the input is absent or fixed, 
or is even itself recursively enumerable. Inputs that are not recursively enumera-
ble must not be allowed, because in that case the non-recursive complexity of the 
input could be expressed in the output. An input of sorts is mathematically un-
necessary, because it could be positioned as a part of the (program of the) ma-
chine. However, we will allow for it, as it may prove necessary when considering 
the “dialectical” character of Lucas’s argument.  

4.3. Re (L2): What Does “True” Mean for a Machine? 

The machine must qualify some output expressions as “true”. Following Lu-
cas, one can say that they are “produced as being true”. While this manner of 
speaking is not particularly neat, at first glance it seems to be innocuous. It is, 
however, perceived as an equivocation by Benacerraf (1967), Wang (1974) and, 
in a more detailed treatment, Slezak (1982). The point is that we use at the same 
time an expression suitable for a machine (“produce”) and an expression proper 
to humans (“true”). We must describe an act that the mind—and no machine—
can carry out, so it must fit both the machine mode (hence the cold terms “pro-
duce”, “generate”, “print”, or the matter-of-fact “output”) and human perception, 
which includes understanding and acceptance (hence “true”, “ascertain”, etc.). 
The equivocation is not due to carelessness; it is, instead, inherent to the founda-
tions of an argument that is supposed to consider machines and humans at the 
same time, but never allow their identification. “Hence the (Lucas) argument 
requires the conflation of truth and provability to reach its conclusion” (Slezak, 
1982, p. 45).  

If we speak about machines as counterparts to formal systems, then it is 
enough to talk about (formal) derivability. The notion of truth is not needed as 
a prerequisite to state Gödel’s theorem; it is enough to say that a consistent sys-
tem is (syntactically) incomplete: i.e. for some formula, neither it nor its negation 
is derivable in the system. Gödel’s theorem makes sense on the syntactic level: to 
apply it to a theory T we do not even need to know what “true” means when 
applied to T’s formulas.  
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There seem to be two ways of overcoming the equivocation—understood as 
the use of truth and derivability in the same statement. First, perhaps the notion 
of truth can be applied to machines? Second, in the context of Lucas’s argument, 
maybe we can dispense with truth altogether?  

It would be incorrect, if tempting, just to assume that a machine cannot use 
the notion of truth and other semantic concepts. Possibly, further scientific pro-
gress will lead to an increasing level of sophistication on the part of computers in 
the area that, for us, constitutes the realm of meaning and sense. If we assume 
that “genuine” truth does not apply to machines, but does apply to humans, then 
Lucas’s argument is completely dispensable, because we are simply assuming 
our superiority over machines, which is the thesis that was to be demonstrated.  

As much as it is incorrect to assume our superiority over machines, it would 
be wrong to refute Lucas’s argument by, again, merely assuming that machines 
can understand, and that when they are developed far enough the whole semantic 
realm will emerge automatically—in other words, by supposing that “the Chinese 
palace”, due to its size, will overcome the limitations of “the Chinese room”. For-
tunately, we need no such assumption to continue our analysis.  

While analyzing the argument of Lucas we should be neutral towards the 
problem of the applicability of the concept of truth to the relations between lin-
guistic objects and machines, both present and future. In the present context, to 
make the Lucas argument as easy-going as possible (and then to demolish it), we 
can assume that the machine either has access to truth or just pretends that it does.  

We can assume that the machine has a green light that lights up only when 
the output expression is “produced as being true”. Rather than truth itself, we 
simply have a green light pretending to correspond to truth. Clearly, rather than 
the suggestive light, we can assume that the output expression is accompanied by 
some other special symbol indicating “truth”. This is done by Penrose (1994), in 
his version of the argument; yet he also begins by saying that the purported ma-
chine “ascertains truths”. Then a little star is used as the “imprimatur” symbol. It 
is enough to use the device for arithmetical formulas. Whatever their truth means 
to us, whatever it may “mean” for a machine, we are left with the problem of 
whether Gödel’s theorem excludes the existence of a machine that lists precisely 
those arithmetical formulas that can be perceived as true by humans.  

We have just shown that in (L2) the reference to truth is not necessary. Later, 
it will be shown that we can allow the anti-mechanist to reformulate the argu-
ment so that the notion of truth is not used at all, but the argument remains bound 
to collapse. 

4.4. Re (L3): The Consistency of a Machine and of a Human Being 

The construction of the Gödelian formula for the relevant theory is the key 
point in Lucas’s argument itself, and in its other variants. If out-Gödeling is not 
carried out as indicated in (L3), reference may be made to a formula expressing 
consistency, or another incompleteness result can be utilized—in particular, Tu-
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ring’s theorem, as, for example, Penrose does. All these approaches are basically 
equivalent.  

It is not hard to see that two facts undermine the philosophical significance of 
Lucas’s argument—though Lucas (1961) hardly showed any awareness of those 
facts, and he also clearly underestimated their impact in later works. The first 
fact is that the method of constructing Gödel’s formula is algorithmic, and thus 
in a broad sense mechanical; the second is that its application depends on the 
consistency of the theory for which the formula is constructed. Leaving the first 
point, the algorithmic nature of out-Gödeling, for later, let us take up the second 
issue. The reasoning performed in step (L3) can be divided into two cases: 

Case I: The theory S is consistent. In that case the Gödelian formula is used 
to out-Gödel the machine M. 
Case II: The theory S is inconsistent. In that case machine M is disqualified 
(as a model of the mind).  

The main difficulty is how to distinguish Case I from Case II. Before consid-
ering this problem, let us note that Case II is not itself as unproblematic as is 
claimed above. 

If a system were to be equivalent to the mind, it would necessarily be con-
sistent, says Lucas. Why? Because we are rational. While we commit mistakes, 
rationality means logic, and this means avoiding contradictions. If we believed in 
two contradictory sentences, we would infer arbitrary statements. This is a way 
to affirm our rationality, but serious doubts remain. After all, we hardly infer an 
arbitrary sentence as a consequence of our beliefs, even though we often happen 
to fall into contradictions: we change opinions, tend to say “yes” and “no” at the 
same time, and find ourselves being reminded by others that we have just said 
something quite the opposite of what we said sometime earlier. What is more, 
although our minds seem very similar to each other, our opinions are often not: 
people with the same degree of rationality, and with similar knowledge, are 
sometimes convinced of the truth of opposing propositions. Clearly, for us—that 
is, for our minds—contradiction does not lead to the acceptance of every sen-
tence. (And there exist logical systems that formalize such situations.) 

Lucas disposes of the problem in two ways. First, jokingly: Humans are in-
consistent? Well, “certainly women are, and politicians” (Lucas, 1961, p. 120). 
Let us keep this opinion in mind. Second, our inconsistencies are temporary, 
because once we learn about them, we correct them. “They correspond to occa-
sional malfunctioning of a machine” (ibidem, p. 121) rather than to a genuine 
inconsistency. We are fallible, but self-correcting. This sounds convincing, but 
the issue does not stop here.  

While we do indeed try to correct mistakes, we may still be fundamentally 
inconsistent. Could not some principles of thought lead to contradictions, just as 
soon as they are used in particularly unfavorable circumstances? How could we 
exclude this prospect? There are examples of contradiction in the thought pro-
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cesses of outstanding thinkers—and not just philosophers: even the greatest 
mathematicians have committed mistakes and created contradictions. What is 
more, according to William Byers (2007), inconsistencies are unavoidable, and 
also fruitful, in mathematics. Even logicians, who are particularly sensitive to the 
danger of contradictions, are not immune. The example of Frege is well known: 
his system of logic turned out to be inconsistent. And the danger has not disap-
peared. One can imagine that a contradiction arose, but mathematics continued to 
function as smoothly as ever, without difficulty, in normal domains and applica-
tions. Actually, precisely this did happen when the set-theoretical paradoxes 
appeared over a hundred years ago.  

Although we cannot exclude a worst-case scenario—in which a contradiction 
arises and nobody knows how to eliminate it—it is beyond doubt that mathemat-
ics must not abandon the struggle for consistency. Consistency, even when we 
cannot be absolutely sure of it, is for mathematics something like a regulative 
idea in Kant’s sense. Consistency in this sense guides all of our intellectual en-
deavors that are subject to the rigors of logic. In some fields, it is possible to 
overcome contradictions by pointing to the metaphorical character of the expres-
sions involved (e.g., “I am myself and I am not myself”). Nevertheless, in the 
realm of natural numbers contradiction proves fatal. 

Lucas, Penrose, and all those who employ Gödel’s theorem to refute mecha-
nism or computationalism, as well as Gödel himself and many others, assume 
that our mind is (i.e. we are) fundamentally consistent—and often, also, that we 
are fundamentally sound. However, it is one thing is to believe this and another 
to know it for sure. The fact is we cannot know such a thing with absolute cer-
tainty. In other words, we cannot demonstrate it in, to use Penrose’s terms, an 
unassailable manner. This makes sense independently of Lucas’s argument. (See 
Section 8.1 below.) 

And what happens, let us ask, if we are not consistent? In that case, one could 
say, everything would be provable. This is, however, unconvincing, writes Wang 
(1974, p. 319). We do not function as a Turing machine, even if, deep down, 
something equivalent to a Turing machine underlies our functioning. Also, we 
are back with the problem of hidden inconsistency here. As with those large 
computer programs that contain bugs but function well in regular applications, 
contradiction, too, can be hidden or indirect and provoke no destructive conse-
quences in normal life. Perhaps, then, we are inconsistent? Maybe we are incon-
sistent machines?  

While the conclusion that we are really, hopelessly inconsistent cannot be ex-
cluded, it is very implausible to many people, including myself. Lucas is right 
that any proper modeling of thinking must contain, in some way, propositional 
calculus and elementary arithmetic, including the belief in the consistency of 
arithmetic. I also agree with Lucas that a serious acceptance of the idea of the 
unavoidable inconsistency of our mind reflects irrational views that make ration-
al polemics with mechanism impossible (Lucas, 1996, p. 121–122). 
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It should not be surprising that we humans are not able to answer all ques-
tions concerning our mind. The statement of consistency has a special status: we 
really do seem to arrive at a positive answer just through contemplating our own 
minds. It is beyond doubt, though, that we can be mistaken. As explained before, 
even the sharpest minds can commit errors. In that case, out-Gödeling leads to 
another inconsistency. In fact, it will be shown below (in Section 5) that every 
procedure similar to out-Gödeling inevitably leads to a contradiction. 

If we assume our fundamental consistency, then either (a) this is not formally 
expressible, or (b) it is, but in that case it is not provable (unless the proof is by 
methods not susceptible to formalization), as will be shown in due course in 
Section 8.1. In the case of (a), we basically assume that the mind is not a ma-
chine, while in that of (b), we do not exclude it being one. If we choose (a), then 
the aim of Lucas and like-minded thinkers—that of demonstrating that humans 
are better than machines—is achieved; however, the argument is circular, and we 
add little to the initial conviction that evidently we are not machines. Much the 
same has been observed by many commentators; for example, in connection with 
the version proposed by Penrose, Minsky says: “In effect, it seems to me, Pen-
rose simply assumes from the start precisely what he purports to prove” (Brock-
man, 1995, p. 256). If, on the other hand, we opt for (b), then the analysis of 
Lucas’s argument must be carried further.  

4.5. Re (L4): How Do We Know the Truth of Gödel’s Sentence? 

Step (L4) consists in the realization that we see the truth of the formula G. Lu-
cas invoked the phrase often exploited by believers in the metaphysical conse-
quences of Gödel’s theorem, asserting that while G is not provable (derivable) in 
the system in question, “we, standing outside the system, can see (it) to be true” 
(Lucas, 1961, p. 113). Some people think we are talking here about truth in 
a special sense. Standing outside a formal system would then correspond to some 
sort of extraordinary fact: one that mysteriously enables us to grasp unusual 
truths. These truths must be atypical, they would seem to think, if they cannot be 
proven even within a very strong system S. Our power to “see truth” thus ac-
quires a quasi-mystical character. This, I believe, is a major source—possibly the 
main source—of the attractiveness of Lucas-style arguments. Yet the position is 
surely misguided. The sheer fact of being “outside the system” affords us no 
mysterious advantage, even though global properties of formal systems do exist. 
The truth of G is not specific; G is true in a normal mathematical sense, much as 
the statement that a given equation has no solutions is true.  

Rather than explicating these points in more detail,4 let us observe that even 
if the theory is consistent, we may be unable to know this. The problem, thus, is 
to determine the truth of ConsS. Even when the output S of the machine that 
Lucas’s argument is aimed at dealing with is consistent, we can lack sufficient 

 
4 This is done in (Krajewski, 2003) and, e.g., (Franzen, 2005). 
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grounds to know this. To ascertain the consistency of a theory can be very diffi-
cult. For instance, take Quine’s set theory NF. We do not know whether it is 
consistent; therefore, we cannot tell if the arithmetical sentence ConsNF is true. 
No amount of “standing outside”, of following the course of the proof of Gödel’s 
theorem, of thinking at different levels at the same time, can help here. Even 
though the formula ConsNF is arithmetical, its truth is difficult to settle, because it 
codes a property involving the whole of the theory. 

In regard to (L4), we have noted that the truth of G for Sar is a consequence of 
our assumption concerning consistency—rather than of some unusual insight. 
The problem of the truth of Gödel’s formula (as distinct from the unquestionable 
truth of Gödel’s theorem) boils down to the question of whether we know that 
the theory for which the Gödelian construction is made is consistent. We need to 
k n o w  that the machine M, or theory S, is consistent. Still, even if it is, says 
Putnam, we can be unaware of this reality.  

We turn now to the two most fundamental and decisive ways of criticizing 
Lucas’s argument: first, that it is impossible to determine in general terms pre-
cisely when Case I or Case II applies, and second, that the trick utilized by Lucas 
can also be carried out by some machines themselves.  

4.6. The “Dialectical” Character of Out-Gödeling 

In a relatively recent paper, Lucas deploys an argument against the claim that 
in order to know that the Gödelian formula is true one must know the consisten-
cy of the corresponding theory. He states that “Putnam’s objection fails on ac-
count of the dialectical nature of the Gödelian argument” (Lucas, 1996, p. 117). 
This is his favorite argument, traceable right back to his original 1961 paper and 
stressed as the central point in Lucas (1968), which is an answer to his critics—
in particular Benacerraf (1967). The point is that his argument is not a normal 
argument demonstrating a thesis, but is instead a “dialectical”, or conditional, 
argument: if somebody claims that a machine is equivalent to the human mind, 
then it is shown to him that he falls into a contradiction.  

Let us accept the dialectical character, in this sense, of the argument. In fact, 
the points (L1) to (L4) are consistent with this interpretation. Why, however, 
should it be the case that it overcomes Putnam’s criticism that we may be unable 
to know that the relevant theory is consistent, even if it is? 

In the argument conceived as a game, the opponent—let us call him or her “the 
mechanist”—indicates some machine (cf. L2) as being equivalent to the human 
mind (in the realm of arithmetic), and Lucas responds by pointing to the appropri-
ate Gödelian formula (cf. L3 and L4). In the game, the consistency of the pro-
posed machine should be granted: “The consistency of the machine is established 
not by the mathematical ability of the mind but on the word of the mechanist” 
(Lucas, 1996, p. 117). Thus the mechanist is only required to present consistent 
machines M (i.e. those machines for which the corresponding theory S is con-
sistent). Yet can we really impose such a requirement?  
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One major problem with doing so stems from the fact that there is no deci-
sion procedure for determining consistency. Therefore, it is not only difficult on 
a practical level, but also theoretically impossible to have an algorithm that al-
ways correctly decides whether (the set of arithmetical sentences produced by) 
a given machine is consistent. To be more precise, if M1, M2, …, Mn, … is an 
effective listing of all Turing machines, then the set C, C = {n: Mn is consistent} 
of all indices of consistent machines is not recursive. Moreover, 

Fact: C is not recursively enumerable. 

A proof of the Fact can be based on Gödel’s Theorem. If C were to be r.e., 
then so would be the set D = {Gn: n ∈ C} of all Gödelian formulas for consistent 
theories T(Mn) corresponding to machines Mn. But then, for some k, we would 
have D = T(Mk). D consists of true sentences, so it is consistent, which means 
that k ∈ C. Given the definition of D, Gk is in D, and so in T(Mk), which contra-
dicts Gödel’s Theorem. The argument based on the above Fact was first used in 
the context of Lucas-style reasoning in Wang (1974), before being further 
strengthened in Bowie (1982) and Krajewski (2003). To require the mechanist to 
present only consistent machines means that we assume he or she has “superhu-
man” capabilities—or, at least, non-mechanical capabilities. This would mean 
that in order to prove the non-mechanical character of the mind, we would have 
to assume that the human mind is non-mechanical: an obviously circular way of 
thinking!  

Lucas tries to defend himself by saying that what is needed is not the full 
power to determine consistency, but only the ability to do so in some circum-
stances: namely, when one is seriously presenting a machine as a model of the 
mind. Such a machine would need an appropriate recommendation, and that 
would include a certificate of consistency. However, the problem remains: the 
opponent must have access to a recommending authority that can—correctly!—
determine consistency. The circularity remains: if out-Gödeling assumes that 
human beings are somehow in the position of being able to decide about a non-
recursive property, the conclusion that they are in some sense better than ma-
chines is immediate, but it remains an assumption. In reply, Lucas (1996, p. 118; 
cf. also 1968) proposed an additional trick, which was to ask the mechanist an 
insidious question: Would the machine proposed by him ascertain as true its own 
Gödelian sentence? If he or she answers “Yes”, the machine is inconsistent, so it 
cannot be equivalent to the mind. If the answer is “No”, the machine is con-
sistent, and then it can be out-Gödeled by the mind. 

Yet the above trick does not do the job—for several reasons. First, because 
again we need to assume that the mechanist knows whether or not the machine 
really proves the appropriate Gödelian sentence, or whether or not it is consistent, 
which brings us back to the previously mentioned problem of circularity, the 
assumption of the non-mechanical character of the opponent. Second, the trick is 
dubious because Lucas himself can be asked precisely the same question. Would 
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he be able to prove his own Gödelian formula, or, in other words, determine his 
own consistency? We are back with the problem discussed above. Maybe he 
cannot prove his own consistency, but does this say anything significant about 
him? Third, and this is the most fundamental issue, the trick can also be executed 
by a machine. To ask the right question (this being that of whether GS is provable 
in the theory S corresponding to the machine M), and respond as explained above 
(if “Yes”, then S is inconsistent, if “No”, then GS is unprovable and true), is algo-
rithmic, completely mechanical! It requires no special capabilities, and can be 
executed by a suitably defined machine. This observation lands one of the most 
serious blows against every version of the Lucas-style argument. 

4.7. The Algorithmic Character of Lucas’s Argument 

To produce the Gödelian formula, no insight into the nature of the theory is 
needed; it is enough to execute a certain algorithm, and Lucas’s argument can 
therefore be performed by a machine. The dialectical character of the argument 
does not help. The effective nature of Gödel’s construction was clear to its inven-
tor. Judson Webb even claimed that the mechanization of the diagonalization can 
be considered the essence of Gödel’s work (Webb, 1980, p. 151). I am not sure 
who first exploited that fact in connection with Lucas. Among early mentions are 
Irving Good (1967, p. 144), and Paul Benacerraf, who wrote that even if a Göde-
lian weak spot can be found in every machine, “it is conceivable that a machine 
could do that as well” (Benacerraf, 1967, p. 22). 

Based on this observation, Webb (1980) built an elaborate defense of mecha-
nism. In fact, the matter is more general than just the problem of analyzing Gö-
del’s work. This “is the basic dilemma confronting anti-mechanism: just when 
the constructions used in its arguments become effective enough to be sure of”, 
then, thanks to Church’s Thesis saying that the humanly effective is recursive, 
“a machine can simulate them” (Webb, 1980, p. 232). Post made that observation 
in 1924, before Gödel began his research. If we can be “completely conscious” 
of something, he wrote, it can be mechanized. He called this principle the “Axi-
om of Reducibility for Finite Operations” (Davis, 1965, p. 424), and it can be 
seen as an early version of Church’s Thesis.  

The algorithmic nature of the procedure consisting in the reference to the 
Gödelian formula is not preserved in the unlimited iteration of the procedure. 
The mechanist can always add the appropriate Gödelian sentence to the (theory 
corresponding to the) machine, and Lucas can always apply his procedure to the 
extended machine. Therefore it would seem natural to add at once all subsequent 
Gödelian sentences; but then Lucas would apply the procedure again to the ma-
chine extended by all those sentences. And so on. Transfinite processes arise 
naturally. The situation was analyzed, independently of the issue of mechanism, 
by Turing (1939), and then by Feferman (1962).5 It turns out that while all Π1 

 
5 A review is offered in (Feferman, 1988), and another in (Franzen, 2004a). 
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sentences are eventually decided, the result depends on the way transfinite ordi-
nal numbers are presented. For Good (1969), this means that the point is not 
Gödel’s theorem, but transfinite counting. This argument was employed also in 
Hofstadter (1979). According to the latter, the problem for Lucas results from the 
Church-Kleene theorem stating that there exists no recursive method to describe 
constructive ordinal numbers (corresponding to recursive well-orderings). There-
fore, “no algorithmic method can tell how to apply the method of Gödel to all 
possible kinds of formal systems […] any human being simply will reach the 
limits of his own ability to Gödelize at some point” (Hofstadter, 1979, p. 476).6 
The transfinite iteration of the addition of Gödel’s sentence, or stronger reflec-
tion principles, provides an intricate extension of the picture of incompleteness. 
Yet, says Shapiro, who considered the issue in (1998) and (2016), it is of no help 
in the debate about mechanism: “What we do not get, so far as I can see, is any 
support for a mechanist thesis, nor do we get any support for a Lucas-Penrose-
Gödel anti-mechanist perspective” (Shapiro, 2016, p. 200). 

Whatever is done in regard to the out-Gödeling is done according to a simple 
algorithm, and therefore is mechanical. And our attitude towards Church’s Thesis 
is irrelevant as long as the machine, or rather its code, or, equivalently, its num-
ber in the accepted listing of all Turing machines, is known. (Usually, effective 
listings make the number directly dependent on the machine’s specification and 
program.) This algorithm can be presented in technical detail, as is done by 
Webb (1980, p. 230). Moreover, the recursive function that generates “Achilles 
heels” of recursive functions can, with no problem, be applied to itself—that is, 
to its own number, resulting in its own “Achilles heel”.  

The Lucas argument against mechanism appears weak as soon as it becomes 
clear that it is itself mechanical. To counter that, Lucas attempts to distinguish 
two senses of the Gödelian argument: first, when we know an exact specification 
of the argument so that it can be carried out by a machine, and second, “a certain 
style of arguing, similar to Gödel’s original argument in inspiration, but not 
completely or precisely specified, and therefore not capable of being pro-
grammed into a machine, though capable of being understood and applied by an 
intelligent mind” (Lucas, 1996, p. 113). Even so, I do not think that out-Gödeling 
involves any informal move; to use Gödel’s theorem is to make a definite math-
ematical step. And again, if the informal, unspecified arguing is not algorithmic, 
then Lucas has assumed the non-recursive capabilities of the human mind—
which is just what he was supposed to demonstrate. If, on the other hand, the 
argument is algorithmic, he stands refuted, as we will see in a moment. As 
a matter of fact, differentiation between the strict and the loose senses of out-
Gödeling is rejected, due to the Theorem in Section 5.2, which applies to both 
the strict and the other senses, as long as the looser one does not beg the question 
by assuming the non-recursive capabilities of the mind.  

 
6 Hofstadter seems to have been unaware of the problem we have with establishing 

consistency. Therefore his analysis is not cogent.  
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Lucas admits that “an air of paradox remains” (Lucas, 1996, p. 114). A co-
gent, unformalizable argument, then? No, says Lucas: we are not talking about 
“absolutely unformalizable” arguments. Yet something must remain unformal-
ized—for example, the use of the rules of inference. This is undoubtedly true, but 
the same can be said about machines: in computers, some rules are simply con-
tained in the processors. Second, continues Lucas (1996, p. 117), the range of 
possible applications of his argument remains informal. He does not elaborate, 
but the remark misses the point in our context. We have considered all possible 
Turing machines, and they all are listed in a recursive sequence. The appropriate 
Gödelian formula depends only on the place in the sequence occupied by the 
machine in question. To out-Gödel, one must know that place, or the code, the 
program of the machine. However, it is fair to ask whether to know the machine 
means to know its code. This is highly improbable, even if many idealizations 
are made. Lucas rejects the issue, saying that we can know the code in principle. 
Well, then, this will be assumed in Section 5 below, where every Lucas-style 
argument is shown to involve a contradiction. 

Putnam believed that in order “to simulate mathematicians who sometimes 
change their minds about what they have proved, we would need a program 
which is also allowed to change its mind”. While there are such programs, he 
writes, “they are not of the kind to which Gödel’s Theorem applies” (Putnam, 
1995, p. 373).  

Meanwhile, Benacerraf (1967) presents a precise version of the Lucas argu-
ment in order to show that we cannot exclude our mind being a machine, where 
we nevertheless do not know which one. I shall skip over that analysis, as the 
general anti-Lucasian argument of Section 5 cuts deeper. 

In fact, what has been said so far does not exclude the possibility that our 
mind is a machine, but we do not know which one. This is the first of the two 
basic lines of attack against Lucas that were mentioned by Burgess (see Section 
3.2). Gödel alluded to such possibilities in (1951)—which, of course, is not to 
say that he actually believed in their truth. Benacerraf’s analysis seems to be 
a commentary on that remark by Gödel.  

The second line of attack mentioned by Burgess is that it is not excluded that 
we are inconsistent machines. This was expressed by Putnam and by Benacerraf; 
the first mention is also in Gödel (1951). It turns out that it is Lucas himself who 
is inconsistent—see the next section. And it also transpires that Penrose is “un-
sound”—see Section 6.  

5. Lucas’s Inconsistency 

To make the analysis as general as possible, we will first consider the as-
sumptions made by Lucas, or, more generally, by the anti-mechanist (Mr. A), in 
order to out-Gödel his opponent, the mechanist. Four possibly weak conditions 
will be formulated that seem necessary for the application of some variant of the 
Lucas-style procedure, and it will then be proved that those general conditions 
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are sufficient to defeat Mr. A by showing his inconsistency. (Of course, the claim 
is not that the mechanist is right, but only that he cannot be out-Gödeled.) The 
Inconsistency Theorem also applies to all reasonable modifications of the out-
Gödeling procedure.  

5.1. The Necessary Conditions for Out-Gödeling  

Let us imagine a “dialectical” procedure, this being the most convenient one 
for Mr. A: he responds to every machine proposed by the opponent. What ma-
chines are admissible? All are, but in order to make Mr. A’s life easier we assume 
that nobody will come up with machines that are not equivalent to Turing ma-
chines. In addition, we assume that the opponent must be able know the code of 
the machine and at least the number (in some fixed listing of Turing machines) 
of the Turing machine equivalent to the proposed one—either equivalent to it in 
general terms or, as a minimum, equivalent to it in the realm of the arithmetic of 
natural numbers. This is a limitation on the mechanist, because it excludes the 
possibility of the machine being a huge box, a network of unknown computers, 
or a fat volume containing the program. Otherwise we would paralyze Mr. A. 
The excluded cases amount to a reproach along the lines of “You are a machine, 
but you don’t know which one”. So, to avoid the paralysis we assume the follow-
ing condition:  

Condition 1. Each machine proposed by the mechanist is equivalent to a Tu-
ring machine, and it is possible to exhibit one such machine. 

We assume that each proposed machine can “prove” some statements in the 
language of arithmetic. The nature of this “proof” is not essential, nor is its con-
nection to real proofs; it may be either the result of understanding or just 
a thoughtless calculation. Some arithmetical statements are considered “proven” 
by the machine. Say, a green light goes on, as in Section 4.3. We may not limit in 
advance the set of admissible Turing machines that can be proposed by the 
mechanist. We have to assume that Mr. A must respond to each consistent ma-
chine—that is, the machine whose arithmetical output (the set of “proven” 
statements) is consistent. What happens when an inconsistent machine is pro-
posed is irrelevant: Mr. A either responds or disregards it. Inconsistency, accord-
ing to Lucas and all who adopt his approach, makes the machine unsuitable as 
a model of our mind’s capacity—and, certainly, of his own mind, as he assumes 
his consistency as obvious. In other words, that response is needed in relation to 
Case I from Section 4.4; in Case II, meanwhile, anything is allowed. Thus we 
assume: 

Condition 2.  The anti-mechanist must respond to every (arithmetically) con-
sistent machine. 
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The response to the supposition that the proposed machine is equivalent to 
the human mind, at least in the realm of arithmetic, must consist in the presenta-
tion of an arithmetical statement that is not “provable” by the machine. Normally, 
we would assume that the presented statement must be true. This is how Lucas’s 
procedure, or any similar procedure based on Gödel’s theorem, works. Let us, 
however, be much more charitable to Mr. A and demand nothing as regards the 
truth of the statement. He may present a false statement as long as inconsistency 
is avoided. This is conceivable. After all, we can’t assume that true sentences are 
known to us as being true. The Gödel-Rosser theorem gives examples of inde-
pendent sentences, each of which could be chosen. The liberalized demand re-
garding the response of Mr. A makes his life much easier; in particular, he can 
ignore problems with equivocation, with establishing the truth of Gödel’s formu-
la, and all the problems concerning the relation of the theory to metatheory that 
usually appear in discussions of Gödel’s construction. For Lucas, it was essential 
that we could “see” the truth of G (Lucas, 1996, p. 103). While his approach is 
allowed by our conditions, we permit many more responses, since we do not 
require any use or mention of the notion of truth. The sentence presented as the 
response to the machine need not be provable in any system. Therefore, we ig-
nore the problem of whether the construction of the Gödelian formula from the 
code of the machine is practical, and also whether Mr. A must be a logician. Our 
condition is minimal: 

Condition 3. The anti-mechanist’s response to an (arithmetically) consistent ma-
chine consists in presenting a statement that is not “provable” by the machine. 

For procedures closer to the original out-Gödeling, we could assume that the 
statement given in response is—as with Gödelian formulas—not derivable using 
the usual logic from the sentences “provable” by the machine, or even from those 
sentences together with basic arithmetic.  

There is, however, one important limitation that we must impose on Mr. A: 
namely, that his response must not be arbitrary; it has to be systematic, which 
here means effective. Moreover, we adopt Church’s Thesis, and assume that the 
procedure underlying the response must be recursive. Otherwise, we would be 
allowing a non-mechanical, because non-recursive, procedure, which would 
mean that Mr. A has non-mechanical powers. This would be exactly the thesis he 
wants to demonstrate, and such circularity is clearly unacceptable. A random 
response is not acceptable, because we would not know how to make sure that 
the proposed sentence is not “provable” by the machine. It must also be assumed 
that the response is fully determined and not dependent on additional external 
circumstances. For example, if Mr. A could demand that his opponent propose 
only consistent machines—as Lucas himself has proposed in some later publica-
tions—we would again fall into the trap of assuming non-mechanical human 
powers—this time those of the mechanist; this follows from the fact that the set 
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of consistent machines is a non-recursive subset of all machines (cf. the Fact, in 
Section 4.6). In order to avoid circularity, we assume:  

Condition 4. The response to the machine is effectively determined in advance. 

The requirement of effectiveness must refer to the number (code) of the ap-
propriate Turing machine, in accordance with Condition 1, because it is unclear 
what could be used if a machine were to be proposed empirically. Thus, first the 
number of the Turing machine must be found in an effective way, and then 
a predetermined response can be given, depending solely on this number. 

Let me remark that some people have been dissatisfied with the last condition. 
If we believe that qua humans we are non-mechanical, they say, why should we 
assume that an effectively determined answer is given? In response to this, it is 
important to realize that Lucas, Penrose and all who have used the Gödel-based 
anti-mechanist argument always refer to some form of Gödel’s theorem. Their 
answer is effective, known in advance, expressed as a recursive function of the 
number (code) of the machine. So Condition 4 fits their strategy. In addition, we 
allow other strategies as long as they are predetermined and effective. If we 
dropped this requirement, we would be allowing Mr. A to use his alleged non-
mechanical powers, and the whole argument would be superfluous. Therefore, 
Condition 4 is justified. Together with the other conditions, it turns out, it implies 
the inconsistency of the anti-mechanist. 

5.2. The Theorem Concerning Lucas’s Inconsistency  

The above conditions can be translated into the terms of mathematical logic. 
We may assume that all Turing machines are listed in an effective way: M1, 
M2, …, Mn, … Let us further assume that a Lucas-style method is given—that is 
to say, a method showing the non-mechanical character of the human mind in 
a way that satisfies Conditions 1 through 4. As explained above, we are dealing 
with a “dialectical” procedure, and due to Condition 1, we can assume that when 
applied to the n-th Turing machine Mn it shows that the mind is not equivalent to 
Mn. This means we have a function F such that for each n, its value, F(n), is 
sufficient to demonstrate that the mind is not equivalent to Mn. More specifically, 
in accordance with Condition 3, F(n) is an arithmetical formula not “provable” 
by Mn. Using “S(Mn)” to denote the set of sentences “provable” by Mn, we get: 
F(n)∉S(Mn). This is assumed for n’s with consistent S(Mn) (briefly, when ma-
chine Mn is consistent), because to such machines Mr. A must respond. This is 
exactly what is stated by Condition 3.  

While the scheme is similar to the use of Gödel’s theorem, many aspects of 
Gödel’s formula are ignored. Nothing is assumed about the complexity of F(n), 
and no understanding of the formula is required, on whatever level this might be. 
As was mentioned before, we do not require that F(n) be true, even though its 
truth is essential to Lucas’s original argument, as is the demonstrability of the 
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Gödelian formula in a stronger theory. In the present framework, false F(n)’s are 
allowed, which admits many more out-Gödeling procedures. The only assump-
tion is that F(n) is not in S(Mn), if the latter set is consistent. This is a modest 
requirement of non-equivalence for the mind and the given machine.  

Now we have to decide to what machines the generalization of the out-
Gödeling procedure must be applied. The natural stipulation, that it be applicable 
to all consistent machines, must not be weakened, because no consistent machine 
may be a priori excluded as a simulation of the mind.7 No restriction on the 
formula F(n) is imposed for inconsistent Mn. The only limitation is global. As 
was shown before, consistency is a non-recursive condition—in other words, the 
set of consistent machines is not decidable: C = {n: S(Mn) is a consistent theory} 
is non-recursive.  

This means that we may not assume that F is defined only on C. Were we to 
do so, we would be assuming Mr. A’s power to flawlessly decide whether n be-
longs to C or not, which would mean his non-mechanical competence—which is 
precisely the thesis he wants to demonstrate using the hypothetical procedure F. 
Circularity must be avoided. Fortunately, we do not need to decide in advance 
what the domain of F is. The only assumption needed to satisfy Condition 2 is 
that F be a partial function defined at least for consistent machines: C ⊆ dom(F). 

As explained above, the most important assumption, that of the effectiveness 
of any hypothetical out-Gödeling procedure, is necessary to avoid circularity, or 
the assumption that at the very beginning Mr. A’s mind is non-mechanical. This 
means that we assume that F is a partial recursive function, which obviously 
satisfies Condition 4 if Church’s Thesis is accepted. If not, then some effective 
methods could exist that are not captured by recursive functions.  

To sum up, what we must do here is deal with every function F defined for 
some natural numbers (considered as indices of Turing machines listed in some 
recursive way) with values that are (Gödel numbers of) arithmetical formulas, so 
that: 

(i) F is partial recursive 
(ii) C ⊆ dom(F), 
(iii) For each n ∈ C:  F(n)∉S(Mn). 

These assumptions are very weak, but sufficient to prove the following unex-
pected theorem: 

The Inconsistency Theorem. Under the above assumptions, the set of values of 
F is inconsistent. 

 
7 The situation differs in Penrose’s argument; see below, Section 6. 
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P r o o f :  Assume that the set of F ’s values, A = {F(n): n ∈ dom(F )}, is consistent. 
It is recursively enumerable, due to (i), so it can be enumerated by a Turing ma-
chine. We may assume that for some k, A = S(Mk). By assumption, A is con-
sistent, so k ∈ C, and due to (ii), F(k) is defined. By (iii), F(k) ∉ S(Mk); that is, 
F(k) ∉ A, which contradicts the definition of A. The contradiction shows that A is 
inconsistent. 

The above theorem is a far-reaching strengthening of the observation that 
C is non-recursive, and that there is therefore no effective way to distinguish 
between Case I and Case II in the Lucas procedure. This observation was made 
in Wang (1974, p. 317), while the set of Gödelian formulas for theories S(Mn) 
was considered in Webb (1980). Then, Bowie (1982) showed that an analysis of 
the set was enough to demonstrate that Lucas was inconsistent. The generaliza-
tion to include other possible Lucas-style procedures was mentioned in Krajew-
ski (1983), and the general sufficient conditions (i), (ii), (iii) were formulated in 
(Krajewski, 1988; 1993). 

Some further features of the above proof are worth mentioning:  
a) The proof shows that even the most sophisticated possible modifications of 

the “out-Gödeling” procedure, including those that would not use Gödel’s theo-
rem but another, perhaps still unknown independence result, all fall into the trap 
of global inconsistency. The latter is global, because while the set A is incon-
sistent, we cannot necessarily tell which of its finite subsets is. Moreover, the 
global inconsistency implies that some F(n)’s are false. This by itself need not be 
fatal in a general case, in contrast to the cases where Gödelian formulas them-
selves are used. In those cases, a single false response entails contradiction: 
when F(n) is the Gödel formula for some n ∉ C, a specific contradiction is im-
plied; that is to say, the false Gödel formula—let us now call it “Gn”—is prova-
ble (precisely because it says it isn’t); thus, there exists a formal proof for it in 
the theory T(Mn). If k codes this proof, then the arithmetical statement “the num-
ber k is the proof of Gn in T(Mn)” has only restricted quantifiers and is true. It is 
provable in basic arithmetic, so T(Mn)├ Prf(S(k), ⸢φ⸣⸢Gn⸣), and this contradicts the 
provability of Gn, as on account of the definition of Gn, T(Mn)├ ¬(∃x) Prf(x,⸢Gn⸣). 

b) The assumption (ii) does not exclude a priori the equality of C and dom(F), 
or that F is defined just for n ∈ C. That this is impossible, since C is not recursive, 
and not even recursively enumerable, must be demonstrated independently (as 
was done above, in Section 4.6).  

c) It is worth mentioning that in Condition 1, the phrase “one such machine” 
cannot be replaced by, for example, the first such machine (in the given listing). 
If this were to be required, we would fall into a subtle trap. The function m(n) = 
min {k: S(Mk) = S(Mn)} is not recursive. Hence, requesting the first appropriate 
Turing machine would amount to assuming in advance a non-mechanical power 
with respect to the mechanist.  

d) One could conceivably question assumption (ii), the global applicability of 
the hypothetical procedure. Its dialectical character would then mean that a re-
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sponse is required only in the few cases where the mechanist really proposes 
a machine M. In that case, we would not consider an arbitrary procedure satisfy-
ing general conditions; we should restrict our attention to the original out-
Gödeling, as advocated by Lucas—that is, the Gödelian formula as the response. 
Then, as mentioned in a) above, offering even one Gödelian formula in response 
to an inconsistent machine implies inconsistency.  

e) Instead of assumption (iii), we could require something stronger, S(Mn) 
non├ F(n), as I did in my early papers on the subject. This is in fact satisfied by 
the original out-Gödeling in which the Gödelian formula is given in response.  

The Inconsistency Theorem is so general that we can be sure that not only 
Lucas, but everyone attempting some systematic version of out-Gödeling, neces-
sarily falls into a contradiction. It is ironic that someone who is otherwise con-
sistent (or, to put it more precisely, for whom the set of arithmetical statements 
they are ready to accept is consistent) automatically becomes inconsistent as 
soon as they decide to adopt some Lucas-style procedure. Hence, it seems to 
have been demonstrated—leaving aside questions about the consistency of wom-
en and politicians—that the class of inconsistent humans encompasses at the 
very least the philosophers who believe in the Gödel-based proof of their superi-
ority over machines.  

5.3. Possible Relations between the Mind and Machines: Robot Luke  

While the anti-mechanist cannot prove his point by some sort of out-
Gödeling, he can still be right. And he can still attempt out-Gödeling. Let us see 
what possible relations between the mind and machines are not excluded by the 
previous considerations, and how they could arise. Actually, all the possibilities 
were mentioned or alluded to by Gödel, especially in the remark quoted below in 
Section 7. Later, they were described by Putnam, Benacerraf, and others.  

If the mind is not mechanical, which is the thesis that was obvious to every-
one only a few decades ago and is still believed by most of us—and not just by 
Lucas, Penrose and of course Gödel—then, if faced with a machine (claimed to 
be equivalent to the mind), the mind either cannot find its number (Gödel, Put-
nam, Benacerraf) or it can, and in this case would present the machine’s Gödeli-
an formula. The formula will either be true and will serve as an example of the 
difference between the mind and that machine (Lucas), or it will be false, which 
would be the case if the machine was inconsistent but we were unable to know 
this (Putnam). 

If the mind is mechanical or computational, and is equivalent to a machine M, 
then either it is (arithmetically) consistent or it is not so. If not, then our mind is 
an inconsistent machine, and the presentation of the Gödel formula as true only 
confirms our inconsistency. If M is consistent, then we cannot find its number, or 
code, or program. This was admitted as a possibility by Gödel, and then by Be-
nacerraf, Putnam and, for example, Kripke, who said that there is nothing para-
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doxical about the impossibility of finding the program of M, because if it was 
found we would be able to distinguish “what I can really prove (absolutely) from 
what I merely think I can prove” (Chihara, 1972, p. 524). If, however, the num-
ber of M could be found, we would not be able to prove that the Gödelian formu-
la is true. We couldn’t exclude its falsity. The only situation excluded by Gödel’s 
theorem is this: our mind is equivalent to a consistent machine, and we can prove 
the (Gödelian) formula expressing that consistency. 

To put it even more informally, either (a) the mind is not a machine, and there 
are no Gödelian limitations on it, or (b) the mind is a machine and is inconsistent, 
and then no limitation based on Gödel’s theorem applies, or (c) the mind is 
a machine and is consistent, and it cannot then prove the Gödelian formula for 
the machine—that is to say, for itself. This description is close to Gödel’s Dis-
junction (see Section 7). 

Assuming that a machine equivalent to the mind is possible, how can it come 
into being? To manufacture it, a laboratory unimaginably better than anything 
that is now available would be needed. There is another possibility, however: 
evolution. It was shown by von Neumann that a machine can replicate itself or 
produce a more complicated machine. He proposed that we imagine some evolu-
tion caused by natural selection (Von Neumann, 1966, Part II, Point 1.8; see also 
Smart, 1959; Anderson, 1964, p. 104). Random mutations could also take place. 
Scriven suggested imagining representatives of a robot civilization from another 
planet.8 Rudy Rucker develops more fully fantasies about a civilization of robots 
on the Moon (Rucker, 1982, p. 181). Such a civilization could be initiated by us, 
humans, and then undergo a Darwinian evolution. Let us imagine that after many 
generations a robot is born—call him Luke—whose mathematical capabilities 
are exactly equivalent to those of Lucas. What would then happen?  

First of all, we would not know the number of the machine on the list of all 
Turing machines. We would have no doubt that it is a Turing machine, but even 
if we could meet it, or even talk with it, we would not be able to analyze its pro-
gram and make it transparent to us. No description would be available, as it 
would be too intricate—even if its distant ancestor had been fully described and 
given a specific number on the list of machines. Second, there would be no way 
to detect the equivalence of Luke with Lucas. A hypothetical super-mind could 
do that, if it could analyze and understand human mathematical powers, but the 
super-mind would not be able to demonstrate the equivalence in a way compre-
hensible to Lucas or the robot. Third, it would not be excluded that both Lucas 
and Luke are inconsistent, even if they do their best to fix any malfunctioning. 

Now if Lucas really wanted to overcome each contradiction, he ought, in 
view of the Inconsistency Theorem and its consequences, to abandon any attempt 
to out-Gödel Luke. Maybe Lucas would still want to maintain that if Luke is 
consistent, then the Gödelian formula for Luke, which exists somewhere out 
there in the wide world, is true. However, Lucas would not be able to establish 

 
8 This appears in a text from 1953; see (Anderson, 1964, p. 38). 
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the consistency of Luke. Actually, Luke could say exactly the same: if he, Luke, 
is consistent, his Gödelian formula is true. What is more, Luke could say the 
same about Lucas! And there is little doubt that Luke would be tempted to try to 
out-Gödel Lucas. He would be convinced that he is better than Lucas and any 
human mind. Only it is rather unclear what Luke would say about the incon-
sistency of female robots and lunar robot politicians. 

6. Penrose’s “Unsoundness” 

Roger Penrose, in books (1989; 1994) and articles (notably 1996),9 has pro-
posed a new version of the Lucas argument. The point remains the same, even if 
he is speaking about the non-algorithmic, rather than the non-mechanical, char-
acter of our mind or thinking, and even if he uses Turing’s theorem on the unde-
cidability of the halting problem rather than Gödel’s theorem. Penrose is a well-
known mathematician and theoretical physicist who writes with ease; he has 
presented his version of out-Gödeling in a more comprehensive way than Lucas, 
and has done so in part as entertaining literature. Both the attractive form of his 
writing and his scientific authority have made many readers think that a new 
kind of conclusion has been drawn from the incompleteness theorems. 

Penrose attacks both AI and the idea that the mind cannot be grasped scientif-
ically. According to him, conscious processes are different from what goes on in 
computers. Consciousness does not, however, go beyond the laws of physics—
though it may go beyond the physical laws known to us. His speculations on the 
role of quantum effects and microtubules have met with criticism. Whatever one 
may think about it, the logical part of Penrose’s argument calls for analysis as 
much as that constructed by Lucas. On it rests everything else, so if it is wrong, 
everything else becomes doubtful, independently of direct criticism of the physi-
cal and biological aspects.  

6.1. Penrose’s Argument 

The logical ingredient of Penrose’s work is a variant of the Lucas argument. He 
commits some mathematical errors: for example by presenting the Gödel sentence 
as if it were meant to express ω-consistency. Even so, if the ω-consistency schema 
is expressed as a single sentence, it is Π3 rather than Π1, and 1-consistency can be 
expressed as a Π2 sentence. Responding to the criticism in Feferman (1995), 
Penrose not only agrees, but admits that the introduction of “Ω(F )” was “essen-
tially a red herring. In fact, the presentation in Shadows would have been useful-
ly simplified if ω-consistency had not even been mentioned” (Penrose, 1996, 
paragraph 2.2). Feferman lists more errors in the field of mathematical logic: the 

 
9 This is an online article that gives a long and detailed reply to important criticisms 

put forward by David Chalmers, Solomon Feferman, Daryl McCullogh, Drew McDermott, 
and others in the same issue of PSYCHE. 
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lack of any distinction between the full soundness of a theory (1994, pp. 90–92) 
and the soundness for Π1 sentences (1994, pp. 74–75); the substitution of the 
cases where consistency is needed with those needing ω-consistency; stating 
a false theorem that for every system F, its consistency implies the consistency 
of F + ConsF (1994, p. 108), and other inaccuracies.10 Other errors are made in 
references to the literature of the subject, and in historical comments. It is hard 
not to ask the question whether the lack of competence demonstrated makes the 
whole argument of negligible significance. Well, I do not think so, because all 
those mistakes can be corrected, and the basic point remains—says Penrose: 
there is no reason to give up. 

His first book, The Emperor’s New Mind (1989), is less logically advanced, 
and contains none of the logic-related errors mentioned above. It reads very well, 
but fails for reasons mentioned earlier here in the analysis of Lucas’s argument in 
Sections 4 and 5: the out-Gödeling procedure is algorithmic, and it depends on 
the consistency of the relevant theory. The way out would be to assume the con-
sistency or a non-algorithmic insight, but that would amount to a circularity in 
reasoning. Interestingly, Penrose mentions the idea of “natural selection of algo-
rithms”, but rejects it because of the practical improbability of such evolution, as 
“the slightest ‘mutation’ of an algorithm […] would tend to render it totally use-
less” (Penrose, 1989, p. 415). Granted, but what we are dealing with is logical 
possibility rather than practical probability. 

In Shadows of the Mind (1994), Penrose reasserted all his opinions, and gave 
a comprehensive reply to the critics of his first book. “I believe that my form of 
presentation is better able to withstand the different criticisms that have been 
raised against the Lucas argument, and to show up their various inadequacies” 
(p. 49). In one of his papers (1996), Penrose attempts to defend himself against 
the next wave of criticism. Generally speaking, he is more cautious in his later 
writings than at the beginning. His aim is to give “a very clear-cut argument for 
a non-computational ingredient in our conscious thinking” (ibid.). 

Penrose takes into consideration the main aspects of the criticisms of the Lu-
cas argument and the statements made by Gödel himself—especially Gödel’s 
Disjunction (see Section 7), according to which we cannot rule out our being 
a machine. If we were, we would be able neither to ascertain the fact nor to de-
tect the consistency of the machine. Schematically, assuming that a machine, 
algorithm or formal theory T is equivalent to the human mind as far as mathe-
matical thinking is concerned, there are three possible cases, I, II, and III, as 
follows: 

  

 
10 See (Feferman, 1995, Part 3). Only for 1-consistent theory F does its consistency 

guarantee the consistency of F + ConsF. 
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I. T is knowable,11 and its equivalence to the mind is knowable. 
II. T is knowable, but the equivalence is not.  
III. T is not knowable. 

We can say that III refers to Luke on the moon, and II to Luke carefully ana-
lyzed in a human laboratory. Both options are rejected (1994, Chapter 3), and 
Penrose claims that we are left with case I, the situation of complete knowledge. 
After an investigation of possible errors or contradictions, he rejects the cases in 
which T is unsound, and then is able, invoking Gödel’s Theorem, to conclude 
that there exists no “knowably sound” system equivalent to the mind (in the 
realm of Π1 sentences). Now, this conclusion seems justified. No knowable sys-
tem—that is, no such system transparent to us and demonstrably consistent—can 
be equivalent to us. And since Penrose believes himself to have rejected II and 
III, he can claim that there exists no T. 

Penrose works under more or less the same assumptions as Lucas, and it 
would seem that the Inconsistency Theorem applies to Penrose as well as to 
Lucas: after all, he does seem to accept Conditions 1 through 4 (of Section 5.1). 
However, in the course of his reasoning, Penrose argues that he would have to 
respond only to semantically adequate machines. This means that assumption (ii) 
of the Inconsistency Theorem, the requirement to respond to each consistent 
machine, is too strong. That is why a new version of the theorem is needed. 

6.2. The Theorem Concerning Unsoundness  

Let us assume that we have to deal with Lucas-style procedures that are to be 
applied to semantically adequate, or sound, machines or theories. To recall, an 
arithmetical theory is sound if all its theorems are true under the standard inter-
pretation in the natural numbers. This is a condition of semantic adequacy. 
A Turing machine will be called sound if its arithmetical output is sound. Let us 
put S = {n: S(Mn) is a sound theory}. 

Obviously, S ⊆ C. If we suppose, after Penrose, that Mr. A must only respond 
to sound machines, we arrive at the following assumptions:  

(i)    F is partially recursive, 
(ii’)  S ⊆ dom(F), 
(iii’) For each n ∈ S: F(n) ∉ S(Mn). 

 
11 Cf. (Penrose, 1994, pp. 130–131). I put “knowable” where the original has “con-

sciously knowable” for brevity, and also because it is not clear what unconscious 
knowledge could mean. 
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These assumptions12 are even weaker than before, but they suffice to prove 
a theorem with a somewhat weaker but similarly unexpected and equally devas-
tating thesis:  

The Unsoundness Theorem. Under the above assumptions, the set of values of 
F is unsound. 

P r o o f :  Assume that the set of F’s values, A = {F(n): n ∈ dom(F)}, is sound. It 
is recursively enumerable, due to (i), so it can be enumerated by a Turing ma-
chine. We may assume that for some k, A = S(Mk). A is sound by assumption, so 
k ∈ S, and due to (ii’), F(k) is defined. By (iii’), F(k) ∉ S(Mk), that is, F(k) ∉ A, 
which contradicts the definition of A. The contradiction shows that A is unsound. 

The set A can be a priori consistent even if, being unsound, it contains a false 
sentence. The unsoundness is sufficient to defeat Penrose’s claims, because it 
means that using his method, or any similar one, he is unsound, as he must ac-
cept a false arithmetical statement. His belief in the demonstration of the non-
algorithmic character of the mind was based on the conviction that the methods 
used by him and other mathematicians are fundamentally adequate. Ultimately, 
no false statement is accepted, he maintains. This belief, coupled with out-
Gödeling, results in something that is in contradiction with this very belief. The 
answer to the question “Do mathematicians unwittingly use an unsound algo-
rithm?” that serves as the title of Section 3.4 in (Penrose, 1994) seems to be 
“Sometimes yes; for example, Penrose himself”.  

Thus, as soon as Penrose applies some Gödel-based method of refuting 
mechanism and algorithmism, he in fact contradicts his belief in the adequacy of 
the methods of proof he is ready to admit. Having shown his “unsoundness” we 
could stop here, but let us examine in more detail how the rejection of II and III 
goes, and why Putnam reproached Penrose for having ignored a possible Case IV.  

6.3. The Missed Case, and How to Save Penrose 

As has been stated above, the thesis that “we do not ascertain mathematical 
truth by means of knowably sound” (Penrose, 1994, p. 86) and, let us add, know-
able, algorithms is justified, but it is still not excluded that there is a program that 
does what we do, but where we are not aware of this equivalence because of the 
program’s complication and lack of transparency. Think of Luke.  

Next, Penrose maintains that if we used an unsound rule that could produce 
a false theorem, then this would be fundamentally dubious, since we believe in 
our soundness. This takes care of Case I.  

Penrose assumes that the system underlying our mathematical understanding 
“is supposed to be simple enough that we are able, at least in principle, to appre-
ciate it in a perfectly conscious way” (Penrose, 1994, p. 132). Here, according to 

 
12 In (Krajewski, 2003), a slightly stronger assumption (iii’) is adopted: S(Mn) non├ F(n). 
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Putnam, Penrose commits the same mistake as Lucas. Before explaining why, let 
us see how this assumption is used to eliminate Case II. The point here is that 
this case is said to be very implausible because, first, the algorithm T must be 
correctable, and therefore sound (1994, Point 3.4), and, second, if the axioms and 
rules are knowably sound, then all theorems are seen as true, including the Göde-
lian formula, which is not possible. It must be admitted, however, that Penrose is 
careful not to say too much; he admits, quoting a remark made by Gödel, that 
there is “no clear way of ruling out Case II on rigorous logical grounds alone” 
(1994, p. 133). Penrose also rejects Case III, the unknowable T equivalent to the 
mind. The main reason is that AI works with knowable programs and, in addition, 
that Case III would reduce to II or I anyway (1994, p. 144.). This is unsatisfacto-
ry, as what is at stake here is the theoretical possibility, and not the practical 
implementations, of AI. The most important element lacking in Penrose’s con-
siderations—to come back to Putnam’s point—is the lack of awareness that there 
might be a program that cannot be understood by us. This would be Case IV. 
Imagine Luke’s program being investigated by human computer scientists. They 
would never be able to tell what the program does. Actually, this lack of certainty 
is routine with respect to real-life large programs, which comprise numerous 
separate subprograms, as well as bugs. 

It is worth indicating more explicitly how Case IV can arise. After all, Cases I 
to III seem to encompass all contingencies. To simplify the formulation as much 
as possible, let us see what can happen: I. T is known and we know T ≡ mind; II. 
T is known and we do not know T ≡ mind; III. T is not known. Indeed, nothing 
else is possible. However, the lacuna emerges when we note that in II it is tacitly 
assumed that if T is known, then T must be fully graspable. But no: we can, in 
fact, be faced with a complete description of a program and still have no idea 
what it does. If it is not “perspicuous” enough, we may be unable to say anything 
plausible about its consistency. This makes for Case IV.  

According to Putnam, Penrose, who indirectly admits the possibility of Case 
IV,13 is wrong in claiming that it reduces to Case III. In Penrose’s book, Case III 
applies when we have no knowledge of the program. Therefore, “to reject the 
possibility that such a formal system might simulate the output of an idealized 
mathematician (as involving something ‘somewhat miraculous’ or ‘essentially 
dubious’) is to give no argument at all” (Putnam, 1995, p. 372). Putnam con-
cludes that despite the book’s strong points, he “regards its appearance as a sad 
episode in our current intellectual life”. 

Despite all the criticisms, Penrose maintains that his argument works. He 
tries to overcome the objections in two ways. One is to limit the possibilities of 
doing mathematics to familiar ways, while the other is to refer to the so-called 

 
13 In a letter to the New York Times of January 15th, 1995, which is a response to the 

review of Penrose (1994) by Putnam (New York Times Book Review of November 20th, 
1994), on which (1995) is based. 



 ON THE ANTI-MECHANIST ARGUMENTS… 41 
 

“new argument”—considered below, in Section 6.4. For now, let us consider the 
former, which reveals whence Penrose’s conviction comes.14 

In his first book, Penrose takes into account the hypothesis (first formulated 
by Gödel, though Penrose was clearly unaware of that) that our mathematical 
capabilities are equivalent to an algorithm that is “so complicated or obscure that 
its very validity can never be known to us”. Penrose’s reply is that “this flies in 
the face of what mathematics is all about!” (1989, p. 418). This naïve response 
comes easily if one makes the assumption, as Penrose does, that the putative 
algorithm is the one actually used by mathematicians. Then we may refer to the 
fact that mathematics is built from “simple and obvious ingredients”. What is 
disregarded is any possibility of a h i d d e n  algorithm. We are not talking about 
algorithms taught or acquired at universities, but about, say, the program of Luke.  

The existence of Luke, or another complex, intractable formal system equiva-
lent to the human mind, cannot be disproved. On the other hand, from a mathe-
matician’s—as opposed to a logician’s—standpoint the considerations offered by 
Penrose seem convincing. The reason, mentioned in his first book as a remark on 
“what mathematics is all about”, was actually expressed by him during the dis-
cussion at a conference in Kraków in May 2010. It is that he seems to believe 
that a mathematical theory of a very different character than the ones we know 
would be “essentially dubious”, and the emergence of Luke’s mathematical pow-
er would be too “miraculous” to really take it into account. This is a perfectly 
natural attitude for a mathematician, even if it looks somewhat naïve from the 
logician’s—and perhaps also the computer scientist’s—perspective. The re-
striction of the range of theories to the “natural” ones does offer a way to over-
come the controversy between Penrose and, to use Putnam’s phrase again, “the 
logical community” (Putnam, 1995, p. 370). 

As long as we view mathematical theories, or algorithms, as fundamentally 
similar to what we know as mathematics, we tend to assume that all the theories 
that are encompassing our knowledge of the natural numbers must, in principle, 
be based on a series of transparent basic truths (axioms) and be developed due to 
the applications of known, correct logical rules. If so, every such theory, if pre-
sented to us, must be fully understood, or at least understandable. And this full 
understanding implies our knowledge of its consistency and, presumably, also 
soundness. Therefore, out-Gödeling is, indeed, possible. 

Thus the “natural” view of the nature of mathematics—which Penrose seems 
to consider the only admissible one—can serve as an assumption that implies 
anti-computationalism when added to Gödel’s results. This is by no means 
a great discovery. Even so, when one is aware of it and, in addition, of Gödel’s 
Unknowability Thesis (see below, Section 8.1), many of the disputes about out-
Gödeling become understandable as being based essentially on misunderstanding.  

 

 
14 This section is based on (Krajewski, 2015). 
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6.4. The “New” Argument  

In Chalmers (1995), David Chalmers wrote that a “novel” argument was pro-
posed, or rather “deeply buried”, in Chapter 3 of Penrose’s second book. Penrose 
(1996) welcomed this unexpected praise with obvious pleasure. While he ex-
pressed disappointment that the point was taken note of by almost nobody, and in 
particular was missed by Putnam, Penrose’s words suggest that the new argu-
ment was not really even noted by the author himself! 

This “new” argument is supposed to demonstrate that mathematicians cannot 
consistently believe (know) that their capabilities are algorithmically describable, 
or even that the set of humanly provable Π1-sentences is recursively enumerable. 
In other words, what Penrose really wants us to believe is a thesis stronger than 
the one he argued for in his book: namely, that “Human mathematicians are not 
using a knowably sound algorithm in order to ascertain mathematical truth” 
(1994, p. 76). Later (in Sections 3.16 and 3.23 of [Penrose, 1994], and more 
explicitly in Section 3 of [Penrose, 1996]) he dropped the adverb “knowably” in 
order to claim that “Human mathematicians are not using a sound algorithm in 
order to ascertain mathematical truth; and, obviously, they cannot use an un-
sound one”. Criticisms of this argument in (Chalmers, 1995; Lindström, 2001; 
2006; Shapiro, 2003), and the writings of others, have not prevented Penrose 
from defending it (as he did in [Penrose, 1996] and, for example, at the 2006 
Gödel Centenary Conference in Vienna, as reported in [Feferman, 2007], or in 
[Penrose, 2011].) 

The novelty is that the argument does not depend on the claim that we are 
able to see that T is sound. Rather, the soundness of T is derived. That is to say, if 
we know that the mind is equivalent to T—in short, “the mind ≡ T”—and that 
the mind is sound (that is, proves only true statements), where this is something 
that is supposedly obvious to all of us and was taken for granted by Gödel and 
Penrose, then we can conclude that T is sound. That, according to Chalmers 
(1995, paragraph 3.2),15 means the argument goes as follows: 

(1) it is known that the mind ≡ T, 
(2) it is known that the mind is sound, 
(3) so T is sound; 
(4) hence T’ = (T + “the mind ≡ T”) is sound, 
(5) whence Cons(T ’) is true, but T’ does not prove that (by Gödel’s Theorem); 
(6) we know that Cons(T’) is true, 
(7) a contradiction, because if we know that the mind ≡ T then T proves 

Cons(T’). 

 
15 Chalmers “decodes” the reasoning from a dialogue in (Penrose, 1994, 3.23). Here, 

I further simplify its formulation. 
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Having accepted the above proof of contradiction, how can we conclude that 
there exists no T equivalent to the mind? To reject (1) is not enough, as it only 
says that while we do not know the equivalence, it can in fact be true. “This is 
still a strong conclusion”, says Chalmers (1995, paragraph 3.3), “threatening to 
the prospects of AI”. Well, but rather than reject (1), we could reject (6): that is, 
we could admit that we do not know that the consistency statement is true. 
Moreover, we could reject (2). In fact, as Chalmers himself wrote, the assump-
tion (2) by itself leads to contradiction: if we know—unassailably—that we are 
consistent, we get a contradiction very similar to the way in which it can be ar-
gued that our consistency is not provable (see below, Section 8.1). Chalmers 
(1995, paragraph 3.14) concludes that “perhaps we are sound, but we cannot 
know unassailably that we are sound”.  

Penrose (1996, paragraph 3.4) replies that it is enough to replace (1) with 
a weaker assumption, the mind ≡ T. He also claims that the contradiction pointed 
out by Chalmers would be avoided if we took into account only the arithmetical 
Π1 sentences. Penrose is, however, wrong. The argument sketched above can be 
further simplified even if the weaker assumption is also considered.  

(1’) the mind ≡ T; (This is the weaker assumption postulated by Penrose.) 

Let us define A as the set of all humanly provable arithmetical Π1 sentences. By 
(1’) A is recursively enumerable, since it consists of the sentences provable by T.  

(1) we know that the mind ≡ T; (The previous assumption.) 

If (1), then we know that A consists of Π1 sentences that are accessible to the 
mind—i.e. unassailably provable.16 Further, we put 

(2) we know that the mind is sound (at least for Π1 sentences); 
(2’) we know that T is sound in the sense that A consists of true sentences; 

(G) as stated by Gödel’s theorem, the Gödelian formula for a consistent 
(a fortiori, sound) r.e. set of arithmetical sentences, is Π1, true, and outside the 
set. 

C l a i m :  Whether we assume (1), (2), (G) or (1’), (2’), (G), we get a contradiction. 

P r o o f :  By (1’) A is r.e., and by (2’) A is sound. Due to (G) the Gödelian formula 
G is well defined and outside A. We know, however—because we know Gödel’s 
proof—that G is a true Π1 sentence. The mind has demonstrated it, so G is in A, 

 
16 If ¬(1) and (1’), then A is equal to the set of provable sentences but possibly we do 

not know it. 
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a contradiction. If (1) and (2) are assumed, we have the weaker (1’) too, and we get 
(2’), so we can refer to the previous case.  

To avoid the contradiction resulting from (1’) ∧ (2’), we can either reject (1’), 
as Penrose originally wanted, or, going against him, reject (2’)—that is, assume 
our lack of knowledge concerning the soundness of T. The contradiction does not 
follow so simply from (1’) ∧ (2). This analysis fits Putnam’s criticism. Assuming 
that (1) ∧ (2) corresponds to Case I (presented above, in Sections 6.1–6.3), the 
assumption (1’) ∧ (2’) corresponds to Case II as it was understood by Penrose. 
And further, the apparently safer assumption (1’) ∧ (2) corresponds to Case IV; 
it does not involve (2’), our understanding of the algorithm T.  

While (1’) ∧ (2) seems safer, we should remember Chalmers’s warning, go-
ing back to Gödel himself, that (2) itself is problematic, independently of any 
assumptions concerning T, and independently even of the very existence of T. 
This will be our next topic—see Section 8.1.  

7. Gödel’s Disjunction 

In 1951, in his Gibbs Lecture entitled “Some Basic Theorems on the Founda-
tions of Mathematics and their Implications”, Gödel presented the philosophical 
consequences of his incompleteness theorem, including the problem of mecha-
nism. He believed that over the previous twenty years the philosophical implica-
tions of his results had not been understood deeply enough. Since then, his views 
have been in the process of being disseminated, very slowly, amongst wider 
professional circles. That progress has been due mostly to the efforts of Wang, 
Putnam and Benacerraf, and ultimately to Feferman and other editors of his col-
lected works, with his lecture from 1951 being eventually published in 1995. As 
of now, his views are well-known, but it is still worth summarizing them. 

Gödel firmly believed that the mind is not a machine, and he wanted to sup-
port this thesis using his formal results. He came to the conclusion, however, that 
his theorem alone was insufficient for this purpose. The theorem allows a weaker 
thesis to be demonstrated—what is known as “Gödel’s disjunction”. When one 
tries to understand Gödel’s views, it is essential to remember that he was certain 
that we are fundamentally consistent. What is more, he believed that we prove 
objectively true theorems, at least at times. He distinguished objective from sub-
jectively human mathematics. Proper mathematics in the objective sense consists 
of all (objectively) true propositions; in the subjective sense it is comprised of all 
demonstrable propositions, or propositions provable by humans by whatever 
methods. This is the distinction between, so to say, mathematics in itself and 
mathematics for us. It is conceivable that the mathematics accessible to humans, 
not only at a given moment but also potentially, forms just a fragment of the 
absolute, objective mathematics. 

According to Gödel, his theorem implies that mathematics in the objective 
sense cannot be determined by a well-defined (recursive) system of axioms, which 
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means that it cannot be produced by a Turing machine. And yet it is not excluded 
that mathematics in the subjective sense could be. In that case, everything that 
can be proved by humans could be produced by a “finite rule”—that is, by 
a Turing machine. “However, if such a rule exists, we with our human under-
standing could certainly never know it to be such”. Also, “we could never know 
with mathematical certainty that all propositions it produces are correct” (Gödel, 
1995, p. 309). To put it in other terms, the human mind, at least in the realm of 
mathematics, would be “equivalent to a finite machine that, however, is unable to 
understand completely its own functioning” (p. 310). Here, “understanding” 
means, in particular, the ability to “see” or detect consistency. Gödel later told 
Wang that one cannot exclude the existence of a machine with powers equivalent 
to our intuition, and, as quoted in Section 3.2, that such a machine could “even 
be empirically discoverable” (Wang, 1996, p. 184). This is the source of all later 
speculations about robot mathematicians, including our friend Luke. Thus, either 
there exists no Luke, or it (he? she?) can exist, and this produces a Diophantine 
problem absolutely unsolvable (by us). This is the sense of Gödel’s famous Dis-
junctive Conclusion, a statement that seems to him to be “of great philosophical 
interest”. To quote: 

Either mathematics is incompletable in this sense, that its evident axioms can never 
be comprised in a finite rule, that is to say, the human mind (even within the realm 
of pure mathematics) infinitely surpasses the powers of any finite machine, or else 
there exist absolutely unsolvable diophantine problems. (Gödel, 1995, p. 310) 

Here, “absolutely” means “by any mathematical proof the human mind can 
conceive”. Gödel described a simpler formulation of the disjunction to Wang: 
“Either subjective mathematics surpasses the capability of all computers, or else 
objective mathematics surpasses subjective mathematics, or both alternatives 
may be true” (1996, p. 186, quotation 6.1.4). 

The last clause reveals that the thesis is meant as a non-exclusive disjunction. 
However, Gödel did not believe that both are true. He—independently of his 
theorem—was deeply convinced that the second clause is false, meaning that 
there is, to use Hilbert’s dictum, no ignorabimus in mathematics, and that the 
first clause holds, meaning that the mind goes beyond the mechanical, the algo-
rithmic, and indeed the material. He wanted to establish this claim no less pas-
sionately than Lucas, Penrose and many others amongst us. He did not, however, 
want to accept logically flawed arguments.  

In the present paper, the phrase “we know that…” has been treated until now 
in an informal way. The development of epistemic arithmetic—that is, formal-
ized arithmetic extended by the addition of a predicate K, where K(x) means 
“x is known”—was initiated by William Reinhardt (1986), and further examined 
by Shapiro and others, especially Peter Koellner. This last, in (2016) and the 
accompanying papers (2018a; 2018b), showed that in a natural epistemic arith-
metic Gödel’s disjunction is provable. Furthermore, using such a framework he 
demonstrated that strict counterparts of Penrose’s and Lucas’s arguments fail, as 
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does Penrose’s “new” argument. An earlier classic argument in this style is pre-
sented below, in Section 8.1. 

8. On What Does Follow from Gödel’s Theorem 

There are various philosophical consequences of Gödel’s incompleteness re-
sults and the technique utilized in their proofs: for example, the creative role of 
formalization and the equally unexpected—before Gödel—power of elementary 
arithmetic. Here it seems appropriate only to consider the consequences directly 
related to anti-mechanist arguments.  

8.1. A Warranted Conclusion: Our Consistency is Not Provable 

Gödel’s Second Theorem implies that we cannot unassailably prove our con-
sistency. That is to say, whatever the mind is, if we could establish our consisten-
cy in a completely precise, undeniable way, more geometrico, the proof would be 
formalizable; this means that it could be simulated on an appropriate machine 
containing a part of our abilities, i.e. the part that was used in the proof. Such 
a machine, being weaker than the mind, would be able to prove its own con-
sistency. According to Gödel’s results, it would be inconsistent. If it, or rather the 
formal system corresponding to it, were inconsistent, a larger system—that cor-
responding to the whole mind, even if not formal—would also be inconsistent. 
Thus, if we assume the strict provability of our consistency, we arrive at the 
provability of our inconsistency. This argument ad absurdum proves a philosoph-
ical thesis. It is that even if we are consistent, we cannot prove this in a precise 
mathematical way! 

The first person to realize this curious limitation was Gödel himself.17 Later, 
many philosophers repeated the thesis in one way or another, not always with 
a full awareness of the history of this statement. I think it deserves a name, such 
as “Gödel’s Thesis of the Undemonstrability of our Consistency”, or, more suc-
cinctly, “Gödel’s Unknowability Thesis” (it being assumed that what is meant 
here is knowability achievable through rigorous, mathematical-like demonstra-
tion). 

Gödel’s Unknowability Thesis. We cannot unassailably demonstrate our own 
consistency (let alone soundness).  
(NB: Our consistency/soundness is assumed here.) 

 
17 Even though the thesis was not stated explicitly in (Gödel, 1951), it is certain that 

the idea comes from him. Cf., however, a fragment in (Gödel, 1995, p. 309), and the notes 
made by Wang (1974, p. 319) after conversations with him. The thesis is stated in (Wang, 
1974, p. 324), and later on in (Wang, 1993, p. 119). 
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So, one can only conclude that we feel we are consistent, but cannot prove it. 
Of course, the thesis is not as simple as it looks. As Wang noted, in (1974), it is 
even unclear whether it is possible to formulate the statement “I am consistent” 
in terms suited to a mathematical-like demonstration. Shapiro (1998) and Fefer-
man (2007), meanwhile, point to other assumptions needed to make the above 
sketch work. Things become clearer and stricter when we operate within a more 
formal framework. In that case, another, more abstract version of the thesis is 
possible, modeled on the proof of Gödel’s second theorem from Löb’s derivabil-
ity conditions. Within the framework of the debate about out-Gödeling and, more 
specifically, Penrose’s new argument, this version was invoked by Chalmers 
(1995, Section 3). Let knowability be denoted by “B(.)”, and unconditional (and 
unassailable) provability (which, of course, implies knowability) by “├ ”. The 
difference between the two is that whereas knowability is something potential, 
“├ ” means something stronger—namely, that we actually have a proof. Now, 
assuming three natural conditions, one can directly derive inconsistency and 
knowledge of inconsistency.  

The Abstract Form of the Unknowability Thesis. Assuming ├ Cons, which 
means, to be specific, ├ ¬B(⸢0 = 1⸣), and the conditions 

(1) if ├ φ then ├ B(⸢φ ⸣), 
(2) ├ B(⸢φ⸣) ∧ B(⸢φ → ψ ⸣) → B(⸢ψ ⸣),  
(3) ├ B(⸢φ⸣) → B(⸢B(⸢φ⸣)⸣),  

one can derive ├ Inconsistency. 

P r o o f  s k e t c h :  Using the diagonal lemma, one can construct Gödel’s sentence 
G (equivalent to ¬B(⸢G⸣)), and then, from (1), (2) and (3), derive ├ (Cons → G). 
From ├ Cons it follows that ├ G, so, by (1), ├ B(⸢G⸣), but at the same time, by 
construction, ├ ¬B(⸢G⸣). 

Thus, if we can prove our consistency we are forced to believe a direct con-
tradiction! Many considerations, including also those made by or in relation to 
Lucas or Penrose, become more transparent once the above thesis is clearly 
grasped. That is to say, there is a major point of confusion, often encountered in 
connection with out-Gödeling arguments, that reflects a lack of awareness of it. 
Hence, the contradiction derived from (Gödel’s theorem and) the existence of 
a machine/program equivalent to the mind is interpreted as furnishing a refuta-
tion of the possibility of the existence of such a machine, while the contradiction 
can already follow from the very assumption that we (unassailably) know our 
consistency. 

In addition to Gödel’s results, at least two assumptions that are not self-
evident are used in the above reasoning. First, that every exact proof of our con-
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sistency can be formalized, and second, that it is possible to express “our con-
sistency”. The first point results from a general principle: complete precision 
means formalizability. This principle cannot be irrefutably proved, but it makes 
sense as it is related to Church’s Thesis, and because the thesis is so well ground-
ed the principle seems difficult to refute. If this is accepted, one could question 
the second point: it is not clear at all how one can express “our consistency”. 
Basically, there are two options for doing so: either (i) by the common sense 
statement “I am consistent”, or (ii) by a formal counterpart to this statement. Let 
us consider them in turn.  

In (i), we refer to a common sense statement that has no connection to formal 
considerations. Wang reflected on just this statement (1974, pp. 317–320),18 and 
believed it not provable. The justification for this stance is independent of the 
reasoning presented above; instead, a more general reason is given: we do not 
know how to make formal derivations that would lead to a statement about “us”. 
If the statement “I am consistent” were provable, it would represent provability 
in a non-formal sense. If that were possible, it would mean that we are not ma-
chines, or that we are not even equivalent to machines in the realm of proof-
generating reasoning. We certainly may believe that, but it is no more than 
a general feeling.  

In (ii), we consider the formal counterpart to a loose statement expressing 
consistency; the counterpart cannot be about “me” or “us”, but must rather con-
cern a theory S that corresponds to my (or our) mathematical abilities. In that 
case, we are dealing with a formula that is a formal expression of, say, “Sar is 
consistent”. The reasoning in question demonstrates that the formula is not prov-
able if S is consistent (that is, I am). It is, however, rather doubtful if a sentence 
of the type ConsS is a proper rendering of the statement “I am consistent”. The 
usual meaning of the statement refers to the will to avoid contradictions, the 
reliability of our vision of the world, and the claim that the methods used by 
mathematicians are unfailing. The sentence Cons, or any other similar arithmeti-
cal formula, is rather far from those ideas. Thus, while something is strictly 
proved, it is unclear to what extent the conclusion conveys our consistency.  

8.2. We Cannot Define the Natural Numbers 

The point is that we cannot define numbers. The concept of natural numbers 
seems perfectly natural. When we consider only the successor function, which 
seems to define the numbers, the resulting theory is complete and decidable. 
Adding addition does not change the situation, as was shown by Presburger 
(1929). Introducing multiplication changes everything, as we have known since 
Gödel (1931): the resulting theory is incomplete, as are its recursive extensions. 
They are also undecidable. This is surprising—even, I guess, for those who have 
been used to the fact and know how to prove it. This phenomenon deserves to be 

 
18 The sentence “I am consistent” is denoted there by “A”.  
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called “mathematical emergence” (Krajewski, 2012a). As soon as we have both 
addition and multiplication, the natural numbers turn out to be extremely com-
plicated. They seem simple, but their structure is objectively complex. At the 
same time, it seems that we know what numbers are, and that we should be able 
to define them. The Peano axioms constituted such an attempt but, as we have 
seen thanks to Gödel, they are not exhaustive. Second-order axioms give a com-
plete theory, but their foundation, the concept of a set of natural numbers, is not 
completely defined, so the incompleteness reemerges. This means that our axi-
oms define numbers only when taken together with some background knowledge 
or apparatus that makes possible our intuitive grasp of numbers. We all seem to 
develop this intuition at some point, if we have normal intellectual capacities. 
Whatever mechanism is responsible for this development—and we should not 
pretend that we know it—we can conclude that a complete description of this 
intuition is impossible. If so, no computer can be taught our concept of a number.  

This conclusion is striking, and can be seen as actually another variant of the 
position defended by Lucas and Penrose. It essentially says that we are better 
than any machine. If so, we should beware: there must be present here the same 
subtlety that plagues the arguments of Lucas and Penrose: namely, that the inde-
scribability of the concept of natural numbers means there is no complete de-
scription k n o w n  t o  u s . However, this does not exclude the possibility of 
a full recursive description of our concept of a number—that is, to use Gödel’s 
term, of subjective arithmetic. This description can be buried in the program of 
Luke, but we would not be able to formulate it. If presented with the program, 
we would not know that it does the job, and we would not be able to show that it 
defines a consistent concept, let alone a sound one. All the limitations treated in 
the previous sections apply here, as well. Still, the fact that we cannot give 
a definition of the natural numbers as we understand them is of interest. I suspect 
that this fact encompasses most of the attractive aspects of Gödel’s discoveries 
so vigorously defended by adherents of the Gödel-based argument for human 
superiority over machines/programs/robots. 

Because no algorithm that we can produce can be known to include our un-
derstanding of numbers, we can be sure that creativity is necessary in arithmetic. 
On the other hand, this conclusion seems certain independently of Gödel, was 
obvious in the past, and remains convincing to everyone—apart, that is, from 
some of those who have become believers in the full success of the AI program.  

8.3. The Doubtful Impact of the Gödel-Based Anti-Mechanist Argument  

Our attitude toward the arguments of Lucas, Penrose, and others is shaped 
mostly by our general vision of machines and minds, where this in turn must 
adjust to civilizational changes. For the youth of today, if I may judge from lis-
tening to my students, our computerized world makes it easier to accept the idea 
that anything is mechanizable—including the mind. Now, if the basic assump-
tions are more important than proofs—which is typically the case where philo-
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sophical views are concerned, anyway—it should be expected that the anti-Lucas 
argument presented here will hardly convince anyone. Moreover, when pointing 
out contradiction or circularity in Lucas-style arguments, I am not claiming that 
a proof can be offered—either of the thesis concerning the mechanical character 
of the mind, or of its contradictory. Generally, I share the opinions of Penrose 
about the need for intuition and insight in mathematics, and in thinking overall. 
Nevertheless, I believe that Gödel’s results furnish only limited support—though 
they certainly do offer some: they eliminate the naïve belief in a system of math-
ematics or an algorithm that is all-encompassing, created by us, and fully under-
stood up to and including the insight of it being contradiction-free.  

One can doubt the value of the whole anti-mechanist endeavor by noting that 
no mathematical result can decide a philosophical issue. Shapiro expresses the 
concerns of many when he states that the problems with the alleged refutations 
of the mechanist thesis lie “in the idealizations we need in order to make sense of 
the issues and then apply the incompleteness theorem” (Shapiro, 2016, p. 189). 
A major problem is caused by the circumstance that the set of knowable, unas-
sailably provable arithmetical sentences seems to have no sharp boundaries. The 
notion of ideal (available in principle) human (arithmetical) abilities has no clear 
meaning. Even if we assume, as with machines, the presence of unlimited 
lifespans, energy and memory, and an absence of mistakes—ideas that are very 
strange when applied to humans—this is not enough: we need to consider arith-
metical sentences that have “an adequate backing”, and this is a vague concept; 
in addition, it seems that we have no adequate backing for the claim that the set 
of sentences that have an adequate backing is consistent (Shapiro, 2016, p. 199). 
Further problems with the idealization of the human mind are indicated in Koell-
ner (2018b, Section 5). For example, in science, idealizations involve attributing 
to some parameters an extreme value, which is often zero; when we consider the 
“idealized” mind, this is hardly the case. In what principled sense can humans, 
even on an idealized construal, perform calculations longer than the number of 
particles in the known physical universe? Such arguments lead Koellner to 
a disjunctive conclusion:  

Either the statements that “the mind can be mechanized” and “there are absolutely 
undecidable statements” are indefinite (as the philosophical critique maintains) or 
they are definite and […] are about as good examples of “absolutely undecidable” 
propositions as one might find. (2018b, p. 477) 

The vagueness of the concepts used in the Lucas-Penrose arguments is a rea-
son to question the whole procedure of demonstrating the superiority of the mind 
over machines. Still, it makes sense to assume an interpretation that is charitable 
(to the proponents of the arguments): that is, to accept the possibility of proce-
dures of the kind deployed by Lucas and Penrose. And the present paper then 
provides a refutation of these procedures, due to the inevitable inconsistency or 
unsoundness produced by that very reliance on them. 
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The Lucas-style or Penrose-style argument does not seem to have converted 
anyone. Those who believe in the fundamentally non-mechanical or non-
algorithmic nature of the mind may be glad to witness a mathematical proof of 
their belief, but such proof will not convince those who posit that a machine can 
be equivalent to our mind. If pressed, Lucas would, I imagine, say the following: 
“If I were a machine, then, I am sure, the sentence Cons made for me would be 
true. Whence do I know that? Because I know I am consistent. How do I know? 
I just know; I feel it. How can the consistency be proved? Well, I feel it; so I am 
not a machine after all!” Circularity is unavoidable. And, on the other hand, if 
someone believes that deep down we are complicated machines of some sort, 
then—even granting the consistency—it is not surprising that we may be unable 
to prove this consistency. After all, we are not an omniscient machine! As should 
be clear from the preceding sections, a subtle algorithm, such as Luke’s program, 
is not logically impossible. Indeed, much the same position has been expressed 
by Feferman when he writes that 

Even though I am convinced of the extreme implausibility of a computational 
model of the mind, Penrose’s Gödelian argument does nothing for me personally 
to bolster that point of view, and I suspect the same will be in general true of read-
ers with similar convictions. On the other hand, I’m sure that those whose sympa-
thies lie in the direction of the computational model of mind will find reasons to 
dismiss the Gödelian argument quickly. (Feferman, 1995, Part 1.2) 
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Introduction 

“To Turing” is flanked by parentheses in the title, as the philosophical chal-
lenge issued by Gödel’s mathematical results, the incompleteness theorems, was 
not only a challenge to Turing but also to Gödel himself; it certainly should be 
taken up by us. At issue is the question whether there is a rigorous argument 
from these results to the claim that machines can never replace mathematicians 
or, more generally, that the human mind infinitely surpasses any finite machine. 
Gödel made the former claim already in 1939; the latter assertion was central in 
his Gibbs Lecture of 1951. In his note of 1972, Gödel tried to argue for that as-
sertion with greater emphasis on subtle aspects of mathematical experience in set 
theory. He explored, in particular, the possibility of a humanly effective, but non-
mechanical process for presenting a sequence of ever-stronger axioms of infinity.  

To understand the claims in their broad intellectual context, one is almost 
forced to review the emergence of a rigorous notion of computability in the early 
part of the twentieth century. Gödel’s role in that emergence is “dichotomous”, as 
John Dawson noted in his lecture (2006). There are crucial impulses, like the 
definition of general recursive functions in the 1934 Princeton Lectures. This 
definition was the starting point for Kleene’s work in recursion theory and served 
as the rigorous mathematical notion in Church’s first published formulation of 
his “thesis” in (1935). However, there is neither a systematic body of recursion 
theoretic work nor an isolated central theorem that is associated with Gödel’s 
name. The reason for that is clear: Gödel was not interested in developing the 
theory, but rather in securing its conceptual foundation. He needed such a foun-
dation for two central and related purposes, namely, (i) to formulate the incom-
pleteness theorems in mathematical generality for all formal theories (containing 
arithmetic) and (ii) to articulate and sharpen philosophical consequences of the 
undecidability and incompleteness results.  

The philosophical consequences, as I indicated, are concerned with the 
claimed superiority of the human mind over machines in mathematics. This takes 
for granted that a convincing solution to the issue indicated under (i) has been 
found and that such a solution involves suitably characterized machines. The first 
two parts of this essay, entitled Primitive & General Recursions and Finite Ma-
chines & Computors, present the general foundational context. It is only then 
that the central philosophical issue is addressed in the third part, Beyond Mecha-
nisms & Discipline. Gödel’s and Turing’s views on mind are usually seen in 
sharp opposition to each other. Indeed, Gödel himself claimed to have found 
a “philosophical error in Turing’s work”; his argument for such an error rests on 
the (incorrect) assumption that Turing tried to establish in (1936) that mental 
procedures do not go beyond mechanical ones. If one focuses on the real chal-
lenge presented by the incompleteness theorems, then one finds that Gödel and 
Turing pursue parallel approaches with complementary programmatic goals, but 
dramatically different methodological perspectives. Concrete work to elucidate the 
situation is suggested in the last part of the essay, Finding Proofs (With Ingenuity). 
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I. Primitive & General Recursions 

It was of course Kronecker who articulated in the 1870s forcefully the re-
quirement that mathematical objects should be finitely presented, that mathemat-
ical notions should be decidable, and that the values of functions should be cal-
culable in finitely many steps. And it was of course Dedekind who formulated in 
his essay Was sind und was sollen die Zahlen? the general schema of primitive 
recursion. At the turn from the nineteenth to the twentieth century, Hilbert trans-
ferred Kronecker’s normative requirements from mathematics to the frameworks 
in which mathematical considerations were to be presented, i.e., to axiomatic 
theories. This shift was accompanied by a methodologically sound call for proofs 
to establish the theories as consistent.3 A syntactic and, in Hilbert’s view, first 
“direct” consistency proof was given in his (1905) for a purely equational theory. 
The approach was criticized fairly by Poincaré and, for a long time, not pursued 
further by Hilbert. Only in 1921 did Hilbert come back to this particular argu-
ment and used it as the starting point of novel proof theoretic investigations, now 
with a finitist foundation that included recursion equations for all primitive re-
cursive functions as basic principles.4 

In order to carry out the proof theoretic arguments, functions in formal theo-
ries have to be calculable, indeed, calculable from a finitist perspective. That is 
clear from even a rough outline of the consistency proof Hilbert and Bernays 
obtained in early 1922. It was presented in (Hilbert, 1923) and concerns the 
quantifier-free theory we call primitive recursive arithmetic (PRA) and proceeds 
as follows. The linear proofs are first transformed into tree structures; then all 
variables are systematically replaced by numerals resulting in a configuration of 
purely numeric statements that all turn out to be true and, consequently, cannot 
contain a contradiction. Yet to recognize the truth of the numeric formulae one 
has to calculate, from a finitist perspective, the value of functions applied to 
numerals.5 This was a significant test of the new proof theoretic techniques, but 
the result had one drawback: a consistency proof for the finitist system PRA was 
not needed according to the programmatic objectives, but a treatment of quantifi-
ers was required. Following Hilbert’s Ansatz of eliminating quantifiers in favor 
of ε-terms, Ackermann carried out the considerations for “transfinite” theories, 
i.e., for the first-order extension of PRA (correctly, as it turned out, only with just 

 
3 This is in the logicist tradition of Dedekind (cf. Sieg & Schlimm, 2005; Sieg, 2009a). 
4 For the development of Hilbert’s foundational investigations, it has to be mentioned 

that the Göttingen group had in the meantime assimilated Whitehead and Russell’s Prin-
cipia Mathematica; that is clear from the carefully worked out lecture notes from the 
winter term 1917–1918; cf. (Sieg, 1999). 

5 That was done in (Hilbert & Bernays, 1921/2); a summary is found in Section II of 
(Ackermann, 1925), entitled The Consistency Proof Before the Addition of the Transfinite 
Axioms. Ackermann does not treat the induction rule, but that can easily be incorporated 
into the argument following Hilbert and Bernays. The presentation of these early proof 
theoretic results is refined and extended in (Hilbert & Bernays, 1934).  
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quantifier-free induction). Herbrand obtained in 1931 the result for essentially 
the same system, but with recursion equations for a larger class of finitistically 
calculable functions; that is how Herbrand described the relation of his result to 
that of Ackermann in a letter of 7 April, 1931, to Bernays. 

As to the calculability of functions, Hilbert and Bernays had already empha-
sized in their lectures from 1921–1922, “For every single such definition by 
recursion it has to be determined that the application of the recursion formula 
indeed yields a number sign as function value—for each set of arguments”. Such 
a determination was taken for granted for primitive recursive definitions. We find 
here, in a rough form, Herbrand’s way of characterizing broader classes of fi-
nitistically calculable functions according to the schema in his 1931 letter to 
Gödel: 

In arithmetic, we have other functions as well, for example functions defined by 
recursion, which I will define by means of the following axioms. Let us assume 
that we want to define all the functions fn (x1, x2, …, xpn) of a certain finite or infi-
nite set F. Each fn (x1, …) will have certain defining axioms; I will call these axi-
oms (3F). These axioms will satisfy the following conditions: 

(i) The defining axioms for fn  contain, besides fn , only functions of lesser index. 
(ii) These axioms contain only constants and free variables. 
(iii) We must be able to show, by means of intuitionistic proofs, that with these 

axioms it is possible to compute the value of the functions univocally for 
each specified system of values of their arguments. (This letter is found in 
[Gödel, 2003].) 

Having given this schema, Herbrand mentions that the non-primitive recursive 
Ackermann function falls under it. Recall that Herbrand, as well as Bernays and 
von Neumann at the time, used “intuitionistic” as synonymous with “finitist”.  

In two letters from early 1931, Herbrand and Gödel discussed the impact of 
the incompleteness theorems on Hilbert’s Program. Gödel claimed that some 
finitist arguments might not be formalizable even in the full system of Principia 
Mathematica; in particular, he conjectured that the finitist considerations re-
quired for guaranteeing the unicity of the recursion axioms are among them. In 
late 1933, Gödel gave a lecture in Cambridge (Massachusetts) and surveyed the 
status of foundational investigations; see (Gödel, 1933). This fascinating lecture 
describes finitist mathematics and reveals a number of mind changes: (i) when 
discussing calculable functions, Gödel emphasizes their recursive definability, 
but no longer the finitist provability requirement, and (ii) when discussing Hil-
bert’s Program, Gödel asserts that a l l  finitist considerations can be formalized in 
elementary number theory. He supports his view by saying that finitist considera-
tions use only the proof and definition principle of complete induction; the class 
of functions definable in this way includes all those given by Herbrand’s schema. 
I take Gödel’s deliberate decision to disregard the provability condition as a first 
and very significant step toward the next major definition, i.e., that of general 
recursive functions.  
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A few months after his lecture in Cambridge, Gödel was presented with 
Church’s proposal of identifying the calculability of number-theoretic functions 
with their λ-definability. Gödel, according to Church in a letter of 29 November, 
1935, to Kleene, viewed the proposal as “thoroughly unsatisfactory” and pro-
posed “to state a set of axioms which would embody the generally accepted 
properties of this notion [i.e., effective calculability], and to do something on that 
basis” (in Sieg, 1997, p. 463). However, instead of formulating axioms for that 
notion in his 1934 Princeton lectures, Gödel took a second important step in 
further modifying Herbrand’s definition. He considered as g e n e r a l  r e c u r -
s i v e  those total number theoretic functions whose values can be computed in an 
equational calculus, starting with general recursion equations and proceeding 
with very elementary replacement rules. In a 1964 letter to van Heijenoort, Gödel 
asserted, “… it was exactly by specifying the rules of computation that a mathe-
matically workable and fruitful concept was obtained”.6 

Gödel had obviously defined a broad class of calculable functions, but at the 
time he did n o t  think of general recursiveness as a rigorous explication of calcu-
lability.7 Only in late 1935 did it become plausible to him, as he put it on 1 May, 
1968, in a letter to Kreisel, “that my [incompleteness] results were valid for all 
formal systems”. The plausibility of this claim rested on an observation concern-
ing computability in the Postscriptum to his 1936-note, On the Length of Proofs. 
Here is the observation for systems Si of i-th order arithmetic, i  >  0. 

It can, moreover, be shown that a function computable in one of the systems Si, or 
even in a system of transfinite order, is computable already in S1. Thus, the notion 
“computable” is in a certain sense “absolute”, while almost all metamathematical 
notions otherwise known (for example, provable, definable, and so on) quite es-
sentially depend upon the system adopted. (Gödel, 1936, p. 399) 

Ten years later, in his contribution to the Princeton Bicentennial Conference, 
Gödel formulated the absoluteness claim not just for higher-type extensions of 
arithmetic, but for a n y  formal system containing arithmetic, in particular, for set 
theory. The philosophical significance of general recursiveness is almost exclu-
sively attributed to its absoluteness. Connecting his remarks to a previous lecture 
given by Tarski, Gödel started his talk with:  

Tarski has stressed in his lecture (and I think justly) the great importance of the 
concept of general recursiveness (or Turing’s computability). It seems to me that 
this importance is largely due to the fact that with this concept one has for the first 
time succeeded in giving an absolute definition of an interesting epistemological 
notion, i.e., one not depending on the formalism chosen. (Gödel, 1946, p. 150) 

 
6 For brief descriptions of the equational calculus see Gödel’s (1934, pp. 368–369) or 

his (193?, pp. 166–168). 
7 Cf. his letter to Martin Davis quoted in (Davis, 1982, p. 9). 
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In 1965, Gödel added a footnote to this remark clarifying the precise nature of 
the absoluteness claim: 

To be more precise: a function of integers is computable in any formal system 
containing arithmetic if and only if it is computable in arithmetic, where a func-
tion f is called computable in S if there is a computable term representing f. 

The metamathematical absoluteness claim as formulated in 1936 can readily be 
established for the specific theories of higher-order arithmetic. However, in order 
to prove the claim that functions computable in a n y  f o r m a l  s y s t e m  c o n -
t a i n i n g  a r i t h m e t i c  are general recursive, the formal nature of the systems 
has to be rigorously characterized and then exploited. One can do that, for exam-
ple, by imposing on such systems the recursiveness conditions of Hilbert and 
Bernays that were formulated in Supplement II of the second volume of their 
Grundlagen der Mathematik. When proceeding in this way one commits, how-
ever, a subtle circularity in case one simultaneously insists that the general recur-
sive functions allow the proper mathematical characterization of f o r m a l i t y .8 

In Gödel’s 1946 Princeton remark, “Turing’s computability” is mentioned, 
but is listed parenthetically behind general recursiveness without any emphasis 
that it might play a special role. That notion becomes a focal point in Gödel’s 
reflections only in the 1951 Gibbs Lecture where he explores the implications of 
the incompleteness theorems, not in their original formulation, but rather in 
a “much more satisfactory form” that is “due to the work of various mathemati-
cians”. He stresses, “The greatest improvement was made possible through the 
precise definition of the concept of finite procedure, which plays such a decisive 
role in these results”.9 Gödel points out that there are different ways of arriving 
at a precise definition of finite procedure, which all lead to exactly the same 
concept. However, and here is the observation on Turing,  

The most satisfactory way … [of arriving at such a definition] is that of reducing 
the concept of finite procedure to that of a machine with a finite number of parts, 
as has been done by the British mathematician Turing. (Gödel, 1951, pp. 304–305)  

Gödel does not expand on this brief remark; in particular, he gives no hint of 
how r e d u c t i o n  is to be understood. He also does not explain, why such a 
reduction is “the most satisfactory way” of getting to a precise definition or, for 

 
8 This is analyzed in section 2 of (Sieg, 1994) and with an illuminating Churchian per-

spective, in section 4 of (Sieg, 1997). 
9 In a footnote Gödel explains that the concept of “finite procedure” is considered to 

be equivalent to the concept of a “computable function of integers”, i.e., a function f 
“whose definition makes it possible actually to compute f (n) for each integer n”. The 
reason why that can be done is formulated as follows: “The procedures to be considered 
do not operate on integers but on formulas, but because of the enumeration of the formu-
las in question, they can always be reduced to procedures operating on integers”. 
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that matter, why the concept of a machine with a finite number of parts is equiva-
lent to that of a Turing machine. At this point, it seems, the ultimate justification 
lies in the pure and perhaps rather crude fact that finite procedures can be effect-
ed by finite machines.10 

Gödel claims in the Gibbs Lecture (1951, p. 311) that the state of philosophy 
“in our days” is to be faulted for not being able to draw in a mathematically 
rigorous way the philosophical implications of the “mathematical aspect of the 
situation”, i.e., the situation created by the incompleteness results. I have argued 
that not even the mathematical aspect had been clarified in a convincing way; 
after all, it crucially depended on very problematic considerations concerning 
a precise notion of computability.  

II. Finite Machines & Computors 

To bring out very clearly that the appeal to a reduction is a most significant 
step for Gödel, let me go back to the informative manuscript (Gödel, 193?) from 
the late 1930s. In it, Gödel examines general recursiveness and Turing computa-
bility, but under a methodological perspective that is completely different from 
the one found in the Gibbs Lecture. After having given a perspicuous presenta-
tion of his equational calculus, Gödel claims outright that it provides “the correct 
definition of a computable function”. Thus, he seems to be fully endorsing 
Church’s Thesis concerning general recursive functions. He adds a remark on 
Turing asserting, “That this really is the correct definition of m e c h a n i c a l  
computability was established beyond any doubt by Turing”. How did Turing 
establish this claim? Here is Gödel’s answer:  

[Turing] has shown that the computable functions defined in this way [via the 
equational calculus] are exactly those for which you can construct a machine with 
a finite number of parts which will do the following thing. If you write down any 
number n1, …, nr on a slip of paper and put the slip of paper into the machine and 
turn the crank, then after a finite number of turns the machine will stop and the 
value of the function for the argument n1, …, nr will be printed on the paper. (Gö-
del, 193?, p. 168) 

The mathematical theorem stating the equivalence of Turing computability and 
general recursiveness plays the pivotal role at this time: Gödel does not yet focus 

 
10 In his (1933, p. 45) Gödel describes the constructivity requirements on theories and 

explicates the purely formal character of inference rules. The latter “refer only to the 
outward structure of the formulas, not to their meaning, so that they could be applied by 
someone who knew nothing about mathematics, or by a machine”. He also asserts there, 
“thus the highest possible degree of exactness is obtained”. 
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on Turing’s analysis as being the basis for a reduction of mechanical calculability 
to (Turing) machine computability.11  

The appreciation of Turing’s work indicated in the Gibbs Lecture for the first 
time is deepened in other writings of Gödel. Perhaps, it would be better to say 
that Turing’s work appears as a topic of perceptive, but also quite aphoristic 
remarks. Indeed, there are only three such remarks that were published during 
Gödel’s lifetime after 1951: (i) the Postscriptum to the 1931 incompleteness 
paper, (ii) the Postscriptum to the 1934 Princeton Lecture Notes, and (iii) the 
1972 note A Philosophical Error in Turing’s Work. The latter note appeared in 
a slightly different version in Wang’s book from 1974. In the sequel, I will refer 
to the “1972-note” and the “1974-note”, though I am convinced that the first note 
is the later one. 

The brief Postscriptum added to (Gödel, 1931) in 1963 emphasizes the cen-
trality of Turing’s work for both incompleteness theorems; here is the text:  

In consequence of later advances, in particular of the fact that due to A. M. Tu-
ring’s work a precise and unquestionably adequate definition of the general notion 
of formal system can now be given, a completely general version of Theorems VI 
and XI is now possible. That is, it can be proved rigorously that in e v e r y  con-
sistent formal system that contains a certain amount of finitary number theory 
there exist undecidable arithmetic propositions and that, moreover, the consisten-
cy of any such system cannot be proved in the system. (Gödel, 1931, p. 195) 

In the more extended Postscriptum written a year later for his Princeton Lecture 
Notes, Gödel repeats this remark almost verbatim, but then states a reason why 
Turing’s work provides the basis for a “precise and unquestionably adequate 
definition of the general concept of formal system”: “Turing’s work gives an 
analysis of the concept of ‘mechanical procedure’ (alias ‘algorithm’ or ‘computa-
tion procedure’ or ‘finite combinatorial procedure’). This concept is shown to be 
equivalent with that of a ‘Turing machine’” (Gödel, 1934, pp. 369–370). 

In a footnote attached to the last sentence Gödel refers to (Turing, 1936) and 
points to its ninth section, where Turing argues for the adequacy of his machine 
concept. Gödel emphasizes that previous equivalent definitions of computability, 
including general recursiveness and λ-definability, “are much less suitable for 
our purposes”. However, he does not elucidate the special character of Turing 
computability in this context or any other context I am aware of, and he does not 
indicate either, how he thought an analysis proceeded or how the equivalence 

 
11 In the spring of 1939, Gödel gave a logic course at the University of Notre Dame 

and argued for the superiority of the human mind over machines via the undecidability of 
the decision problem for predicate logic; the latter is put into the historical context of 
Leibniz’s Calculemus! He claims: “So here already one can prove that Leibnitzens [sic!] 
program of the calculemus cannot be carried through, i.e. one knows that the human mind 
will never be able to be replaced by a machine already for this comparatively simple 
question to decide whether a formula is a tautology or not”. The conception of machine is 
as in (193?)—an office calculator with a crank. 
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between the (analyzed) concept and Turing computability could be shown. In the 
next paragraph, I will give a very condensed version of Turing’s important argu-
ment, though I note right away that Turing did not view it as p r o v i n g  an 
equivalence result of the sort Gödel described.12  

Call a human computing agent who proceeds mechanically a c o m p u t o r ; 
such a computor operates deterministically on finite, possibly two-dimensional 
configurations of symbols when performing a calculation.13 Turing aims to iso-
late the m o s t  b a s i c  s t e p s  taken in calculations, i.e., steps that need not be 
further subdivided. This goal requires that the configurations on which the com-
putor operates be i m m e d i a t e l y  r e c o g n i z a b l e . Joining this demand with 
the evident limitation of the computor’s sensory apparatus leads to the “bound-
edness” of configurations and the “locality” of operations:  

(B) There is a fixed finite bound on the number of configurations a computor 
can immediately recognize; and  

(L) A computor can change only immediately recognizable (sub-) configura-
tions.  

As Turing considers the two-dimensional character of configurations as inessen-
tial for mechanical procedures, the calculations of the computor, satisfying the 
boundedness and locality restrictions, are directly captured by Turing machines 
operating on strings; the latter can provably be mimicked by ordinary two-letter 
Turing machines.14 

 So, it seems we are naturally and convincingly led from calculations of 
a computor on two-dimensional paper to computations of a Turing machine on 
a linear tape. Are these machines in the end, as Turing’s student Gandy put it, 
nothing but c o d i f i c a t i o n s  of computors? Is Gandy right when claiming in 
(1980, p. 124) that Turing’s considerations provide (the outline of) a proof for the 
claim, “What can be calculated by an abstract human being working in a routine 
way is computable?” Does Turing’s argument thus secure the conclusiveness and 
generality of the limitative mathematical results, respect their broad intellectual 

 
12 I have analyzed Turing’s argument in other papers (e.g., 1994; 2002). My subse-

quent discussion takes Turing machines in the way in which Post defined them in (1947), 
namely, as production systems. That has the consequence that states of mind are physical-
ly represented, quite in Turing’s spirit; cf. part III of section 9 in his paper (1936) and the 
marvelous discussion in (Turing, 1954).  

13 That captures exactly the intellectual problematic and context: the Entscheidungs-
problem was to be solved mechanically by us; formal systems were to guarantee intersub-
jectivity on a minimal, mechanically verifiable level between us.  

14 It should be noted that step-by-step calculations in the equational calculus cannot be 
carried out by a computor satisfying these restrictive conditions: arbitrarily large numerals 
have to be recognized and arbitrarily complex terms have to be replaced by their numeri-
cal values—in one step. 
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context and appeal only to mechanical procedures that are carried out by humans 
without the use of higher cognitive capacities?  

Turing himself found his considerations mathematically unsatisfactory. In-
deed, he took two problematic steps by (i) starting the analysis with calculations 
on two-dimensional paper (this is problematic as possibly more general configu-
rations and procedures should be considered) and (ii) dismissing, without argu-
ment, the two-dimensional character of paper as “no essential of computation”. 
However, a restricted result i s  rigorously established by Turing’s considerations: 
Tu r i n g  m a c h i n e s  c a n  c a r r y  o u t  t h e  c a l c u l a t i o n s  o f  c o m p u -
t o r s —as long as computors not only satisfy (B) and (L), but also operate on 
linear configurations; this result can be extended to extremely general configura-
tions, K-graphs.15 But even then, there is no p r o o f  of Turing’s Thesis.  

The methodological difficulties can be avoided by taking an alternative ap-
proach, namely, to characterize a Tu r i n g  C o m p u t o r  axiomatically as a dis-
crete dynamical system and to show that any system satisfying the axioms is 
computationally reducible to a Turing machine (Sieg, 2002; 2009a). No appeal to 
a thesis is needed; rather, that appeal has been replaced by the task of recogniz-
ing the correctness of axioms for an intended notion. This way of extracting from 
Turing’s analysis clear axiomatic conditions and then establishing a representa-
tion theorem seems to follow Gödel’s suggestion to Church in 1934; it also 
seems to fall, in a way, under the description Gödel gave of Turing’s work, when 
arguing that it analyzes the concept “mechanical procedure” and that “this con-
cept is shown to be equivalent with that of a Turing machine”.16 

With the conceptual foundations in place, we can examine how Gödel and 
Turing thought about the fact that humans transcend the limitations of any par-
ticular Turing machine (with respect to the first incompleteness theorem). They 
chose quite different paths: Gödel was led to argue for the existence of humanly 
effective, non-mechanical procedures and continued to identify finite machines 
with Turing machines; thus, he “established” our topical claim that the human 
mind infinitely surpasses any finite machine. Turing, by contrast, was led to the 
more modest demand of releasing computors and machines from the strict disci-
pline of carrying out procedures mechanically and providing them with room for 
initiative. Let us see what that amounts to. 

III. Beyond Mechanisms & Discipline 

Gödel’s paper (193?) begins by referring to Hilbert’s famous words, “for any 
precisely formulated mathematical question a unique answer can be found”. 

 
15 The underlying methodological matters are discussed in (Sieg & Byrnes, 1996), 

where K-graphs were introduced as a generalization of the graphical structures considered 
in (Kolmogorov & Uspenski, 1963). 

16 In (Martin, 2005), a particular (and insightful) interpretation of Gödel’s view on math-
ematical concepts is given. It is developed with special attention to the concept of set, but it 
seems to be adaptable to the concept of computability. Cf. the summary on pp. 223–224. 
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Those words are taken to assert that for any mathematical proposition A there is 
a proof of either A or not-A, “where by ‘proof’ is meant something which starts 
from evident axioms and proceeds by evident inferences”. He argues that the 
incompleteness theorems show that something is lost when one takes the step 
from this notion of proof to a formalized one:  

[I]t is not possible to formalise (sic!) mathematical evidence even in the domain of 
number theory, but the conviction about which Hilbert speaks remains entirely un-
touched. Another way of putting the result is this: it is not possible to mechanise 
(sic!) mathematical reasoning […]. (Gödel, 193?) 

And that means for Gödel that “it will never be possible to replace the mathemati-
cian by a machine, even if you confine yourself to number-theoretic problems” 
(pp. 164–165). Gödel took this deeply rationalist and optimistic perspective still in 
the early 1970s: Wang reports that Gödel rejected the possibility that there are 
number theoretic problems undecidable for the human mind (Wang, 1974, 
pp. 324–325).17  

Gödel’s claim that it is impossible to mechanize mathematical reasoning is 
supported in the Gibbs Lecture by an argument that relies primarily on the sec-
ond incompleteness theorem; see the detailed analyses in (Feferman, 2006a) and 
(Sieg, 2007, Section 2). This claim raises immediately the question, “What as-
pects of mathematical reasoning or experience defy formalization?” In his 1974-
note, Gödel points to two “vaguely defined” processes that may be sharpened to 
systematic and effective, but non-mechanical procedures; namely, the process of 
defining recursive well-orderings of integers for larger and larger ordinals of the 
second number class and that of formulating stronger and stronger axioms of 
infinity. The point is reiterated in the modified formulation of the 1972-note, 
where Gödel, on p. 305, considers another version of his first theorem that may 
be taken “as an indication for the existence of mathematical yes or no questions 
undecidable for the human mind”. However, he points to a f a c t  that in his view 
weighs against such an interpretation: “There d o  exist unexplored series of axi-
oms which are analytic in the sense that they only explicate the concepts occur-
ring in them”. As an example, he again presents axioms of infinity, “which only 
explicate the content of the general concept of set”. These reflections on axioms 
of infinity and their impact on provability are foreshadowed in (Gödel, 1947, p. 
182), where Gödel asserts that the current axioms of set theory “can be supple-
mented without arbitrariness by new axioms which are only the natural continua-
tion of the series of those [axioms of infinity] set up so far”. So, there may be 
a completeness theorem stating, “every proposition expressible in set theory is 
decidable from the present axioms plus some true assertion about the largeness 
of the universe of all sets”. 

 
17 For a broad discussion of Gödel’s reflections on “absolutely unsolvable problems”, 

cf. (Feferman, 2006a; Kennedy, van Atten, 2004; 2009).  
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Though Gödel calls the existence of an unexplored series of axioms a f a c t , 
he asserts also that the process of forming such a series does not yet form a 
“well-defined procedure which could actually be carried out (and would yield a 
non-recursive number-theoretic function)”, because it would require “a substan-
tial advance in our understanding of the basic concepts of mathematics” (Gödel, 
1972, p. 306). A prima facie startlingly different reason for not yet having a pre-
cise definition of such a procedure is given in the 1974-note, p. 325: it would 
require “a substantial deepening of our understanding of the basic operations of 
the mind”. That is only prima facie different, as Gödel’s 1972-note connects such 
a procedure with the dynamic development of the human mind. 

[M]ind, in its use, is not static, but constantly developing, i.e., that we understand 
abstract terms more and more precisely as we go on using them, and that more 
and more abstract terms enter the sphere of our understanding. (Gödel, 1972, 
p. 306)18 

Gödel continues: 

There may exist systematic methods of actualizing this development, which could 
form part of the procedure. Therefore, although at each stage the number and pre-
cision of the abstract terms at our disposal may be f i n i t e , both […] may c o n -
v e r g e  t o w a r d  i n f i n i t y  in the course of the application of the procedure.  

The procedure mentioned as a plausible candidate for satisfying this description 
is again the process of forming ever stronger axioms of infinity.  

The notes (1972) and (1974) are very closely connected, but there is a subtle 
and yet, it seems to me, substantive difference. In the 1974-note the claim that 
the number of possible states of mind may converge to infinity is a consequence 
of the dynamic development of mind. That claim is followed by a remark that 
begins in a superficially similar way as the first sentence of the above quotation, 
but ends with a quite different observation: “Now there may exist systematic 
methods of accelerating, specializing, and uniquely determining this develop-
ment, e.g. by asking the right questions on the basis of a mechanical procedure” 
(Gödel 1974, p. 325). 

 
18 Gödel’s brief exploration of the issue of defining a non-mechanical, but effective 

procedure is preceded in this note by a severe critique of Turing. He assumes that Turing’s 
argument in the 1936 paper was to show that “mental procedures cannot go beyond me-
chanical procedures” and considers it as inconclusive, because Turing neglects the dynam-
ic nature of mind. However, simply carrying out a mechanical procedure does not, and 
indeed should not, involve an expansion of our understanding. Turing viewed the restrict-
ed use of mind in computations undoubtedly as static. I leave that misunderstanding out of 
the systematic considerations in the main text. The appeal to finiteness of states of mind 
when comparing Gödel’s and Turing’s perspectives is also pushed into the background as 
it is not crucial at all for the central issues under discussion: there does not seem to be any 
disagreement. 
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I do not fully understand these enigmatic observations, but three points can 
be made. First, mathematical experience has to be invoked when asking the right 
questions; second, aspects of that experience may be codified in a mechanical 
procedure and serve as the basis for asking the right questions; third, the answers 
may involve abstract terms that are introduced by the non-mechanical mental 
procedure. We should not dismiss or disregard Gödel’s methodological remark 
that “asking the right questions on the basis of a mechanical procedure” may be 
part of a systematic method to push forward the development of mind.19 Even 
this very limited understanding allows us to see that Gödel’s reflections overlap 
with Turing’s proposal for investigating matters in a more empirical and directly 
computational manner. 

Much of Turing’s work of the late 1940s and early 1950s explicitly deals with 
mental processes. But nowhere is it claimed that the latter cannot go beyond 
mechanical ones. Mechanical processes are still made precise as Turing machine 
computations; in contrast, machines that might exhibit intelligence have a more 
complex structure than Turing machines and, most importantly, interact with 
their environment. Conceptual idealization and empirical adequacy are now 
being sought for quite different purposes, and one might even say that Turing is 
actually trying to capture what Gödel described when searching for a broader 
concept of humanly effective calculability, namely, “… that mind, in its use, is 
not static, but constantly developing”. In his paper Intelligent Machinery, Turing 
states:  

If the untrained infant’s mind is to become an intelligent one, it must acquire both 
discipline and initiative. So far we have been considering only discipline [via the 
universal machine]. […] But discipline is certainly not enough in itself to produce 
intelligence. That which is required in addition we call initiative. This statement 
will have to serve as a definition. Our task is to discover the nature of this residue 
as it occurs in man, and to try and copy it in machines. (Turing, 1948, p. 21)20 

How, in particular, can we transcend discipline when doing mathematics? Tu-
ring provided a hint already in his 1939-paper, where ordinal logics are intro-
duced to expand formal theories in a systematic way; (cf. Feferman, 1988; 2006b) 
for informative discussions. In that paper, his Ph.D. thesis written under the di-

 
19 There seems to be also a connection to remarks in his (1947, pp. 182–183), where 

Gödel points out that there may be “another way” (apart from judging its intrinsic necessi-
ty) to decide the truth of a new axiom. This other way consists in inductively studying its 
success, “that is, its fruitfulness in consequences and in particular in ‘verifiable’ conse-
quences, i.e., consequences demonstrable without the new axiom, whose proofs by means 
of the new axiom, however, are considerably simpler and easier to discover, and make it 
possible to condense into one proof many different proofs”. 

20 In his (1950, p. 459), Turing points out, in a similar spirit: “Intelligent behaviour 
presumably consists in a departure from the completely disciplined behaviour involved in 
computation, but a rather slight one, which does not give rise to random behaviour, or to 
pointless repetitive loops”. 
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rection of Church, Turing distinguishes between i n g e n u i t y  and i n t u i t i o n . 
He observes that in formal logics their respective roles take on a greater definite-
ness. Intuition is used for “setting down formal rules for inferences which are 
always intuitively valid”, whereas ingenuity is to “determine which steps are the 
more profitable for the purpose of proving a particular proposition”. He notes: 

In pre-Gödel times it was thought by some that it would be possible to carry this 
programme to such a point that all the intuitive judgements of mathematics could 
be replaced by a finite number of these rules. The necessity for intuition would 
then be entirely eliminated. (Turing, 1939, p. 209) 

That intuition cannot be eliminated, on account of the first incompleteness 
theorem, is emphasized in Turing’s letters to Max Newman from around 1940 
that have been reprinted in (Copeland, 2004, pp. 211–216). After all, one can 
determine the truth of the Gödel sentence, say, for ZF set theory, despite the fact 
that it is independent of ZF. Providing a general reason for such a determination, 
Turing writes, “… there is a fairly definite idea of a true formula which is quite 
different from the idea of a provable one” (p. 215). Eight years later, in his (1948, 
p. 107), Turing formulated at the very outset reasons given by some for asserting, 
“it is not possible for machinery to show intelligent behaviour [sic!]”. One of the 
reasons is directly related to the limitative theorems. They are assumed to show 
that when machines are used for “determining the truth or falsity of mathematical 
theorems […] then any given machine will in some cases be unable to give an 
answer at all”. This inability of any particular machine is contrasted with human 
intelligence that “seems to be able to find methods of ever-increasing power for 
dealing with such problems ‘transcending’ the methods available to machines” 
(Turing, 1948, p. 108). 

It is thus not surprising that Turing takes in his paper (1950, pp. 444–445) the 
m a t h e m a t i c a l  o b j e c t i o n  to his view quite seriously. He considers the 
objection as based on the limitative results, in particular Gödel’s theorems, which 
are understood by some as proving “a disability of machines to which the human 
intellect is not subject”. Turing gives two responses. The short one states that the 
objection takes for granted, without any sort of proof, that the human intellect is 
not subject to the limitations to which machines provably are. However, Turing 
thinks that the objection cannot be dismissed quite so lightly and proceeds to 
a second response. It acknowledges the superiority of the human intellect with 
respect to a single machine (we can recognize the truth of “its” Gödel sentence), 
but Turing views that as a petty triumph. The reason for this is formulated suc-
cinctly as follows: “There would be no question of triumphing simultaneously 
over a l l  machines. In short, then, there might be men cleverer than any given 
machine, but then there might be other machines cleverer again, and so on” (Tu-
ring, 1950, p. 445). 

Turing does not offer a proof of the claim that there is “no question of tri-
umphing simultaneously over a l l  machines”. It is precisely here that Gödel’s 
“fact” concerning a humanly effective, but non-mechanical procedure seems to 
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be in conflict with Turing’s assertion.21 If the “fact” were a fact, then it would 
sustain the objection successfully. Can one go beyond claim and counterclaim? 
Or, even better, can one use the tension as an inspiration for concrete work that 
elucidates the situation? 

IV. Finding Proofs (With Ingenuity) 

Let us return, as a first positive step towards bridging the gap between claim 
and counterclaim, to Turing’s distinction between ingenuity and intuition. Intui-
tion is explicitly linked to the incompleteness of formal theories and provides an 
entry point to exploiting, through computational work, a certain parallelism be-
tween Turing’s and Gödel’s considerations, when the latter are based on mechan-
ical procedures. Copying the r e s i d u e  in machines is the common task at hand. 
It is a difficult one in the case of mathematical thinking, and Gödel would argue 
an impossible one, if machines are particular Turing machines. Turing would 
agree, of course. Before we can start copying, we have to discover partially the 
nature of the residue; one might hope to begin doing that through proposals for 
finding proofs in mathematics.  

In his lecture to the London Mathematical Society and in Intelligent Machin-
ery, Turing calls for heuristically guided intellectual searches and for initiative 
that includes, in the context of mathematics, proposing new intuitive steps. Such 
searches and the discovery of novel intuitive steps would be at the center of 
“research into intelligence of machinery”. Let me draw a diagram: the formal 
theory FTi has been expanded to the proof theoretically stronger theory FTi+1; the 
theories are presented via Turing machines Mi and Mi+1, respectively. 

 

FTi+1 is given by Turing machine Mi+1 

 

FTi is given by Turing machine Mi 

 
21 “Seems”, as Turing pits individual men against particular machines, whereas Gödel 

pits the “human mind” against machines. This aspect is also briefly discussed in the first 
letter to Newman in (Copeland, 2004, p. 215): if one moves away from considering 
a particular machine and allows machines with different sets of proofs, then “by choosing 
a suitable machine one can approximate ‘truth’ by ‘provability’ better than with a less 
suitable machine, and can in a sense approximate it as well as you please”. 
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The transition from one theory to the next and, correspondingly, from one Turing 
machine to the next is non-mechanical for Gödel as well as for Turing. In Gö-
del’s case, unfolding the explication of the concept of set by a non-mechanical 
method is the basis for a humanly effective procedure. Even if Gödel’s method 
would take into account a mechanical procedure of the character described above, 
in the end, it would present a new and stronger axiom of infinity; it is in this 
sense that the method could be viewed as u n i f o r m . For Turing, it seems, the 
addition of intuitive steps (outside of his ordinal logics) is principally based on 
the analysis of machine learning and computer experimentation.22 It would be 
closely tied to the particulars of a situation without the connecting thread of 
Gödel’s method and, thus, it would not be uniform. In addition, Turing empha-
sizes at a number of places that a random element be introduced into the devel-
opment of machines, thus providing an additional feature that releases them from 
strict discipline and facilitates a step from Mi to Mi+1.  

What is striking is that both Gödel and Turing make “completeness claims”: 
at the end of the second paragraph of section III, I quoted Gödel’s remark from 
his 1947-paper that every set theoretic statement is decidable from the current 
axioms together with “a true assertion about the largeness of the universe of all 
sets”; in note 20, Turing’s remark is quoted that by choosing a suitable machine 
one can approximate “truth” by “provability” and “in a sense approximate it 
[truth] as well as you please”. That is highly speculative in both cases; slightly 
less speculatively, Turing conjectured: 

As regards mathematical philosophy, since the machines will be doing more and 
more mathematics themselves, the centre of gravity of the human interest will be 
driven further and further into philosophical questions of what can in principle be 
done etc. (1947, p. 103) 

This expectation has not been borne out yet, and Gödel would not be surprised. 
However, he could have cooperated with Turing on the “philosophical questions 
of what can in principle be done” and, to begin with, they could have agreed 
terminologically that there is a human mind whose working is not reducible to 
the working of any particular brain. They could have explored and, possibly 
argued about, Turing’s contention in his (1951, p. 472) “that machines can be 
constructed which will simulate the behaviour (sic!) of the human mind very 
closely”. Indeed, Turing had taken a step toward a concept of human mind, when 
he emphasizes at the end of Intelligent Machinery, “the isolated man does not 
develop any intellectual power”, and then argues: 

 
22 Copeland, in his (2006), gives much the same interpretation. He remarks on p. 168: 

“In his post-war writing on mind and intelligence […] the term “intuition” drops from 
view and what comes to the fore is the closely related idea of learning—in the sense of 
devising and discovering—new methods of proof”. 
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It is necessary for him to be immersed in an environment of other men, whose 
techniques he absorbs during the first twenty years of his life. He may then per-
haps do a little research of his own and make a very few discoveries which are 
passed on to other men. From this point of view the search for new techniques 
must be regarded as carried out by the human community as a whole, rather than 
by individuals. (p. 127) 

Turing calls this, appropriately enough, a c u l t u r a l  s e a r c h  in contrast to the 
more limited i n t e l l e c t u a l  s e a r c h e s  possible for individual men or ma-
chines. To build machines that think serves also another purpose as Turing ex-
plained in a 1951 radio broadcast: “The whole thinking process is still rather 
mysterious to us, but I believe that the attempt to make a thinking machine will 
help us greatly in finding out how we think ourselves” (Turing, 1951b, p. 486). 

For the study of human thinking mathematics is a marvelous place to start. 
Where else do we find an equally rich body of rigorously organized knowledge 
that is structured for both intelligibility and discovery? Turing, as we saw above, 
had high expectations for machines’ progress in doing mathematics; but it is still 
extremely difficult for them to “mathematize” on their own. Newman, in a radio 
debate with Braithwaite, Jefferson, and Turing, put the general problem very well: 

Even if we stick to the reasoning side of thinking, it is a long way from solving 
chess problems to the invention of new mathematical concepts or making a gener-
alisation (sic!) that takes in ideas that were current before, but had never been 
brought together as instances of a single general notion. (Turing, 1952, p. 498) 

The important question is whether we can gain, by closely studying m a t h e -
m a t i c a l  p r a c t i c e , a deeper understanding of fundamental concepts, tech-
niques and methods of mathematics and, in that way, advance our understanding 
of the capacities of the mathematical mind as well as of basic operations of the 
mind. This question motivates a more modest goal, namely, formulating strate-
gies for an automated search: not for proofs of new results, but for proofs that 
reflect logical and mathematical understanding; proofs that reveal their intelligi-
bility and that force us to make explicit the i n g e n u i t y  required for a successful 
search.23 The logical framework for such studies must include a s t r u c t u r a l  

 
23 This involves undoubtedly reactions to Turing’s remarks and impatient questions in 

a letter to Newman: “In proofs there is actually an enormous amount of sheer slogging, 
a certain amount of ingenuity, while in most cases the actual ‘methods of proof’ are quite 
well known. Cannot we make it clearer where the slogging comes in, where there is inge-
nuity involved, and what are the methods of proof”? (Copeland, 2004, p. 213). Abramson, 
in his (2008), emphasizes insightfully the significance of Lady Lovelace’s objection. In 
the context here, his emphasis pointed out to me that Turing (1950, p. 451), views “the 
mere working out of consequences from data and general principles” as a “virtue” and as 
a “source for surprises”. Turing articulates that important perspective after having called 
“false” the assumption that “as soon as a fact is presented to a mind all consequences of 
the fact spring into the mind simultaneously with it”. 
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t h e o r y  o f  p r o o f s  that extends proof theory through (i) articulating structural 
features of derivations and (ii) exploiting the meaning of abstract concepts; both 
aspects are crucial for finding humanly intelligible proofs.24 We will hopefully 
find out what kind of broad strategies and heuristic ideas will emerge, what is the 
necessary ingenuity. In this way, we will begin to uncover part of Turing’s resi-
due and part of what Gödel considered as humanly effective, but not mechanical, 
in each case “by asking the right questions on the basis of a mechanical proce-
dure” (Gödel, 1974, p. 325). 

The very last remark in (Turing, 1954) comes back, in a certain sense, to the 
mathematical objection. Turing views the limitative results as being “mainly of 
a negative character, setting bounds to what we can hope to achieve purely by 
reasoning”. Characterizing in a new way the r e s i d u e  that has to be discovered 
and implemented to construct intelligent machinery, Turing continues, “These, 
and some other results of mathematical logic may be regarded as going some 
way towards a demonstration, within mathematics itself, of the inadequacy of 
‘reason’ unsupported by common sense”. This is as close as Turing could come 
to agree with Gödel’s dictum “The human mind infinitely surpasses any finite 
machine”, if “finite machine” is identified with “Turing machine”. 
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24 I have been pursuing a form of such a structural proof theory for quite a number of 

years. Central considerations and results are presented in (Sieg, 2010); there I also pointed 
out connections with Greek mathematics and the radical transformation of mathematics in 
the nineteenth century, as described in (Stein, 1988). A fully automated proof search 
method for (classical) first-order logic has been implemented in the AProS system. The 
overall project, addressing strategic search and dynamic tutoring, is being extended now 
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Postscriptum 

This essay was originally published in the volume Computability—Turing, 
Gödel, Church, and Beyond, MIT Press 2013. It is reprinted here with the per-
mission of MIT Press. The current version is not literally the same essay, as 
I made a few minor stylistic changes. Three developments in my own thinking, 
since the completion of the essay in 2011, are worthwhile to point out and to 
describe briefly in this Postscriptum. The first provides a stronger connection to 
the past, the second is a further deepening of the analysis of the concept of com-
putability, and the third yields a systematic connection to the future from the 
perspective of 2011.  

There is then, first of all, a deeper historical understanding of the methodo-
logical basis for the investigations of Gödel and Turing. The crucial building 
blocks for that basis were provided by the radically new structuralist conception 
of mathematics in the work of Dedekind and Hilbert and the dramatically ex-
panded reach of logic primarily through Frege’s efforts; (Sieg & Morris, 2018). 
The mathematical work and the logical work were hardly connected when they 
were created during the last thirty years of the nineteenth century. After White-
head and Russell had reshaped logic through Principia Mathematica, the two 
building blocks were joined and received a rigorous mathematical description in 
(Hilbert & Bernays, 1917–1918). These lectures are the beginning of modern 
mathematical logic and opened the door for metamathematical investigations in 
the 1920s; they are also, via (Hilbert & Ackermann, 1928), the backdrop for 
Gödel and Turing. The emergence of metamathematics took place during the first 
thirty years of the twentieth century; it is incisively described in (Bernays, 1930). 
Many people have contributed to a deeper historical understanding that is re-
flected in the first half of my book Hilbert’s Programs and Beyond. The shift 
from structural to formal axiomatics, absolutely central for Gödel and Turing, is 
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elucidated in (Sieg, 2014). Book and paper contain, of course, references to the 
rich literature. 

The second development is a sharpening of my structural axiomatic approach 
in order to characterize computability as an abstract mathematical concept. That 
is alluded to in this essay at the end of Section II. It has an historical component 
that brings out the significance of Post’s work (Sieg, Szabo & McLaughlin, 
2016); it also uncovers the deep conceptual confluence of Post’s and Turing’s 
work in 1936, presented in (Davis & Sieg, 2015). Finally, in a paper that was 
dedicated to Davis’ ninetieth birthday (Sieg, 2018), I raised and sought to answer 
the key methodological question, “What is the c o n c e p t  of computation?” 
Drawing on my earlier work, the concise answer is given in terms of c o m p u t -
a b l e  d y n a m i c a l  s y s t e m s . This is done against the background of two 
classes of mathematical results generalizing the considerations of Section I (Gö-
del’s Absoluteness) and of Section II (Turing’s Reducibility). The set theoretic 
formulation of the abstract concept “computable dynamical system” is waiting 
for an illuminating category theoretic characterization. 

We finally come to the third development since 2011. It concerns neither the 
historical background for Sections I and II nor the axiomatic sharpening of the 
concept of computation. It is rather connected to the comparative analysis of 
Gödel’s and Turing’s suggestions for transcending mechanical procedures in 
Sections III and IV. The goals of that development are described in broad strokes 
in the penultimate paragraph of the essay and have been pursued within my 
AProS Project that is mentioned in Note 23. The latter seeks to find strategies for 
the automated search for humanly intelligible proofs in constructive and classical 
logic, but also in meta-mathematics (Gödel’s incompleteness theorems) and set 
theory (the Cantor-Bernstein Theorem). My views on “natural formalization 
within a foundational frame” and “human-centered automated proof search” are 
at the center of and operative in (Sieg & Walsh, 2019), respectively (Sieg 
& Derakhshan, 2020). 

The relevant theoretical perspective is this: formalizing mathematical practice 
is central for the significance of proof theoretic investigations, be they concerned 
with the consistency problem of formal theories or with the “mining” of particu-
lar proofs. We use refined, conceptually organized formal frameworks to reflect 
deep structures of mathematical proofs. Thus, we aim for a t h e o r y  o f  
p r o o f s  in which “ordinary” proofs are treated as objects of investigation. That 
is in the spirit of the pioneers. Hilbert remarked in (1918), “[w]e must—that is 
my conviction—take the concept of the specifically mathematical proof as an 
object of investigation”. In just this spirit, Gentzen thought in his (1936, p. 499) 
that one can obtain only through formalization a “rigorous treatment of proofs” 
and emphasized then most strongly, “[t]he objects of proof theory shall be the 
proofs carried out in mathematics proper”.  
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This note is derived from my books Infinity and the Mind (2005, Preface) and 
The Lifebox, the Seashell, and the Soul (2016, footnote 102). 

We’re talking about J. Anthony Lucas’s classic argument that Gödel’s Second 
Incompleteness Theorem rules out man-machine equivalence. This is an argu-
ment that Penrose revived and popularized in the 1990s. This fallacious argu-
ment is a thoroughly dead horse. But I’ll give it another beating here. Do note 
that the Lucas-Penrose argument is a completely distinct issue from Penrose-
Hameroff speculation that the brain can act as a coherent quantum computer. It’s 
to Penrose’s credit that he’s associated with multiple controversial ideas! 

Before continuing, I should explain the Gödel’s Second Incompleteness The-
orem is the result that if F is a consistent formal system as strong as arithmetic, 
then F cannot prove the sentence Con (F). Con (F) is the sentence that expresses 
the consistency of F by asserting that F will never prove, say, 0 = 1. If we think 
of h as being the index of the Turing machine Mh, we can write Con(h) as short-
hand for Con (Mh). 

Suppose h is an integer that codes the program for a device Mh whose output 
is very much like a person’s. Lucas and Penrose want to say the following 

(1) After hanging around with Mh for a while, any reasonable person will 
feel like asserting Tr(h), a sentence which says something like, “If I base 
a machine Mh on the algorithm coded by h I’ll get a machine which only 
ouputs true sentences about mathematics”. 

(2) Having perceived the truth of Tr(h), any reasonable person will also feel 
like asserting Con (h), a sentence which says something like, “If I base 
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a machine Mh on the algorithm coded by h I’ll get a machine which nev-
er generates any mathematical contradictions”. 

(3) Gödel’s Second Incompleteness Theorem shows that Mh can’t prove 
Con (h), so now it looks as if any reasonable person who hangs around 
with a human-like Mh will soon know something that the machine itself 
can’t prove. 

The philosopher Hilary Putnam formulated what remains the best counterar-
gument in his 1960 essay, Minds and Machines (1964). For Lucas’s ripostes to 
such objections, see his genial if unconvincing essay, A Paper Read to the Turing 
Conference at Brighton on April 6th, 1990 (Lucas, 1990). 

Putnam’s point is simple. Even if you have seen Mh behaving sensibly for 
a period of time, you still don’t have any firm basis for asserting either that Mh 
will always say only true things about mathematics or that Mh will never fall into 
an inconsistency. Now if you were to have a full understanding of how Mh oper-
ates, then perhaps you could prove that Mh is consistent. But, in the case where 
h is the mind recipe, the operation of the eventual Mh is incomprehensibly intri-
cate, and we will never be in a position to legitimately claim to know the truth of 
the sentence Con (h) which asserts that Mh is consistent. This is, indeed, the 
content of Gödel’s Second Incompleteness Theorem. Rather than ruling out man-
machine equivalence, the theorem places limits on what we can know about 
machines equivalent to ourselves. 

And, really, this shouldn’t come as a surprise. You can share an office or 
a house with a person P for fifteen years, growing confident in the belief that P is 
consistent, and then one day, P begins saying and doing things that are complete-
ly insane. You imagined that you knew Con(P) to be true, but this was never the 
case at all. The only solid reason for asserting Con(P) would have been a sys-
tematic proof, but, given that you and P were of equivalent sophistication, this 
kind of proof remained always beyond your powers. All along, the very fact that 
Con(P) wasn’t provable contained the possibility that it wasn’t true. Like it or 
not, that’s the zone we operate in when relating to other intelligent beings. 
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S U M M A R Y : We show that the name “Lucas-Penrose thesis” encompasses several differ-
ent theses. All these theses refer to extremely vague concepts, and so are either practically 
meaningless, or obviously false. The arguments for the various theses, in turn, are based 
on confusions with regard to the meaning(s) of these vague notions, and on unjustified 
hidden assumptions concerning them. All these observations are true also for all interest-
ing versions of the much weaker (and by far more widely accepted) thesis known as “Gö-
del disjunction”. Our main conclusions are that pure mathematical theorems cannot decide 
alone any question which is not purely mathematical, and that an argument that cannot be 
fully formalized cannot be taken as a mathematical proof. 
 
K E Y W O R D S : Gödel disjunction, Lucas-Penrose argument, mechanism, mind, computa-
tionalism. 

 
 

1. Introduction 

When I was invited to contribute to this special issue about the Lucas-
Penrose argument (LP), I was hesitating whether there is any point of doing so. 
There were two reasons for that.  

• The arguments of Lucas and Penrose have been totally refuted several 
times in the past. (This was done in more than one way, but this is not be-
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cause it is not clear what is wrong with them, but because they contain sev-
eral clear mistakes, not just one.) Nevertheless, the debate continues, and it 
seems that it will continue forever. The reason is that Lucas-Penrose 
“proofs” that humans are not machines belong to the class I call “proofs for 
the believers”. (They resemble in this respect the well-known classical 
“proofs” of the existence of God.) What is characteristic of such “proofs” is 
that they have never actually convinced anybody to accept their conclusion. 
The only persons who have ever “accepted” the validity of “proofs” of this 
kind were people who had believed their conclusion already before that, 
and because of other reasons. Thus even Lucas and Penrose do not deny the 
fact that almost every logician who wrote something about their “proofs” 
rejected them as invalid. This fact itself should have been sufficient for 
them (according to their own views about the nature of a mathematical 
proof) to realize that their proofs cannot be mathematically valid. Never-
theless, they (and the few philosophers who support them) continue to 
maintain that their argument is valid. 1 It seems that somehow, when it 
comes to their arguments, even people who Lucas and Penrose otherwise 
respect as brilliant logicians (including Gödel himself) suddenly become 
extremely stupid, and just cannot see the light of their unshakable logical 
arguments… I believe that in situations like this it makes no sense to con-
tinue arguing with the believers. In the words of Penrose (1989; which 
were said about “very dogmatic formalists”): we should now simply ignore 
the supporters of the arguments of Lucas and Penrose.  

• It seems to me that practically everything worth saying about LP has by 
now been said. Therefore I was not sure that I can do more than repeating 
arguments and points already made by others. And indeed, almost every-
thing I write below can be found in some form or another somewhere in the 
existing literature. (See, in particular, Feferman, 2006; Franzén, 2005; Ko-
ellner, 2016; LaForte, Hayes, & Ford, 1998; Putnam, 2011; Shapiro, 1998; 
2016.) 

Nevertheless, after reading a great part of the related literature, I realized that 
there are still important aspects of the debate that have not got sufficient atten-
tion so far. Accordingly, the main goals of this paper is to explicitly state, and to 
provide strong evidence for, the following claims: 

1. P u r e  m a t h e m a t i c a l  t h e o r e m s  c a n n o t  d e c i d e  a l o n e  a n y  
q u e s t i o n  w h i c h  i s  n o t  p u r e l y  m a t h e m a t i c a l . For this reason 
it should have been clear from the start, that the “mathematical refutations” 
of the mechanistic thesis about the mind, given by Lucas and Penrose, 
cannot be sound. Any such refutation should depend also on some non-
mathematical assumptions. This principle seems to me self-evident. Yet 

 
1 Or at least “is, in essence, correct”, as Penrose wrote in (1994). 
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even Gödel has done in (1951), the logical mistake of attributing the hon-
or of being a “mathematically established fact” to a disjunction of LP with 
another far-fetched thesis. This claim of Gödel about the human mind is 
now called “Gödel Disjunction” (GD) in (Horsten & Welch, 2016a), and 
“Gödel Dichotomy” in (Feferman, 2006). In (Horsten & Welch, 2016b, 
p. 3) it is stated that in contrast to Lucas-Penrose thesis, “Gödel’s argu-
ment for his disjunctive thesis is highly compelling” and that “In the liter-
ature on the subject there is a consensus that Gödel’s arguments for his 
disjunction are definitive”.2 Accordingly, this paper is mainly devoted to 
a critical discussion of GD rather than to LP. Needless to say, rejecting the 
former implies rejecting also the latter. 

2. A crucial factor in the debate on LP that I have never seen explicitly stated, 
and is perhaps the main reason that it is such an Hydra, is that there is no 
single “Lucas-Penrose thesis”, but there are several Lucas-Penrose theses. 
Different authors, or the same author in different places (frequently within 
one paper) provide different formulations of the thesis that (as we are go-
ing to argue) cannot be taken as equivalent. Since LP is one of the two 
disjuncts in GD, the situation with the latter is even worse. As we show in 
the sequel, we can even find in the literature purely mathematical formu-
lations of it which indeed follow (trivially) from the theorems of Gödel 
and Tarski. Unfortunately, those formulations have very little interest for 
themselves. GD has of course also very interesting formulations, that try 
to say something significant on the nature of human beings. However, the 
more interesting a formulation is, the less clear is what it says, and the more 
doubtful are the non-mathematical assumptions that underlie it. 

3. The arguments for the various Lucas-Penrose theses, as well those for the 
non-trivial versions of GD, are based on confusions concerning the termi-
nology employed. Therefore those arguments include hidden, unjustified 
assumptions. In the words of Koellner in (2016, p. 1): “One problem with 
the discussion in the literature as it currently stands is that the background 
assumptions on the underlying concepts (like truth, absolute provability, 
and idealized human knowability) are seldom fully articulated”. 

2. Formulations of the Two Disjuncts 

We start with a list of some formulations of the two disjuncts that have been 
given in the literature. The list is far from being exhaustive, but it is sufficiently 

 
2 I do not know on what basis this claim abut “consensus” is made. (Horsten & Welch, 

2016b) is an introduction to (Horsten & Welch, 2016a), and in this book alone Gödel 
Disjunction is severely criticized in three different papers (Koellner, 2016; Shapiro, 2016; 
Williamson, 2016). Strong criticism of GD appeared also in (Boolos, 1995; Feferman, 
2006; Franzén, 2005). 
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diverse to do for our purposes. From the discussions in the sequel it follows that 
no two of the formulations in it are really equivalent. 

 

2.1. The First Disjunct (“Lucas-Penrose Theses”) 

1-Gödel-A The human mind cannot be reduced to the working of the brain. 
(Gödel, 1951) 

1-Lucas The human mind is not equivalent to a (finite) machine. (Lucas, 
1961)3 

1-Krajewski The operation of the mind in the field of arithmetics cannot be 
simulated by a machine. (Krajewski, 2020) 

1-Penrose-A The human mind is not a Turing machine. (Penrose, 1989; 1994) 
1-Horsten-Welch-A There is no algorithm that can produce all the theorems 

that the human mind is capable of producing. (Horsten & Welch, 2016b) 
1-Koellner-A The mathematical outputs of the idealized human mind cannot 

coincide with the mathematical outputs of an idealized finite machine. (Koellner, 
2016; 2018a; 2018b) 

1-Koellner-B The mathematical outputs of an idealized human mind cannot 
coincide with the mathematical outputs of any idealized finite machine. (Koell-
ner, 2016; 2018a; 2018b) 

1-Penrose-B Human understanding is something that cannot be reduced to 
computation. (Penrose, 2011) 

1-Horsten-Welch-B The collection of humanly knowable theorems cannot 
be recursively axiomatized in some formal theory. (Horsten & Welch, 2016b) 

1-Gödel-B No well-defined system of correct axioms can contain the system 
of all demonstrable mathematical propositions. (Gödel, 1951) 

1-Charlesworth No computer program can accurately simulate the input-
output properties of human mathematical reasoning. (Charlesworth, 2016) 

1-Gödel-C Mathematics is incompletable in this sense, that its evident axi-
oms can never be comprised in a finite rule. (Gödel, 1951) 

1-Shipman Define “Human mathematics” as the collection of formalized 
sentence in the language of set theory which are logical consequences of state-
ments that will eventually come to be accepted by a consensus of human mathe-
maticians as “true”. There is no r.e. consistent r.e. set which equals (or at least 
contains) Human mathematics. (From a message to FOM, August 2006) 

 
3 In (Godel, 1951, p. 310), this claim is formulated in stronger words: “The human 

mind (even within the realm of pure mathematics) infinitely surpasses the power of any 
finite machine”. 
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2.2. The Second Disjunct 

2-Koellner There are mathematical truths that cannot be proved by the ideal-
ized human mind. (Koellner, 2016; 2018a; 2018b) 

2-Gödel There are absolutely undecidable [Diophantine] problems (Gödel, 
1951). 

Other, more or less equivalent versions of this thesis are: 

• There are objective (mathematical) truths that can never be humanly 
demonstrated. (Feferman, 2006) 

• Mathematical truth outstrips human reason. (Koellner, 2016; 2018a; 2018b) 
• There exists a particular true arithmetic statement that is impossible for 

human mathematical reasoning to master. (Charlesworth, 2016) 

2-Shipman There are mathematical truths that do not belong to “Human 
mathematics”. (From the message to FOM cited above.) 

3. The Mathematically Valid “Gödel Disjunction” 

Let T be a second-order constant, to be interpreted as the set of the true sen-
tences in the language ℒPA of Peano arithmetics. Let F and S be second-order vari-
ables for sets of arithmetical sentences (not necessarily subsets of T!). Finally, let 
formal(S) be a second-order formula which says that S is the set of theorems of 
some formal system. Then Tarski’s theorem implies: 

∀F(formal(F) → T ≠ F) 

This, in turn, is logically equivalent to: 

(MGD)  ∀S(S ≠ T ∨ ∀F(formal(F) → S ≠ F)) 

(MGD) is the purely mathematical formulation of “Gödel Disjunction”. Since it is 
just a trivial corollary of Tarski’s theorem about the arithmetic undefinability of 
arithmetic truth, it is for itself not very interesting. However, Gödel and others 
add here one more step. Denoting by K “the system of all humanly demonstrable 
mathematical propositions”, they infer from (MGD): 

∀F(formal(F) → K ≠ F) ∨ K ≠ T 

Getting by this the disjunction of [1-Gödel-B] and [2-Gödel]: either the set of 
humanly demonstrable theorems cannot be axiomatized by any effectively given 
formal system, or there are absolutely undecidable problems. However, the last 
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inference is logically valid only provided that “the system of all demonstrable 
mathematical propositions” is well-defined. Personally, I do not see any reason 
to think so. In any case, this question is not a purely mathematical one. Therefore 
it cannot be “mathematically established”, as Gödel has claimed. (Note that by 
using precisely the same argument, we can “demonstrate” other “disjunctions”, 
by taking K to denote, e.g., “the system of all mechanically demonstrable math-
ematical propositions” or “the system of all mathematical propositions which can 
be proved in some sound formal system” or “the system of all mathematical 
propositions which can be proved in some sound and justified formal system”, 
etc. All these disjunctions will be no less “valid” than the original one of Gödel.) 

In the next sections it will be explained why Gödel’s notion of “the system of 
all humanly demonstrable mathematical propositions” is ill-defined, so even the 
disjunction of [1-Gödel-B] and [2-Gödel] is extremely vague. We also show that 
even if we accept this particular “Gödel’s disjunction”, the other, more interest-
ing formulations of that disjunction do not follow. 

4. Mind(s) 

From a philosophical point of view, the most interesting Gödel’s disjunctions 
are those that refer to “the human mind”. Thus these disjunctions might be rele-
vant to classical problems like the mind-body problem, and the problem of free 
will (Lucas, 1961). However, it has already been pointed out by several authors 
that the use of this notion in the disjunctions is rather problematic: “It is certainly 
not obvious what it means to say that the human ‘mind’, or even the ‘mind’ of 
some human being, is a finite machine, e.g., a Turing machine” (Boolos, 1995, 
p. 293). “Hardly any mathematicians would ascribe mathematical clarity to the 
concept of ‘the human mind’” (Feferman, 2006, p. 141). “Gödel’s generic talk of 
‘the human mind’ in his Gibbs talk is dangerously misleading” (Williamson, 
2016, p. 249). 

Because of this fuzzy notion that is used in many of the Gödel’s disjunctions, 
their “mathematical proofs” (including Gödel’s original one) rely on some cru-
cial hidden assumptions. In what follows we reveal those assumptions, and show 
that it is extremely unclear what is meant by “human mind” (and by some related 
notions that appear in versions of GD and their “proofs”). 

4.1. “Turing Machines” and “Church Thesis” 

First of all, the meaning of the word “mind” here is doubtful. It is clear that in 
the context in which this noun is used here, it is assumed that it denotes some 
object (unlike, e.g. when one uses in sentences nouns like “luck” or “fate”). But 
what is that object? The mechanist claims that there are really no objects that 
may be called “human minds”—there are only human brains. Hence the related 
disjunctions are meaningless, and so certainly cannot be “proved”. The obvious 
(and justified) reply to this first objection is, of course, that the main point of the 
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first disjunct is that just the activity of our brains cannot account for our mathe-
matical capabilities, and so we should have something else, and this something 
else is what is called here “mind”. But except for [1-Gödel-A], none of the other 
formulations above of the first disjunct even mentions the word “brain”. Neither 
is “brain” mentioned in the proof that Gödel provided to his disjunction. Indeed, 
we have seen that the most this proof might show is the disjunction of [1-Gödel-
B] and [2-Gödel]. Gödel then derives [1-Gödel-A] from [1-Gödel-B] as follows. 
First, by Church Thesis (CT), [1-Gödel-B] is equivalent to the claim that the set 
of humanly demonstrable theorems cannot be produced by any Turing machine. 
Then another application of CT yields that the set of humanly demonstrable 
theorems cannot be produced by any finite machine. Since the human brain is 
obviously a finite machine, 1-Gödel-A follows. However, these two applications 
of “Church Thesis” are in fact applications of two different theses. The first ap-
plication relies on the mathematical thesis that a function f : 𝒩𝒩→ 𝒩𝒩 is computa-
ble by some u n i f o r m  d i s c r e t e  a l g o r i t h m  iff it is recursive (or, according 
to a provably equivalent version, is computable by some particular “Turing ma-
chine”). The second application above of “Church Thesis” takes it to be claiming 
that if the values taken by some function f : 𝒩𝒩→ 𝒩𝒩 (for example: the characteris-
tic function of the set of true arithmetic sentences) can all be somehow computed 
in one way or another by some machine (e.g., a human brain), then f is recursive 
(or computable by some particular “Turing machine”). Since “a machine” in 
general is not, and never has been, a mathematical notion, this is a much stronger, 
nonmathematical thesis. (In other words: despite the confusion that the use of 
a natural language causes here, “mechanically computable” and “computable by 
a machine” mean quite different things.) Unlike the mathematical (and original) 
version of CT, the stronger one is not supported by the evidence for CT that can 
be found in the literature, and a “proof” of GD that uses it is circular. Hence even 
if we accept the m a t h e m a t i c a l  CT as an axiom, and in addition accept Gö-
del’s proof of the disjunction of [1-Gödel-B] and [2-Gödel], we still cannot see the 
disjunction of [1-Gödel-A] and [2-Gödel] as a “mathematically established fact”. 

The question about the meaning and scope of CT seems to stand also behind 
the different views of Lucas and Penrose concerning what exactly their “Gödel 
argument” is showing. While Lucas (and Gödel) took it as refuting mechanism, 
that is: the thesis that the activity of the “human mind” can be reduced to the 
activity of the human brain and the laws of Physics, Penrose explicitly does not 
agree. He claims to refute only c o m p u t a t i o n a l i s m , that is: the thesis that the 
activity of the human “mind” can be reduced to computations. This very signifi-
cant difference is reflected in the difference between [1-Lucas] and [1-Penrose]. 
Anyway, the questions what is exactly Church Thesis, and what version of it we 
are justified to accept, are complicated. Therefore we shall not enter deeper into 
them here. It will be done in a different paper. Accordingly, for the sake of argu-
ment we shall accept in what follows the identification of “finite machine” with 
“Turing machine”. 
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Next we notice that even the use of the notion of a “Turing machine” is very 
ambiguous in the literature on GD and LP. When it is said that the “mind” is not 
a Turing machine, it is not always clear whether what is meant by the latter is 
a combination of hardware and software, that is: the idealized Turing’s device 
together with a specific program (i.e. a finite set of quadruples of a certain type), 
or just the hardware, i.e. the idealized device needed for running Turing-type 
programs on some input.4 At first sight, the second interpretation seems more 
reasonable, since when we perceive a computer as a “machine”, we think about it 
as a device that can execute many programs, i.e. can simulate the activity of 
many Turing machines (even all, in case we are talking about an idealized com-
puter). However, for reasons that are not fully clear to me, it seems that it is the 
first interpretation that most of the various authors have in mind in all of the 
formulations above. This is explicit, e.g., in both [1-Horsten-Welch-A] and [1-
Horsten-Welch-B]. 

4.2. “The Human Mind” 

A particularly problematic aspect of the formulations of the disjuncts that re-
fer to “the mind” is the use of the definite article in the repeated talks on “the 
human mind”, and the frequent back-and-forth moves from “the human mind” to 
“a human mind” in the discussion of the theses. Koellner’s formulations above of 
the first disjunct provide a good example. In these formulations Koellner has 
tried (with certain amount of success) to provide a less vague versions of GD. 
However, there is from the start an obvious ambiguity in his formulation: some-
times he uses [1-Koellner-A], which is about the outputs of the human “mind”, 
and sometimes [1-Koellner-B], which is about the outputs of a human “mind”. It 
is remarkable that he has never used the formulation: “The mathematical outputs 
of the idealized human ‘mind’ cannot coincide with the mathematical outputs of 
the idealized finite machine”. This again shows how much prejudice and hidden 
assumptions are contained just in the formulations of LP and GD, to say nothing 
about their “proofs”. A similar phenomenon is encountered in most other papers 
on the subject. But are [1-Koellner-A] and [1-Koellner-B] (for example) really 
equivalent? There is just one case in which the answer to this question is positive: 
if we assume that (the mathematical thought of) all (idealized) human “minds” 
are essentially the same. (This seems to be the view of Penrose. See below.) In 
the words of Williamson: “Talk of ‘the human mind’ may work better within 
a conception on which all normal humans have the same intellectual competence, 
all differences coming from accidental limitations on performance” (Williamson, 
2016, p. 250). 

 
4 Limiting the discussion to universal Turing machines does not eliminate the ambigu-

ity: Instead of talking on combinations of a device and a program that wait for an input in 
order to run, in the case of universal Turing machines we talk on a combination of a de-
vice and a fixed part of the input, that wait for another part of the input in order to run. 
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This is of course an assumption that cannot be established mathematically, so 
using it (as Gödel might implicitly have done—he did not explain this point) 
already refutes the claim of “mathematically establishing” Gödel disjunction. 
But what reason do we have even to believe it? It is certainly false for actual 
human “minds”. Most people on earth do not even understand Gödel’s theorem 
and its proof, let alone would ever be able to discover and prove it themselves. 
I guess this is why participants in the discussions of the subject, including Pen-
rose himself, rely on the activity (either actual or potential) of mathematicians. 
(By this they seem to leave open the possibility that the “minds” of people who 
cannot be worthy mathematicians are Turing machines…) Thus in Chapter 10 of 
(1989) Penrose argues: 

A mathematical argument that convinces one mathematician—providing that it 
contains no error—will also convince another, as soon as the argument has been 
fully grasped. […] Thus we are not talking about various obscure algorithms that 
might happen to be running around in different particular mathematicians’ heads. 
We are talking about one universally employed formal system which is equivalent 
to all the different mathematicians’ algorithms for judging mathematical truth. 
(pp. 539–540) 

Even had this observation about mathematicians been true, this fact would 
have been no more than an empirical fact, not a mathematical one. But actually 
what Penrose says here is simply false. There have been, and there still are, many 
disagreements among mathematicians about validity of proofs. Here are few 
examples. Many more can be given. 

• The debates on GD and LP provide good examples themselves. While Gö-
del believed that GD is a “mathematically established fact”, Feferman (for 
example) did not accept his proof (Feferman, 2006). Similarly, while al-
most every mathematical logician rejects the proofs that Lucas and Penrose 
have given to their theses, Lucas and Penrose insist that they are (“essen-
tially”) correct. Obviously, the “minds” of Lucas and Penrose differ from 
those of the majority of the logicians… 

• Gödel was a devoted platonist that saw no problem in using actual infinity 
in proofs (something that according to his own testimony has allowed him 
to prove his theorems). In contrast, the only infinity that was acceptable to 
Euclid was potential infinity. Indeed, in most of the history of mathematics, 
from the Greeks to Gauss, the use of actual infinity in proofs was rejected 
by almost all the mathematicians. Only in recent times its use is viewed as 
legitimate by the majority of them—and there are several respectable 
mathematicians who still reject it. Therefore I see no reason to think that 
the (“idealized” versions of the) “minds” of Gödel and Euclid (say) were 
identical. 
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• There is also a great disagreement between constructivists on one hand, and 
classical mathematicians on the other. As is well known, constructivists re-
ject the general use of the law of excluded middle, while classical mathe-
maticians use it freely. There are also many disagreements among the fol-
lowers of various brands of constructivism: Intuitionism, Bishop’s con-
structivism, Russian constructivism (in the tradition of Markov and others), 
and so on. 

• Even among classical mathematicians who are not finitists or constructiv-
ists, there is a controversy about the acceptance of certain axioms. Thus 
there are mathematicians who believe that they can “see” that measurable 
cardinals exist (or at least that their existence is consistent with ZFC), 
while many other mathematicians (like me) totally lack this ability. Even 
Penrose himself admits in Chapter 4 of (1989) that 

When all the ramifications of set theory are considered, one comes across sets 
which are so wildly enormous and nebulously constructed, that even a fairly de-
termined Platonist such as myself may begin to have doubts that their existence, 
or otherwise, is indeed an “absolute” matter. There may come a stage at which the 
sets have such convoluted and conceptually dubious definitions that the question 
of the truth or falsity on mathematical statements concerning them may begin to 
take on a somewhat “matter-of opinion” quality rather than a “god-given” one. 
(p. 147) 

For fairness, I should note that Penrose did not completely ignore the difficul-
ties to his thesis (about the “universal mathematician”) that are caused by the 
different views that actual mathematicians have about mathematical truth and 
validity of proofs. In a footnote to Chapter 10 of (1989) he says: 

Some readers may be troubled by the fact that there are indeed different points of 
view among mathematicians. Recall the discussion given in Chapter 4. However 
the differences, where they exist, need not greatly concern us here. They refer on-
ly to esoteric questions concerning very large sets, whereas we can restrict our at-
tention to propositions in arithmetic (with a finite number of existential and uni-
versal quantifiers) and the foregoing discussion will apply. (Perhaps this over-
states the case somewhat, since a reflection principle referring to infinite sets can 
sometimes be used to derive propositions in arithmetic.) As to the very dogmatic 
Godel-immune formalist who claims not even to recognize that there is such 
a thing as mathematical truth, I shall simply ignore him, since he apparently does 
not possess the truth-divining quality that the discussion is all about! (pp. 581-582) 

Here, as a side remark inside brackets within a footnote, Penrose is burying 
the point that decisively refutes what he is claiming. His case is not just “over-
stated” because of the fact noted in the brackets. That fact demolishes his case 
completely, because “the propositions in arithmetic that axioms of strong infinity 
are used for their proofs” are exactly of the type that Lucas and Penrose use in 
their arguments. Thus assume that Penrose has doubts about the strong infinity 



 THE PROBLEMATIC NATURE OF GÖDEL’S DISJUNCTIONS… 93 
 

axiom I, While W is a mathematician who “sees” or somehow feels s/he knows 
that I is true. Then W also knows the truth of the Π1

0-arithmetic proposition that 
states that ZFC+I is consistent—something that there seems to be no way for 
Penrose to know. So, according to Penrose’s own argument, the “mind” of 
W “surpasses the power” of Penrose to prove Π1

0-arithmetic propositions, and in 
particular—the “minds” of Penrose and W are different in an essential way. 

Note 1 Gödel too did not ignore the problems that are caused to his disjunc-
tion by the the existence of different schools of mathematics. Therefore he did 
his best to make his argument for GD independent of a mathematician’s philoso-
phy of mathematics: “It is of great importance that at least this fact [i.e. that the 
disjunction is ‘an established mathematical fact’] is entirely independent of the 
special standpoint taken toward the foundations of mathematics” (Godel, 1951, 
p. 310). 

However, what is in question here is whether the formulation of GD is mean-
ingful. Hence Gödel’s care for the independence of his argument from philosoph-
ical views is irrelevant to the point we are making. 

The upshot of this discussion is that [1-Koellner-A] and [1-Koellner-B] are 
not equivalent. What is more, it casts strong doubt on the meaning of the former. 
The only possibility that remains to try to give some meaning to it and to all the 
other formulations above that mention “the human mind”, is to understand “the 
mathematical outputs of the (idealized) human mind” as referring to the totality 
(that is: the union) of the true mathematical outputs of the (idealized) human 
“minds”.5 This interpretation is examined in the next Section. Meanwhile we turn 
to a further examination of [1-Koellner-B]. 

4.3. “The Mind” of a Particular Mathematician 

Let us turn to versions of GD that do not pretend to describe properties of the 
mythic “Human mind”, but instead claim that some given specific “mind” “is not 
a machine”. As is stated in [1-Koellner-B], and confirmed by Gödel and Penrose 
themselves, these versions do not really speak of the actual “mind” of someone 
like Gödel (say), but on the “mind” of an idealized Gödel, who lives for ever, 
and has other nice non-human qualities, but still is exactly like the real Gödel 
with respect to his mathematical abilities. Similarly, GD is not about any real 
finite machine, but about an idealized one. These facts, especially the first one, 
have been severely criticized in a very convincing way in (Feferman, 2006; Ko-
ellner, 2018b; Putnam, 2011), and especially in (Shapiro, 1998) and (Shapiro, 

 
5 As noted in (Feferman, 2006), an indication that this was not what Gödel himself 

had in mind is provided by what he said in a conversation with Hao Wang reported in 
p. 189 of (1996): “By mind I mean an individual mind of unlimited life span. This is still 
different from the collective mind of the species”. 
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2016). I am not going to repeat the arguments given in these papers here. Instead, 
I want to emphasize the following points (several of them new, as far as I know): 

• The mechanist and the computationalist theses are not about idealized hu-
man beings and idealized machines, but about real human beings and real 
machines. I have never seen any explanation (by either Gödel, Penrose, 
Lucas, or anybody else) how a claim like [1-Koellner-B] implies a claim 
like [1-Gödel-A], in case what is meant in the latter by “the human mind” 
is (say) “the mind of the real Gödel”. 

• It seems to me almost certain, and certainly possible, that an essential part 
of the permanent code that is built into any human machine ensures its 
mortality. Therefore the concept of an immortal human “mind” might well 
be an oxymoron! 

• The idealization of “a human mind” that is involved in the picture that Gö-
del had of this notion, goes far beyond imagining it to be able to work for 
ever. It is actually based on a very naive view of a “mind”, that for the task 
of doing mathematics is self-contained, and in principle independent of get-
ting external output. I see no reason to believe in this romantic picture. 
Thus no matter how genius Archimedes has been, his abilities were limited 
by the culture in which he was active. Because of this culture, he was una-
ble even to introduce the number zero. As for Gödel’s theorems—they were 
not a part of the mathematics which was accessible to him. In fact, it seems 
to me very likely that even had Archimedes been immortal, as long as he 
would have worked in complete isolation from other mathematicians, he 
might have never discovered Gödel’s theorems. 

• Let us go one step further. We maintain that not only talks about “the hu-
man mind” in general, but also talks about the “mind” of a particular per-
son like Gödel, are misleading. Is GD intended to tell us something about the 
“mind” of Gödel when he was four years old? Or even about his “mind” 
when he was 70 years old? Certainly not. The reason is that a person’s 
“mind” is something dynamic. T h e r e  i s  n o  s i n g l e  “ m i n d  o f  G ö -
d e l ”. T h e r e  i s  a t  m o s t  “ t h e  m i n d  o f  G ö d e l  a t  a  c e r t a i n  
t i m e  o f  h i s  l i f e ”. The “mind” of any particular living person changes 
all the time by its interaction with the world and by learning new things 
(and forgetting others—this is also an essential component of the develop-
ment of any actual “mind”). This, e.g. is the reason why it frequently hap-
pens that a problem one could not solve at one point of her life, she finds a 
solution to a few years later. 

Note 2 A particularly interesting implication of the dynamic nature of a hu-
man “mind” is given by the following scenario: suppose a certain person who 
understands Gödel’s incompleteness theorems and their proofs, e.g. Lucas, 
somehow learns at a certain time t2 of his life that the set of true arithmetic prop-
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ositions he could potentially have known at some previous time t1, is identical to 
the set of theorems of the formal system 𝒯𝒯. (This could happen if he is told so by 
“his creator”—a term used by Gödel in [1951]—or if he infers this with very 
high degree of certainty from new experimental data that he had meanwhile 
acquired.) This fact was not (and could not have been) a part of his knowledge at 
time t1. Hence the “mind” of Lucas at time t2 is different from his “mind” at time 
t1. This fact makes it possible for him to know at time t2 various Gödel’s sentenc-
es for 𝒯𝒯 that were not (and could not have been) known to him at time t1. 

Note 3 Interestingly, on another occasion Gödel himself noted the dynamic 
nature of a human “mind”. In a note, which was prepared for publication but 
never actually published, he wrote: 

Turing gives an argument which is supposed to show that mental procedures can-
not go beyond mechanical procedures. However, this argument is inconclusive. 
What Turing disregards completely is the fact that mind, in its use, is not static, 
but constantly developing. (Gödel, 1990, p. 306) 

I wonder why Gödel has not noticed the crucial importance of this correct 
observation to his own disjunction. (Or maybe he did? After all, [Gödel, 1951] 
has never been published by Gödel himself.) 

It follows from the discussion at the last item above that even in [1-Koellner-
B] the first disjunct is very vague, and should be reformulated, e.g., as “The 
(realistic) potential mathematical outputs of a given person at a given point of 
time cannot coincide with the (realistic) potential mathematical outputs of any 
finite machine (at some point of time)”. In my opinion, this formulation of the 
first disjunct is probably false. What is sure is that Gödel theorems have little to 
tell us about its truth value. 

In connection with this, it should be noted that it seems that almost all the 
participants, from both sides, in the debates about GD and LP have followed 
Gödel and Lucas in ignoring the dynamic nature of human “minds”, and so have 
discussed only the question whether it can be equivalent to some static Turing 
machine. The question should have been whether it can be equivalent to a robot 
whose “mind” (i.e. the combination of its hardware, software, and memory) 
continuously changed through learning (both from the experience it gets from its 
interaction with the neighborhood, and from direct teachers) and forgetting. Such 
robots already exist, and I do not see any “Gödel argument” that can prevent us 
from making in the future a robot that has even the same mathematical abilities 
that Gödel had when he was at his twenties. I suspect that the importance for the 
debate of the power of learning, and of the dynamic aspects of both “minds” and 
machines, was disregarded because of the continuing confusion noted above 
about what is meant by a “machine”: Is it just the device (i.e. hardware), or is it 
something bigger, like the device together with (a part of) the software and 
memory? 
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5. “Knowable”, “Demonstrable”, “Certain”, “Evident” 

In this section we examine the alternative interpretation (which was men-
tioned at the end of Section 4.2), of “the mathematical outputs of the (idealized) 
human mind” as referring to all the true mathematical facts that may be output 
by (idealized) human “minds”. This interpretation is explicitly reflected (with 
important amendments that Shipman has found necessary) only in [1-Shipman] 
and [2-Shipman]. However, it seems to stand also behind most (if not all) the 
formulations above that avoid the use of the notion of “human mind”, replacing 
it instead with some less ontologically committed notions, like: “human under-
standing”, “human mathematical reasoning”, “the collection of humanly knowa-
ble theorems”, and “all demonstrable mathematical propositions”. As was force-
fully argued in (LaForte, Hayes, & Ford, 1998), it should be clear that in this 
form, GD and LP have no real relevance to the mechanist (or even the computa-
tionalist) thesis, because the claim that (“knowable”) mathematics is r.e. (i.e. is 
encapsulated by some formal system) is completely different from the claim that 
the (“knowable”) mathematics of any specific mathematician is r.e. Nevertheless, 
the corresponding theses still have interest and philosophical implications of 
their own. So let us examine them. 

5.1. “Knowable” Versus “Demonstrable” 

The notions of “human understanding”, and “human mathematical reasoning” 
are too broad and fuzzy to be used in a logico-mathematical discussion. So let us 
concentrate on the two collections of mathematical objects that are mentioned in 
the previous paragraph. To make it more plausible that they describe definite 
mathematical objects themselves, we shall restrict ourselves to two less general 
(but sufficiently rich) sub-collections: “the collection of humanly knowable 
arithmetic propositions” and “the collection of humanly demonstrable arithmetic 
propositions”.6 Assuming, for the time being, that these two collections are well-
defined, let us discuss first the question whether they are identical. The obvious 
answer should be that they are not. Here are two examples: 

• Even children know that multiplication of natural numbers is commutative. 
In contrast, even the majority of the scientists do not know how to demon-
strate this mathematically. Their knowledge of it is based on a mixture of 
personal experience with what is taught in school. 

• A more subtle example is given by complexity theory. For all practical pur-
poses, the computer scientists behave as if they know that P ≠ NP. In fact, 
most of them feel that they indeed know this, even though none of them 
can mathematically demonstrate it. 

 
6 We may further restrict them by replacing “arithmetic” with “Π1

0-arithmetic”. 
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The obvious reply to this objection that one can implicitly find in the literature 
on the subject is that what is meant here by both “knowable” and “demonstrable” 
is “knowable with mathematical certainty” (Godel, 1951) or “logically derivable 
from evident axioms” (Godel, 1951, again), or “perceivable by mathematicians 
as unassailably true” (Penrose, 1994), or “demonstrably true by human reason 
and insight” (Penrose, 2011), or “knowable with unassailable mathematical cer-
tainty, via full mathematical rigor” (Shapiro, 2016). The use here of several dif-
ferent formulations (and several others can be found in the literature), employing 
different words which have similar but not identical meanings, is already suspi-
cious. True, when we need to express ourselves precisely, it is often helpful to 
have in our language different words whose meaning is close but not identical. 
However, this fact also makes it possible to obscure things by switching from 
one word to another. This is indeed what repeatedly happens in the papers on the 
subject, especially in papers that try to support LP. However, here I would like to 
give an example from an argument of an opponent: Stewart Shapiro. Usually, 
Shapiro is very careful in distinguishing between different concepts, and he uses 
this repeatedly and convincingly in order to show that there is no sufficiently 
precise mechanistic thesis that is undermined by Gödel’s theorems (Shapiro, 
1998; 2016). However, when he discusses the candidacy of ZFC as a formal 
system that encapsulates all “unassailably true arithmetic propositions” he is less 
careful. He writes: “Moreover, is Zermelo-Fraenkel set theory sufficient for all 
unassailable mathematical knowledge? If so, the mechanist wins. But ZFC clear-
ly isn’t sufficient. Don’t forget the Gödel sentence for ZFC. I presume we do 
know that” (Shapiro, 2016, p. 198). 

Notice that Shapiro does not write that he is presuming that the Gödel sen-
tence for ZFC belongs to our “unassailable mathematical knowledge”—he is 
careful to presume only that we know it. By this he is taking advantage of the 
crucial difference between “knowing” and “mathematically demonstrating” not-
ed above. Thus I, for one, feel that I know with very high degree of confidence 
(which is as least as high as my knowledge that all men are mortal, or that the 
sun will rise tomorrow), that ZFC is consistent. The reason is simple: I am con-
vinced that had it been inconsistent then this would have been discovered by now 
(more than a century after the best mathematicians in the world start to exten-
sively investigate and use it). 7  Moreover: even though I am not a platonist, 
I admit that the picture of the “Von Neumann universe” provides strong intuitive 
support to the belief in the consistency of ZFC, even though this support is not 
absolutely conclusive. Still, I definitely cannot demonstrate, or claim to know 
with “absolute mathematical certainty”, that ZFC is consistent.8 

 
7 Gödel himself notes in (1951) the possibility of empirical certainty that the brain 

works like a computer, or that the mathematical human “mind” is equivalent to a Turing 
machine. 

8 Actually, Shapiro himself observed in (1998) that given a system S, “for each axiom 
ψ of S, we can have good reason to think that ψ is true without having good reason to 
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5.2. Degrees of Certainty 

The discussion above shows that it is anything but clear what exactly is 
claimed in each of the above vague formulations of the first disjunction in case it 
is not (or may not be) about the “mind” of a single person, or whether they all 
say the same thing. In order to give some chance for a Gödel’s disjunction to 
mean something which is not just a trivial reformulation of Tarski’s theorem, and 
may follow from Gödel incompleteness theorems, we shall henceforth assume 
that all of these formulations indeed try to make the same claim: that the set of 
Π1

0-arithmetic propositions which are “provable with unassailable mathematical 
certainty” differs from the set of Π1

0-arithmetic theorems of any formal system. 
Does at least this formulation express a unique meaningful claim? Not really. 
The reason is that the notion of “unassailable mathematical certainty” does not 
have a determined unique meaning. The main problem with it was formulated in 
(Koellner, 2018b, p. 473) as follows: “justification and evidence in mathematics 
come in degrees”. In other words: there are different levels of mathematical 
certainty. They are mainly characterized by the role that infinity is allowed to 
have in proofs. Here are the most important groups of levels. (The reason why 
we speak here about g r o u p s  o f  l e v e l s  is explained in the sequel.) 

Finitistic mathematics. Here references to infinite objects and quantification 
over an infinite collection of objects are strictly forbidden in propositions and 
proofs. According to Hilbert, only the use of finitistic methods of proof provides 
absolute mathematical certainty. However, this position is shared now by very 
few mathematicians. Still, it should be noted that in (Ye, 2011) it is shown that 
Finitistic mathematics is quite rich and its power is far bigger than what one 
might have expected. 

Predicative mathematics (Feferman, 2005). Here potentially infinite objects are 
allowed. As noted above, this was the way infinity was viewed by most of the 
mathematicians throughout almost the whole history of mathematics; the change 
came only at the second half of the 19th century. The modern predicativist pro-
gram was initiated by Poincaré (1906; 1909), in his follow up on (Richard, 1905). 
Its viability was demonstrated by Hermann Weyl, who seriously developed it for 
the first time in his famous small book Das Kontinuum (1918; 1987). After Weyl, 
the predicativist program was extensively pursued by Feferman, who in a series 
of papers (see, e.g., 1964; 1998; 2005) developed proof systems for predicative 
mathematics. Weyl and Feferman have shown that a very large part of classical 
analysis can be developed within their systems. 

Feferman further argued that predicative mathematics in fact suffices for de-
veloping all the mathematics that is actually indispensable to present-day natural 

 
think that S is consistent”. Now take S to be ZFC, where by “good reason” we understand 
p r o v a b l e  w i t h  u n a s s a i l a b l e  m a t h e m a t i c a l  c e r t a i n t y… 
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sciences. Allow me to add to that my personal opinion (Avron, 2020): I believe 
that predicative mathematics is exactly the part of mathematics that deserves 
being called “absolutely certain”. 

For the predicativist program, the following well-known fact about Π1
0 -

sentences is very important: if ψ is such a sentence, and T ⊢ ψ (where T is some 
formal theory), then PA + Con T ⊢ ψ, where PA is first-order Peano’s Arithmetics. 
Since PA is a part of predicative mathematics, it follows that no matter how 
strong and large a formal theory T is, and to what extent it goes beyond predica-
tively acceptable mathematics, as far as Π1

0-sentences are concerned, the use of 
T in proofs is equivalent to the use in predicative mathematics of the single 
arithmetic sentence that expresses the fact that T is consistent. In other words: 
the degree of certainty, that a proof of a Π1

0-sentence ψ in a given formal theory 
T gives us about the truth of ψ, is identical to the degree of certainty that we have 
in the consistency of T. 

ZF(C). ZFC is the canonical system in which almost all of mathematics is offi-
cially developed. What is more: it is safe to say that the axioms of ZF include all 
the axioms of set theory that the great majority of the mathematicians in the 
world are ready to accept as uncontroversial (although there might be different 
opinions about what it means to say that they are “true”). It seems that nowadays 
most mathematicians think that the axiom of choice is true too. However, histori-
cally many great mathematicians have strongly objected to the use of that axiom. 
The fact that this situation has been changed might reflect cultural environ-
ment—hardly what justifies seeing something as “obviously true”. Luckily, since 
the consistency of ZFC follows in PA from the consistency of ZF, ZFC is as 
good as ZF for justifying the acceptance of the truth of Π1

0-sentences. Things are 
different with respect to other axioms of ZF that some mathematicians find du-
bious, like replacement or powerset. In any case, it seems to me that only few 
mathematicians would deny that proofs in PA of Π1

0-sentences provide higher 
degree of certainty than proofs in ZFC. 

Extensions of ZFC. Many set theorists feel that there is no reason to stop at 
ZFC, especially since the latter cannot prove its own consistency (which should 
be taken for granted by anybody who uses ZFC for showing the truth of some 
Π1

0-sentence). The natural direction of going beyond ZFC is to add to it stronger 
and stronger axioms of strong infinity. Thus in (1946) Gödel proposed provabil-
ity with regard to extensions of ZFC with true large cardinal axioms as a plausi-
ble concept of absolute demonstrability. Similarly, in (2005), Franzén wrote that 
ZFC+some infinity axiom may represent exactly the “human demonstrated 
mathematics”. Unfortunately, “The case for the axioms gets harder and more 
involved as one ascends to higher and higher reaches”. (Koellner, 2018b, p. 473). 
(Recall what Penrose himself has said about this in [1989, Section 4.2].) The 
situation with respect to the “absolute certainty” of large cardinal axioms was 
best described by Feferman as follows: 
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I don’t know of anyone who says that we can be assured that all the large-cardinal 
axioms that have been considered to date lead only to mathematical truths, let 
alone that they are “evident” as required by Gödel in his disjunctive formulation.
 (2006, p. 149) 

This state of affairs is obviously the reason why Shipman has turned to ac-
ceptance of set-theoretical statements not on the basis of their being evident, or 
“knowable with unassailable mathematical certainty”, but on the basis of future 
consensus. To see how vague is his notion of “human mathematics” it is enough 
to follow him word by word and define “machine mathematics” as the collection 
of formalized sentences in the language of set theory which are logical conse-
quences of statements that will eventually come to be accepted by a consensus of 
machine mathematicians as “true”. What can we infer from Gödel theorems 
about this “machine mathematics”? Actually, there might be reasons to believe 
that it includes all true arithmetical sentences: Call any machine which produces 
arithmetical sentences “a machine mathematician” iff all the arithmetical sen-
tences it produces are true. Let an arithmetical sentence be “accepted by a consen-
sus of machine mathematicians” once 1000 machine mathematicians have pro-
duced it. Then obviously all true arithmetical sentences belong to “machine math-
ematics” according to these definitions. Shipman might object, of course, that these 
are not good definitions or characterizations of “mathematicians” or “consensus”. 
I would agree, but I cannot see what better ones he might be able to offer. 

Another aspect of Shipman’s definition is its dependence on time (“eventual-
ly”). Similarly, on many occasions H. Friedman has expressed his belief that the 
use of strong cardinal axioms will necessarily become a part of humane mathe-
matics. So he too is speaking about the future. Why? Because nobody can claim 
that such axioms are “a part of humane mathematics” at present. It seems there-
fore that what the “human mind” can prove with “unassailable mathematical 
certainty” depends on time, consensus, etc. How can such a concept be connect-
ed with Gödel’s theorems? 

Note 4 As was noted already in Note 1, Gödel was aware of the difficulties 
that are caused to his disjunctive thesis by the existence of different views about 
what is evident and what is not. Therefore he explicitly tried to make his argu-
ment for his thesis independent of one’s views on the matter. In other words, he 
claimed that his argument should be acceptable not only to platonists, but also to 
finitists, constructivists, predicativists, etc. The difference, he wrote, between the 
various schools would be with respect to the truth-values of the two disjuncts; 
not with respect to the truth-value of their disjunction. However, Gödel missed 
the real problems here. First, it might be that because they all use the same vague, 
informal language, they all would accept a certain formulation of the disjunc-
tion—but each one would understand by this a completely different thesis. Since 
each group above includes many variants and non-identical theses, the number of 
theses here would be almost the same as the number of people who are interested 
in the subject. Second, as we have emphasized in Note 1, no matter what school 
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one is associated with, in most cases the main words involved in the formula-
tions of the disjunction would be extremely vague. (And again, the disjunction is 
trivial and totally uninteresting in the few cases in which its formulation can be 
taken as meaningful.) 

5.3. On Geometric Reasoning 

The discussion so far concentrated on the degree of certainty that can be 
achieved using formal reasoning about abstract notions like numbers and sets. 
What about geometric reasoning? Until the 19th century, it had a central part in 
mathematical reasoning (and for long periods—it was its main rigorous part). 
The invention/discovery of non-Euclidean geometries has changed this situation. 
Nowadays geometric reasoning is still taken to be useful for getting intuitive 
understanding of theorems in analysis, and for providing hints how they may be 
rigorously proved. However, direct use of them in proofs of arithmetical proposi-
tions is usually considered to be illegitimate. This approach may be questioned. 
It might be argued that geometric arguments do provide some degree of certainty. 
Thus Penrose gave in (1994) the (Euclidean) geometric proof that a × b = b × a 
as an elementary example of geometrical reasoning, and said that it is “a perfect-
ly good proof, though not a formal one” of a general property of natural numbers. 
However, on another occasion he described Euclidean geometry as inaccurate: 

The most ancient of the SUPERB theories is the Euclidean geometry that we learn 
something of at school. The ancients may not have regarded it as a physical theory 
at all, but that is indeed what it was: a sublime and superbly accurate theory of 
physical space—and of the geometry of rigid bodies. Why do I refer to Euclidean 
geometry as a physical theory rather than a branch of mathematics? Ironically, one 
of the clearest reasons for taking that view is that we now know that Euclidean 
geometry is not entirely accurate as a description of the physical space that we ac-
tually inhabit! (Penrose, 1989, p. 197) 

The reason that Euclidean geometry is described by Penrose as “inaccurate” 
(Popper would have simply said “false”) is that according to Einstein’s general 
relativity theory, the real geometry of our universe is actually a non-Euclidean 
one. Nevertheless, when he is talking about applying geometrical reasoning in 
demonstrating properties of the natural numbers, Penrose has only Euclidean 
geometry in mind:9 

The study of non-Euclidean geometries is something mathematically interesting, 
with important applications […] but when the term “geometry” is used in ordinary 

 
9 Also in Chapter 3 of (1989), where Penrose describes with fascination the amazing 

geometric properties of Mandelbrot set, saying then (p. 125) that “Like Mount Everest, 
the Mandelbrot set is just there!”, the set he is talking about exists in the Euclidean plane. 
So if it has a platonic existence, then necessarily so does the Euclidean plane itself. 
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language (as distinct from when a mathematician or theoretical physicist might 
use that term), we do indeed mean the ordinary geometry of Euclid. (1994, p. 111) 

These incoherent views on the role of geometry in mathematics, all of them 
in the “mind” of just one, a particularly brilliant mathematician, shows how 
uncertain is what the degree of certainty that the use of geometrical reasoning 
provides is. It also gives further strong evidence that there are several different 
levels of “mathematical certainty”. 

6. Some Remarks on Lucas-Penrose’s Theses 

What we did above is to question the meaningfulness of the various formula-
tions of the Gödel’s disjunction in general, and of the various Lucas-Penrose 
theses in particular. For completeness, in this section we assume, for the sake of 
argument, that at least one of the latter makes sense, and briefly describe the two 
main mistakes (that is: unjustified hidden assumptions) that were noted in the 
literature in its alleged “proof”. 

1. The assumption that the (or a) “human mind” is consistent. 
2. The assumption that in any case that we realize that the (or a) “human mind” 

is equivalent to a Turing machine, we should know this with mathematical 
certainty. 

Unlike what is sometimes argued (partially even in [Krajewski, 2020]), there 
is no conflict between those that have emphasized the first assumption, and those 
that have emphasized the second one. Actually, there are good reasons to serious-
ly take into account the possibility that our “mathematical mind” is based on 
a theory which is inconsistent, and we do not know this fact! 

Let us start with some reasons that were given in the literature to doubt the 
truth (to say nothing about the certainty) of the first assumption, that is: the con-
sistency of the mathematical “human mind”: 

Putnam: An actual mathematician makes mistakes, and her outputs contains 
inconsistencies (Putnam, 2011). 

Davis: Great logicians (Frege, Curry, Church, Quine, Rosser) have managed to 
propose quite serious systems of logic which later have turned out to be in-
consistent. “Insight” didn’t help (Davis, 1990). 

Franzén: ZFC+some infinity axiom may represent exactly the “human demon-
strated mathematics”, and we do not know whether that system is consistent 
(Franzén, 2005). 

Penrose’s reply to the first (Putnam’s) argument is: 
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The most usual kind of mistake that a mathematician might make is of no real con-
cern to us here, being something that is correctable by that mathematician on further 
contemplation or when the error is pointed out by someone else. (2011, p. 351) 

It is debatable whether this is indeed a satisfactory reply to Putnam. In any 
case, it is certainly irrelevant to Franzén’s argument, and actually to Davis’ one 
too. The inconsistencies in the systems suggested by the great logicians that 
Davis mentions were indeed pointed out to them by others, but it was not clear at 
all what their mistakes had been, and how to “correct” them. All of the principles 
they used seemed “certainly correct”, and yet the whole system of each of them 
was inconsistent. It follows that there was something deeply inconsistent in their 
collections of beliefs, and it is not certain at all that this deep inconsistency dis-
appeared after the obvious problems with their mistakes had been discovered. 
Therefore it is not inconceivable that some deep inconsistency exists in the 
mathematical “mind” of each of us.10 In this connection, the following fact is 
rather telling: throughout the second half of the 19th century (if not already be-
fore), mathematicians were implicitly working within an inconsistent theory: 
naive set theory.11 

Let us turn now to assumption 2 above. First, let us emphasize that it is in-
deed absolutely necessary for the argument of Lucas and Penrose to assume that 
our recognition of a certain formal system F as being equivalent to our “mind” 
(with respect to the (Π1

0)-arithmetic sentences) should be mathematically certain. 
Otherwise, even under the assumption that we know with certainty the con-
sistency of our mind, we would not be able to infer the consistency of F, or 
(equivalently) its Gödel’s sentence, with any more mathematical certainty than 
F itself can. However, already Gödel admitted in (1951) that it is possible that 
the “mathematical human mind” is equivalent to a Turing machine which is 
unable to understand itself, and that to demonstrate that this is indeed the case (or 
at least that this is highly plausible), it suffices to bring forward a machine that 
empirically seems to be equivalent to our “mind”. These observations of Gödel 
suffice to render the assumption of Lucas-Penrose under discussion as unwar-
ranted. However, we would like to go one step further: to note that plausible 
candidates for F do exist. (This is a possibility that Lucas has obviously taken as 
just theoretical.) Actually, such candidates were already mentioned above. Thus 
according to Franzén and Shipman, F might be ZFC extended with some infinity 
axioms. But if we talk about the set of (Π1

0)-arithmetic sentences that can be 
proved with certainty, then a much better candidate was already (partially) dis-
cussed in Section 5.1: it is ZFC itself. 

 
10 Note that that in Section 5.3 some incoherence, if not an inconsistency, is pointed 

out in the views of Penrose himself about the status of Euclidean geometry! 
11 Another interesting example is provided by the debate on the axiom of choice. 

Some of the great mathematicians that strongly objected to its use, like Borel and Lebes-
gue, did not notice that they had implicitly used it themselves in their work… 
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This explicit suggestion might immediately raise a particular case of the fol-
lowing standard objection: 

As long as we see mathematical theories, or algorithms, as fundamentally similar 
to what we know as mathematics, we tend to assume that all the theories that are 
encompassing our knowledge of the natural numbers must, in principle, be based 
on a series of transparent basic truths (axioms) and be developed due to the appli-
cations of known, correct logical rules. If so, every such theory, if presented to us, 
must be fully understood, or at least understandable. And this full understanding 
implies our knowledge of its consistency and presumably also soundness. There-
fore, out-Gödeling is, indeed, possible. (Krajewski, 2020, p. 41) 

Or in the words of Gödel himself, his second incompleteness theorem 

makes it impossible that someone should set up a certain well-defined system of 
axioms and rules and consistently make the following assertion about it: All of 
these axioms and rules I perceive (with mathematical certitude) to be correct, and 
moreover I believe that they contain all of mathematics. If someone makes such 
a statement, he contradicts himself. For if he perceives the axioms under consider-
ation to be correct, he also perceives (with the same certainty) that they are con-
sistent. Hence he has a mathematical insight not derivable from his axioms. (1951, 
p. 309) 

It seems to follow that it makes no sense to fully trust the (Π1
0)-arithmetic 

theorems of ZFC, but less than fully trust the consistency of ZFC. However, this 
conclusion is again based on a subtle confusion, the danger of which was again 
noted by Gödel himself. In a footnote to the last quote he observed about the 
person mentioned in it (the one who sets up a certain well-defined system of 
axioms and rules) that “If he only says ‘I believe I shall be able to perceive one 
after the other to be true’ he does not contradicts himself” (1951, p. 309). 

What Gödel means here is that there is a difference between knowing with 
certainty the truth of each theorem of some system considered alone, (which 
means knowing with certainty an infinite numbers of claims), and between 
knowing the single claim that all of those sentences are true (a claim which is 
different from every such sentence). Thus we may be able to know with certainty 
any instance of Goldbach’s conjecture, without ever knowing with certainty 
Goldbach’s conjecture itself. Similarly, what I claim about ZFC is not that 
I sufficiently understand it to take its (Π1

0)-arithmetic theorems as established 
with absolute certainty just because they are theorems of ZFC. I am only claim-
ing the following: 

• The fact that a certain arithmetics sentence ψ is a theorem of ZFC is a very 
good reason to believe its truth (for the reasons explained above, which are 
partially empirical). However, this theoremhood alone does not provide us 
absolute certainty in the truth of ψ. 



 THE PROBLEMATIC NATURE OF GÖDEL’S DISJUNCTIONS… 105 
 

• On empirical ground, I strongly believe that every (Π1
0)-arithmetic sentence 

that will ever be proved with absolute certainty belongs to the set of theo-
rems of ZFC. 

• On empirical ground again, I see it as very plausible that the converse is 
true too: for every theorem ψ of ZFC there is some absolutely certain for-
mal system F such that ψ is also a theorem of F. (F may e.g. be a system 
which we recognize as obtained from PA by the addition of some formal-
ized reflection principles; see Feferman, 1962.) 

• We do not know, and most probably we shall never know, the consistency 
of ZFC with absolute certainty. 

I suspect that many people (including perhaps Gödel) would claim that alt-
hough the situation I describe might in principle be possible, it is very unlikely to 
be the real one. I think that on the contrary, the facts as we know them at present 
support it. Nevertheless, I would like to end this section by pointing out an ex-
ample in which a very similar state of affairs is accepted by most specialists to 
actually be the case. This is the case of predicative mathematics that was de-
scribed above (and I personally take as identical to the “absolutely certain math-
ematics”). Without any connection to the debate on Lucas-Penrose theses, Fe-
ferman (1964) and Schütte (1965) independently characterized it by some 
(equivalent) formal systems that (so they claimed) prove exactly the arithmetic 
sentences that a real predicativist is able to prove with what s/he takes as abso-
lute certainty. In the case of Feferman this was done in (1964) using a transfinite 
sequence of formal theories. Feferman maintained that a true predicativist can 
prove with certainty each theorem of each theory in this sequence, but he is not 
capable of seeing that he is able to do so, or the adequacy of the union of those 
systems as a whole. In other words: according to Feferman, he can exactly char-
acterize what a predicativist (like me) can prove, although a real predicativist 
cannot do it (unless he abandons his principles). Feferman thinks therefore that 
he can know with full certainty a sentence which is equivalent to the consistency 
of my certain mathematics, while I myself cannot know it with certainty.12 If he 
is right, then from Feferman’s point of view (and almost every logician agrees) 
I (or at least my “mathematical mind”) am equivalent to a Turing Machine. I do 
not feel insulted by this, but it is still difficult for me to accept that I am equiva-
lent to a Turing Machine, while some other people (e.g. Lucas and Penrose) are 
not. Maybe this very human feeling is a sign that I am not exactly a Turing Ma-
chine after all… 

 
 

 
12 Although Feferman was very sympathetic with predicativism, and it is clear that it 

reflects his views better than any other known “ism”, he has declared that he is not a real 
predicativist himself. 
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7. Conclusions 

We have shown that the name “Lucas-Penrose thesis” encompasses several 
different theses. All these theses refer to extremely vague concepts, and so are 
either practically meaningless, or obviously false. The arguments for the various 
theses, in turn, are based on confusions with regard to the meaning(s) of these 
vague notions, and on unjustified hidden assumptions concerning them. All these 
observations are true also for all interesting versions of the much weaker (and by 
far more widely accepted) thesis known as “Gödel disjunction”. 

Now Penrose, e.g., has provided in (1994, and in other papers) “replies” to 
almost every argument made above. However, each of these “replies” is connect-
ed only to some of the theses he is trying to make (although he does not distin-
guish between them), and frequently they contradict each other. These and simi-
lar confusions, in turn, are frequently the result of the the inadequacy of natural 
languages for dealing with precise notions and propositions. My conclusion from 
this state of affairs is that a n  a r g u m e n t  t h a t  c a n n o t  b e  f u l l y  f o r m a l -
i z e d  c a n n o t  b e  t a k e n  a s  a  m a t h e m a t i c a l  p r o o f . What is more: if 
there is a debate about the soundness of an argument, then in order to resolve it 
one should first of all fully formalize it. One important outcome of such a full 
formalization is that it makes all the hidden assumptions explicit. 

Another conclusion of this paper is the following dictum of Feferman: “It is 
hubris to think that by mathematics alone we can determine what the human 
mind can or cannot do in general” (2009, p. 213). 
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1. Introduction 

J. R. Lucas (1961) argued that for any finitary computational machine hy-
pothesized to simulate full human mentality, there will be a Gödel sentence for 
that machine it cannot prove to be true, but which human beings can prove to be 
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true. David Lewis (1969) responded that Lucas (and any other human being) can 
prove the Gödel sentence for that machine to be true if and only if they can also 
prove the theorems in Lucas arithmetic. But Lewis doubts a finitary human can 
do that, since Lucas arithmetic uses infinitary rules of inference—and so there 
might be infinitely many premises in a given proof. Lucas (1970), in turn, re-
sponded that Lewis failed to appreciate the dialectical character of Lucas’ argu-
ment. Lewis (1979), in response, argued that even appreciating the dialectical 
character of the Lucas argument, Lucas cannot prove true the Gödel sentence of 
any finitary machine hypothesized to simulate full human mentality. 

Roger Penrose (1989; 1994) improved upon Lucas’ argument by proposing 
a neurobiological mechanism by which human beings might “see” the truth of 
the Gödel sentence of any finitary computational machine hypothesized to simu-
late full human mentality. Hilary Putnam argued (1995), famously, that Penrose 
commits a simple logical error. The finitary computational machine might have 
a program so long that no human being could physically survey it—and thus not 
be able to prove that it is consistent. If so, then even if full human mentality is 
not completely described by that finitary program, our failure to prove its con-
sistency would not distinguish us from the finitary computational machine which 
(by the Gödel incompleteness theorems) fails to prove its own consistency. If so, 
the Gödel incompleteness theorems could not be used to arrive at a conclusion 
that functionalism as a theory of the human mind is a false theory, since it could 
not be demonstrated that there is an objective truth human minds can verify that 
no finitary computational machine can verify. The Penrose error is that even if 
human minds can “see” the truth of the Gödel sentence for the finitary computa-
tional machine that is hypothesized to describe human mentality, physically 
human beings are finite (in terms of time and space limitations). If the program 
of the finitary computational machine is so long that no human could survey it 
(such as read it) in their lifetime, then no human being could “see” that it is con-
sistent (if it is). It is a logical error in Penrose’s argument, since it is a possibility 
that, if true, undermines the argument by showing that the conclusion of the 
argument is false. The burden of proof is on Penrose’s shoulders—to show that 
the possibility cannot be true. But this Penrose cannot do, since the ultimate 
finitary computational description of human mentality is yet to be written (if, in 
fact, there is one).  

Putnam went on to construct an anti-functionalist argument using the Gödel 
incompleteness theorems (1988; 1994a; 1994b), applying it to both demonstra-
tive and non-demonstrative reasoning. He does not apply the Gödel incomplete-
ness theorems to a finitary computational program hypothesized to simulate full 
human mentality. Instead, he exploits the Kaplan-Montague paradox—the basic 
idea of which is the Computational Liar. The Computational Liar shows—if 
Putnam is right—that any attempt to formalize human reasoning must fail be-
cause any formal description of human reasoning can always be transcended by 
human reasoning. (Although Putnam does not make it, a distinction needs to be 
made between (i) prima facie, any formal system can be transcended by another 
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formal system and (ii) any formal description of human reasoning can be trans-
cended by human reasoning. It would be a mistake to reduce (ii) to (i)—that is 
not what Putnam claims.)  

But his argument leads to a dilemma. If not all methods of inquiry are shown 
to be subject to the Gödel incompleteness theorems, one can take Kreisel’s way 
out. But if all methods of inquiry are subject to the Gödel incompleteness theo-
rems, there is an absurdity. I will provide (in section 7 of this paper) a categoriza-
tion of the Lucas-Penrose-Putnam anti-functionalist arguments employing the 
Gödel incompleteness theorems.  

What Putnam did not notice is that there is another way to show that human 
minds and any finitary computational machine hypothesized to simulate human 
minds are epistemically indistinguishable (even if they are de facto metaphysi-
cally distinguishable). What the Gödel incompleteness theorems show is that it is 
impossible to either prove the Gödel sentence of a formal system subject to the 
Gödel incompleteness theorems or to prove the consistency of that formal system 
using finitistic reasoning within that formal system (which delivers its theorems 
in the epistemic modality of mathematical certainty). Not even an infinitary mind 
can do that—an infinitary mind would use infinitary reasoning.  

However, it is left open that either the Gödel sentence of a formal system 
subject to the Gödel incompleteness theorems or the consistency of that formal 
system can be proved with less than mathematical certainty or in some other 
epistemic modality. Both a human mind and a finitary computational machine 
might be able to do that. If so, both can prove the same thing, and no difference 
can be made between the two. This is the lesson from Kreisel’s way out of the 
Gödel incompleteness theorems—and if taken, adds an interesting wrinkle to the 
Lucas-Penrose-Putnam anti-functionalist arguments. (Roger Penrose, in a pref-
ace to a reprinting of The Emperor’s New Mind [Penrose, 1999], notes that one 
loophole to his argument is that “our capacity for [mathematical] understanding 
might be […] inaccurate, but only approximately correct”. He says he will address 
this loophole to his argument in Shadows of the Mind [1994], but he does not.) 

2. Kreisel’s Way Out of the Gödel Incompleteness Theorems 

Kreisel (1972) raises the question of whether there is non-mathematical evi-
dence that can be used to establish the soundness of a formal system F (adequate 
for mathematical reasoning, and so subject to the Gödel incompleteness theo-
rems). He observes that it does not logically follow from the fact that a formal 
system is subject to the second Gödel incompleteness theorems that there are 
absolutely no means available to prove its consistency. It only follows logically 
that its consistency cannot be mathematically demonstrated with mathematical 
certainty using finitistic reasoning. It is left open that its consistency can be 
proved by other means, viz., mathematically with less than mathematical certain-
ty (typically by statistical reasoning) and non-mathematically, with less than 
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mathematical certainty, by abstract philosophical reasoning (a priori reasoning 
that is not encodable into a formal system). 

He believes that there are two different ways to realize the possibility of non-
mathematical evidence to prove the soundness of F, both of which are left open 
by the Gödel incompleteness theorems. The first kind of nonmathematical evi-
dence to prove the soundness of F is inductive evidence and the second is a met-
aphysical nonmathematical interpretation. Both kinds of evidence require sub-
stantial explanation—unfortunately, Kreisel’s explanations are brief.  

Nonmathematical inductive evidence is taken by Kreisel to be based on our 
experience with formal systems, such as our experience with Principia Mathe-
matica. In one way of understanding what our experience of formal systems 
delivers, our confidence in the soundness of formal systems is acquired by vari-
ous case studies of formal systems. Kreisel rejects this view—calling it a sham—
for two distinct reasons. The first reason is that we have little or no experience of 
proving the soundness of a formal system by inductive methods. From this 
Kreisel thinks it follows that we have no good ideas about what are the appropri-
ate statistical principles that would be used in evaluating the inductive evidence. 
Without statistical principles we have a data set, but no means by which to find 
in it the data which is necessary for establishing the soundness of some formal 
system. Whatever statistical principles we choose, one job which they must be 
able to do is to ascertain that the nonmathematical inductive evidence establishes 
that the entire formal system is sound, and not that only some subsystem of the 
formal system is sound. 

The second reason Kreisel rejects the idea of nonmathematical inductive evi-
dence for establishing the soundness of a formal system is that it is not done by 
using the experience we acquire from case studies of soundness proofs of formal 
systems. It is, instead, done by—at least in the case of Principia Mathematica—
reflection on the intended meaning of the terms in the language of Principia 
Mathematica. However, what is interesting about Kreisel’s point is that the act of 
reflecting upon what is the intended meaning of the terms in the language of 
a formal system may or may not be a computable procedure. There might not be 
a computational description of such acts. If there is no computational description 
of such acts, then there is some cognitive activity that humans can do which no 
machine can do. In which case, there would be a difference between humans and 
machines e v e n  i f  n e i t h e r  h u m a n s  n o r  m a c h i n e s  c a n  p r o v e  t h e  
G ö d e l  s e n t e n c e  o f  s o m e  f o r m a l  s y s t e m . Of course it would be 
a research project to show that acts of reflection upon the intended meanings of 
terms in some language (whether it is a formal language or not) have no compu-
tational description. (We shall see below that, using an ingenious Gödelian ar-
gument, Putnam attempts to close the door on both statistical methods and ab-
stract philosophical methods for demonstrating CON(PA) by arguing that they 
are subject to the Gödel incompleteness theorems.)  

The other way of proving the soundness of F is by an abstract but nonmath-
ematical interpretation of F. Kreisel cites as an analogy the identification in in-
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tuitionistic mathematics of what is mathematical with what is intuitionistically 
acceptable. He notes that in intuitionism set-theoretic concepts are metaphysical 
and then claims that it might be possible to establish the soundness of some set-
theoretic formal system using a metaphysical nonmathematical interpretation. 
Kreisel believes that this way of proving the soundness of F is more realistic 
than using inductive evidence to establish the soundness of F. I don’t know what 
he means by “realistic” in this context. Perhaps he means that there is a wealth of 
mathematical and foundational work in intuitionism, and so we have a better 
understanding of what an abstract nonmathematical interpretation of F would 
look like than we do of statistical principles.  

An interpretation is usually understood to be a map from syntactical objects 
(that is, symbols) to objects which need not be syntactical—perhaps mathemati-
cal objects. What, then, is a nonmathematical interpretation? Could it still be 
a map and yet be nonmathematical? And what does it mean to say it is metaphys-
ical? Kreisel restricts the metaphysical nonmathematical interpretation to an 
abstract metaphysical nonmathematical interpretation. But if it is a map and it is 
abstract, it is not clear how it could not be mathematical.  

Regardless of what Kreisel actually means by a metaphysical nonmathemati-
cal interpretation of F, using it to establish the soundness of F is different from 
proving the soundness of F within a classical formal system using finitary rea-
soning in the following respect: the proof of soundness of F within a classical 
formal system using finitary reasoning will be with mathematical certainty. (See 
below for a discussion of Church’s view that the theorems of a given system of 
logic are proved with mathematical certainty.) On the other hand, the proof of the 
soundness of F using a metaphysical nonmathematical interpretation will per-
haps not be with mathematical certainty. Kreisel’s way out is the use of statistical 
proofs of consistency of PA with less than mathematical certainty or proofs in 
another epistemic modality such as (nonmathematical philosophical proofs). For 
more on the epistemic modality of a proof see 4.1 below. 

3. Penrose on the Role of Trust in Mathematics 

The key idea of Kreisel’s way out is that one might be able to prove CON(PA) 
with less than mathematical certainty (using statistical methods) or in some other 
epistemic modality (such as metaphysical nonmathematical reasoning). Through-
out the rest of this paper we will see how these possibilities enter into the Lucas-
Penrose-Putnam anti-functionalism arguments. Recently Penrose has argued that 
trust plays an important role in mathematical proofs (2016). He claims that in 
order to trust a mathematical argument, we must trust that the rules of the formal 
system are sound. In cases where it cannot be established that the formal system 
is consistent because of the restriction imposed by the second Gödel incomplete-
ness theorem, we need to trust that the formal system is consistent. If we do, then 
we can prove true the Gödel sentence and the consistency of that formal system 
by ascending to a stronger formal system—which we trust to be consistent.  



114 JEFF BUECHNER  
 

We can view trust in the soundness of the rules of a formal system as an epis-
temic modality alternative to mathematical certainty delivered by proofs in 
a formal system. What Penrose fails to see is that if a finitary computational 
machine can meaningfully trust a formal system to be consistent, then there is no 
metaphysical difference between it and human minds. The move Penrose makes 
to show that human minds can determine the consistency of CON(PA) is one 
which defats his anti-functionalist argument, since it is open that finitary compu-
tational machines can do the same. The burden of proof is upon Penrose—to 
show that no finitary computational machine can exhibit the attitude of trust. 
(See Buechner, 2011, for an argument that finitary computational machines can 
engage in relations of trust with other finitary computational machines and with 
human beings.) 

4. Two Uses of the Gödel Incompleteness Theorems  
in Refuting Functionalism 

I introduce a distinction between two different uses of the Gödel incomplete-
ness theorems in anti-functionalist arguments. This distinction has not been made 
in the literature—and it is important to make it because the conclusions of the 
arguments made under each use are significantly different. Perhaps the reader is 
puzzled: “Isn’t there only one use of the Gödel theorems in refuting functional-
ism?” There are two different ways in which one can attempt to refute function-
alism using the Gödel incompleteness theorems, and the conclusions about func-
tionalism differ in each. Additionally, each method of refutation opens up differ-
ent possibilities in the Lucas-Penrose-Putnam anti-functionalism arguments.  

4.1. Metaphysical Uses of the Gödel Incompleteness Theorems in Refuting 
Functionalism   

One way of using the Gödel incompleteness theorems in anti-functionalist 
arguments concludes that the human mind does not have the nature of a finitary 
computational machine, in which case, functionalism is false. This refutation 
establishes a metaphysical difference between human minds and finitary compu-
tational machines: human minds do not have the nature of such machines. 

The metaphysical use of the Gödel incompleteness theorems in refuting func-
tionalism is found in (Gödel, 1995; Lucas, 1961; Penrose, 1989): if it can be 
shown there is a mathematical truth that can be proved by a human mind, but 
that cannot be proved by a finitary computational machine (that, by hypothesis, 
finitely computationally models that human mind) then the human mind is not 
computationally modeled by that finitary computational machine. Whatever is 
the nature of the human mind, it does not have the nature of a finitary computa-
tional machine, since the human mind is different from the finitary computation-
al machine in virtue of its causal powers, which enable it to prove a theorem that 
the latter cannot prove.  
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Another way of putting the same point: the human mind can prove that the 
program of the finitary computational device which purports to model it is cor-
rect, while the program cannot prove of itself that it is correct (assuming that 
there is no additional program embodied in the finitary computational device). 
So there is a cognitive power that the human mind possesses that is not pos-
sessed by the finitary computational machine. A human mind could justify the 
truth of the claim that the program that purports to describe it is correct, while 
the program itself cannot do that. But if the program, by hypothesis, describes all 
of the cognitive powers of the human mind, then it cannot be a complete finitary 
computational description of the human mind, since it lacks (at least) one cogni-
tive power a human mind possesses.  

This application of the Gödel incompleteness theorems shows functionalism 
is a false philosophical view by demonstrating that human minds are not identi-
cal with finitary computational machines. This non-identity claim is a metaphys-
ical claim about the nature of the human mind: they do not have the nature of 
finitary computing machines. Functionalism is the view that human minds are 
identical with finitary computational machines (of some kind). The metaphysical 
argument (using the Gödel incompleteness theorems) demonstrates that human 
minds are not identical with finitary computing machines. Hence functionalism 
is false if the metaphysical argument is sound.  

The Gödel incompleteness theorems (in the context of this metaphysical argu-
ment) provide a mathematical proof that the human mind is not identical to a finite 
computing machine and thus does not have the nature of a finite computing ma-
chine. (This claim can be generalized: the Gödel incompleteness theorems pro-
vide a mathematical proof that the human mind is not identical to any kind of 
finite computing machine and thus does not have the nature of any kind of finite 
computing machine. It can be generalized because the Gödel sentence unprova-
ble in finitary computing machine1 can be proved in a stronger finitary compu-
ting machine2. However, a new Gödel sentence can be expressed in finitary 
computing machine2 that cannot be proved in it. This is true for all finitary com-
puting machines.) So we have a mathematical proof of a negative metaphysical 
claim about the human mind: it is not any kind of finitary computing machine. 
We will call this use of the Gödel theorems “MGF” (“Metaphysical claims that 
are consequences of using the Gödel theorems to refute functionalism”.)  

It would be a mistake to claim that the Gödel incompleteness theorems speci-
fy an exact bound on the extent of the metaphysical difference between human 
minds and a given finitary computing machine. For instance, given a finitary 
computing machine that cannot prove its program is consistent, the extent to 
which the human mind differs from it is that the human mind can prove the pro-
gram is consistent. This is not informative, since it says nothing positive about 
the cognitive functions necessary for human minds to prove that the program 
describing their mentality is consistent. It does say something negative, though. 
It says that no human mind can prove the program is consistent by simulating 
a finitary computing machine. 
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What is not usually addressed in metaphysical refutations of functionalism 
that use the Gödel incompleteness theorems is the epistemic modality of the 
provability relation in the formal system in which the reasoning occurs. A (sound) 
proof in a formal system (whether or not it is subject to the Gödel incomplete-
ness theorems) proves a theorem with mathematical certainty. Our justification 
for believing the theorem is true is that it has been proved with mathematical 
certainty. So the Gödel theorems need to be qualified: the second incompleteness 
theorem says that no formal system subject to the Gödel incompleteness theo-
rems can prove its own consistency with mathematical certainty. Here the epis-
temic modality—the way in which we come to know the truth of the claim made 
in the proof—is mathematical certainty. But there are other ways than mathemat-
ical certainty by which we can come to know the truth of a claim made in a proof. 
As the epistemic modality of a proof changes, so does the nature of the proof.  

It is left open by the Gödel theorems that the formal system can prove its 
consistency with less than mathematical certainty or in some other epistemic 
modality. A statistical proof that a formal system (that is subject to the Gödel 
incompleteness theorems) is consistent has less than mathematical certainty. 
(Probabilistic proofs have this feature; see Wigderson, 2019.) A nonmathematical 
philosophical proof that such a formal system can prove its consistency would be 
a proof in another epistemic modality than that of a proof in logic or in mathe-
matics. A proof using diagrams or pictures would be a proof in an epistemic 
modality other than mathematical certainty because the nature of a picture proof 
differs from the nature of a proof in a system of logistic. Intuitionistic reasoning 
in Brouwer’s version of intuitionism might also be an example. Only a proof 
using a symbol system found in the formal languages of logic or in classical 
mathematics would have mathematical certainty. (Understanding in what epis-
temic modalities other than mathematical certainty there can be proofs of math-
ematical truths is an important and open research topic.)  

If the only means of achieving mathematical certainty that S is true is to 
prove S in a formal system by finitistic reasoning within that formal system, then 
if S is either a Gödel sentence for that formal system or a consistency claim 
about that formal system, it follows that no human being (whether finitary in its 
cognitive powers or infinitary in its cognitive powers) can prove S is true with 
mathematical certainty using finitary reasoning within that formal system. So no 
human mind can prove the master program for a finitary computing machine 
simulating human mentality is correct with mathematical certainty by engaging 
in finitistic reasoning described by that master program. If so, human minds are 
indistinguishable from the finitary computing machine. On the other hand, there 
is no prohibition on the human mind proving the correctness of the master pro-
gram with either less than mathematical certainty or in some other epistemic 
modality. But neither is the finitary computing machine prohibited from this, 
either. (This is so, unless proof with less than mathematical certainty or in anoth-
er epistemic modality is subject to the Gödel incompleteness theorems. In that 
case, it is ruled out for the finitary computing machine to do that. But then it is 
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also ruled out for human beings to do so as well.) If human minds can perform 
infinitary reasoning, and can prove the correctness of the master program using 
infinitary reasoning, this would distinguish human minds from finitary compu-
ting machines (which, by definition, cannot perform infinitary reasoning). But 
since it is an open question whether human minds can perform infinitary reason-
ing, this line of argument cannot establish its conclusion.  

If the MGF argument is sound, then we know, with mathematical certainty, 
that we are not finitary computing machines. What is the provenance of the qual-
ifier “mathematical certainty”? The Gödel theorems show that any formal system 
subject to the them cannot prove its Gödel sentence nor its consistency sentence 
with mathematical certainty using finitistic formalizable reasoning within that 
formal system. Why mathematical certainty? Why not logical certainty? Because 
there are different systems of logic—such as relevance logic—what is provable 
with logical certainty in one kind of logic might not be provable in some other 
kind of logic. Since the finitary reasoning in classical first-order logic can be 
described mathematically, the theorems of that logic are said to be proved with 
mathematical certainty.  

Where does the claim that proofs in a formal system of logic carry mathemat-
ical certainty come from? Alonzo Church (1956) uses the phrase “mathematical 
certainty” in his discussion of proofs in mathematics that are translated into first-
order logic. For Church, the only way to achieve mathematical certainty is 
a proof system where the axioms are effectively specified and in where, for any 
line in the proof, there is an effective procedure by which one can tell that it is an 
authentic line in the proof. This finitary reasoning in first-order logic can be 
described mathematically. An auditor of a proof  

[M]ay fairly demand a proof, in any given case, that the sequence of formulae put 
forward is a proof; and until this supplementary proof is provided, he may refuse 
to be convinced that the alleged theorem is proved. This supplementary proof 
ought to be regarded […] as part of the whole proof of the theorem, and the primi-
tive basis of the logistic system ought to be so modified as to provide this, or its 
equivalent. (Church, 1956, p. 53) 

The only logistic systems for which Church’s requirement is satisfied are 
those in which the axioms and the rules of inference are effectively specified—
these are finitary proof systems in which there are only finitely many lines in 
a proof and the pedigree of each line in the proof can be effectively ascertained. 
Infinitary logistic systems are different, for rules of inference are not effectively 
specified. A mind that has infinitary capacities can effectively specify them, but 
the notion of “effectiveness” then belongs to alpha-recursion theory, a theory of 
effectivity for infinite minds. Church obviously assumed human minds are 
finitary in his discussion.  

So if the MGF argument is sound, then we know, with mathematical certainty, 
that human minds are not identical with any kind of finitary computing machine. 
This is an extraordinarily strong claim. Compare it with the following claim: we 
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know, with mathematical certainty, that B follows from A and A → B. This claim 
is trivial. On the other hand, one does not know with mathematical certainty that 
one is (now) looking at a tree. The claim an MGF argument makes is strong, then, 
in the sense that the information it establishes about the nature of the human 
mind has important value. (I do not suggest, in using the phrase “extraordinarily 
strong”, that the claim is thereby unlikely to be true.) 

But the strength of the claim should make us suspicious of it. The assumption 
that underlies the metaphysical claim is that human minds can prove the correct-
ness of the finitary computing machine’s master program (for simulating human 
mentality). But we have seen that this assumption needs to be qualified: human 
minds can prove, with mathematical certainty using finitistic reasoning, the cor-
rectness of the computing machine’s master program. This, though, is highly 
unlikely to be true. If a human mind has infinitary cognitive capacities, it might 
do so (for instance, by employing Turing’s infinitary procedure; see Turing, 
1939). But do we have infinitary cognitive capacities? Some philosophers and 
cognitive scientists believe we do not have infinitary cognitive capacities. Others 
believe that we do. So a stalemate is reached in the absence of evidence conclud-
ing one or the other position.  

If the assumption underlying the MGF argument is changed by changing the 
qualification to “with less than mathematical certainty or in some other epistemic 
modality”, then the MGF argument cannot establish its conclusion, since it is 
also available for a finitary computing machine to prove the correctness of its 
own master program with less than mathematical certainty or in some other epis-
temic modality. Thus the metaphysical claim is bankrupt and the refutation of 
functionalism using the Gödel incompleteness theorems is drained of its force. 
This is a significant philosophical result overlooked in the anti-functionalism 
debate. If it is true that human minds are not completely describable by a finitary 
computational machine and that human minds are able to verify the consistency 
of Peano arithmetic, i.e., CON(PA), how is it done? It cannot be done by employ-
ing a recursively axiomatized finite proof system to do it, since for any such 
proof system (strong enough to capture arithmetic), the Gödel incompleteness 
theorems apply. On the other hand, if we use a recursively axiomatized finite 
proof system which is too weak to be subject to the Gödel incompleteness theo-
rems, then this will not distinguish us from any finitary computational machines, 
since finitary computational machines are also capable of proving theorems in 
such weak proof systems.  

In such a finitary proof system, there is nothing human minds can prove 
which a finite computational machine (of the appropriate kind) cannot prove. 
How, then do we differ from the finite machine? We know from Gentzen’s proof 
of CON(PA) by transfinite induction, that infinitely long derivations can secure 
CON(PA). We also know that within formalized systems of Peano arithmetic, 
proofs of transfinite induction for any ordinal up to, but not including the infinite 
ordinal epsilon0, are available. However, we need transfinite induction along 
a well-ordered path of length epsilon0 to prove CON(PA). The issue, then, is this: 
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if human minds know the truth of CON(PA) with mathematical certainty, is the 
only mathematical method by which we do it the use of infinitely long deriva-
tions? There cannot be a finitary method of reasoning that proves CON(PA) with 
mathematical certainty within the formal system for PA. One can find stronger 
formal systems in which CON(PA) can be proved by finitistic reasoning, but 
only if CON(stronger formal system) can be verified. If it is verified, then we do 
it this way only if we have infinitary cognitive capacities, and that is at present 
an open question.  

4.2. Epistemic Uses of Gödel’s Incompleteness Theorems in Refuting Func-
tionalism  

MGF arguments show the nature of the human mind differs from the nature 
of physical finitary computing machines. MGF arguments are philosophically 
satisfying, since they rule out one metaphysical possibility about the nature of 
the human mind—that our minds have the nature of finitary computational ma-
chines. Even though they do not have the resources to describe the true nature of 
the human mind, their importance lies in showing what the human mind is not. 
But MGF arguments are not the only use of the Gödel theorems in the function-
alism debate. Even if we assume that human minds are finitary computing ma-
chines, we can still enlist the Gödel incompleteness theorems to make philosoph-
ically important claims about the human mind. Call these uses of the Gödel theo-
rems “EGF” (“Epistemic claims that are consequences of using the Gödel in-
completeness theorems to refute functionalism”). There are two different kinds 
of EGF arguments.   

4.2.1. The first kind of EGF argument. 

Assume that human minds are finitary computational in nature. (However, 
the argument is the same if human minds cannot be fully described by finitary 
computational machines.) Suppose human cognition is finitely computationally 
described by computer program P. If we assume human beings can prove truths 
of Peano arithmetic, P is subject to the Gödel incompleteness theorems (since 
P must be equipped with enough syntax to arithmetize metamathematics, which 
is necessary for the Gödel theorems to take root). CON(P) expresses the con-
sistency (or correctness) of P. Since it is equivalent to P’s Gödel sentence, it 
follows that P can’t prove it is consistent. Assuming we are correctly described 
by P, human beings cannot verify the consistency of P.  

Since the project of cognitive science is to find P, then that project can never 
be epistemically justified (since it cannot be established that P is consistent). Any 
science of the human mind that views the human mind as a finitary computing 
machine will not be able to epistemically justify its claims, because we cannot 
verify that the correct program of the finitary computing machine is consistent. 
Human beings will not be able to prove, with mathematical certainty, P is con-
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sistent. Human beings cannot prove the consistency of P in the epistemic modali-
ty of mathematical certainty. To do so, our reasoning about P would have accord 
with that of a finitary computing machine, to which the notion of “proof with 
mathematical certainty” applies. This is a radical form of philosophical skepti-
cism: we have a mathematical proof (of which we are mathematically certain) 
that we cannot know, with mathematical certainty, the correct computational 
theory of how our minds work.  

EGF arguments do more than provide a new form of philosophical skepticism. 
They also address the competence/performance distinction essential for the via-
bility of cognitive science. A critical distinction is made in cognitive science 
between how the human mind actually works and how it ought to work—
between a performance level description and a competence level description of 
the human mind. Without such a distinction, the very idea of a psychological law 
is jeopardized. EGF arguments show three basic assumptions essential for cogni-
tive science to be viable cannot consistently obtain: (i) that the human mind can 
be represented (at a level of computational description) by a computational de-
vice, (ii) that its cognitive capacities can be viewed as finitely computable func-
tions and (iii) that there is a competence description of the human cognitive mind. 
The Gödel incompleteness theorems show the first two assumptions are incom-
patible with the third. If we take the first two to be part of Marr’s (2010) imple-
mentation level and the third to be Marr’s theory of the function (the what, i.e., 
the function, which is computed), Gödel’s theorems reveal an incompatibility in 
Marr’s foundational program for cognitive science. (For details, see Buechner, 
2010.) 

4.2.2. The second kind of EGF argument. 

Assume that human minds are not finitary computational in nature (but that 
we do not know this fact). If so, any finitary computational machine conjectured 
to describe human mentality fails to do so—it either fails to describe all of hu-
man mentality or else it falsely describes parts of human mentality. Suppose it is 
conjectured human mentality is correctly described by computer program P, 
which is subject to the Gödel incompleteness theorems. Suppose, additionally, 
the length of P is infeasibly long for a human being to survey. In which case, no 
human being will be able to establish that P is consistent. 

Since no human being will be able to verify that P is consistent (which is an 
epistemic claim), we cannot use the mathematical theory of computation or cog-
nitive science to show that there is a metaphysical difference between human 
mentality and a finitary computational machine. Although this kind of EGF ar-
gument does not refute functionalism, it reveals a shortcoming in it—that we 
cannot use it to establish metaphysical claims about the human mind. Additional-
ly, since cognitive science and functionalism might be false theories (if P is in-
consistent), any psychological claims made within cognitive science and any 
philosophical claims made within functionalism might be false, and we could 
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never fully justify those claims no matter how much evidence we had supporting 
them. 

 

4.3. Correct and Incorrect Readings of the Gödel Theorems  

In arguments that use the Gödel theorems to attempt to refute functionalism 
and in critical discussions of those arguments, an obvious point has been over-
looked. What the Gödel incompleteness theorems show is that there is no math-
ematically certain finitistic mathematical proof of the Gödel sentence and the 
consistency sentence of any formal system susceptible to the Gödel theorems. 
We cannot fintistically prove, w i t h  m a t h e m a t i c a l  c e r t a i n t y, the Gödel 
sentence and the consistency sentence of Gödelizable formal systems. What is 
overlooked is the epistemic modality of mathematical certainty that qualifies the 
proof relation. Perhaps it is overlooked since the method of proof within a sys-
tem of logic is what delivers mathematical (or logical) certainty. 

The standard reading is that we cannot prove CON(PA), period. By failing to 
qualify “prove”, it appears the claim is that there is no proof of any kind of 
CON(PA). This is an incorrect reading of the Gödel incompleteness theorems. 
The correct reading is that we cannot prove CON(PA) with mathematical certain-
ty by finitistic reasoning in a formal system for PA. (John von Neumann, in his 
tribute to Gödel, notes that “for no such system can its freedom from inner con-
tradiction be demonstrated with the means of the system itself” [1969, p. x]. This 
is a correct reading of the Gödel incompleteness theorems.) 

It does not follow, however, that we cannot prove CON(PA) with less than 
mathematical certainty or prove it in some other epistemic modality than mathe-
matical certainty (as Kreisel rightly noted). (The claims of statistical proofs are 
with less than mathematical certainty. Epistemic modalities other than mathemat-
ical certainty might include pictorial proofs and nonmathematical philosophical 
reasoning.) The same remarks hold if we transpose the discussion of the Gödel 
incompleteness theorems to the context of what we know about CON(PA). If we 
substitute “know the truth of” for “prove”, the same point applies. We cannot 
know the truth of CON(PA) with mathematical certainty. It is left open by the 
Gödel theorems that we can know the truth of CON(PA) with less than mathe-
matical certainty and that we can know the truth of CON(PA) in some epistemic 
modality other than mathematical certainty.  

If we accept a mathematical epistemology in which we can know mathemati-
cal propositions with less than mathematical certainty or in some other epistemic 
modality than mathematical certainty, new possibilities become available for the 
functionalism debate. For instance, if there are formal systems (in which the 
Gödel incompleteness theorems hold) in which CON(PA) is proved with less 
than mathematical certainty and the epistemic modality in which it is proved 
satisfies a reasonable notion of epistemic justification, then the limitations of the 
Gödel incompleteness theorems might be dramatically circumvented. Substitute 
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“the correctness of its own computer program” for “CON(PA)” in the preceding 
sentence. If an anti-functionalist enlists the Gödel theorems to refute functional-
ism, she must show that the notion of justification under which a finite machine 
can prove the correctness of its own computer program with less than mathemat-
ical certainty is normatively bankrupt. Suppose that human beings are finitary 
computational machines. Define the goal of cognitive science to be discovery of 
the master computer program for the human mind. Assume the cognitive activi-
ties cognitive scientists engage in when they attempt to discover the master com-
puter program are themselves described in that program. Suppose that in the 
future a cognitive scientist claims to have found the master computer program. 
Do we require that her belief that this is the correct master computer program 
must be mathematically certain in order to count as being epistemically justified? 
Whether that requirement does or does not appear to be too strong, it is clear that 
it is a question that must be addressed wherever the Gödel theorems are enlisted 
in the functionalism debate.  

Even within mathematics there is evidence that this demand is negotiable. 
Mathematical proofs not formalized within a system of logic do not satisfy the 
stringent demands of mathematical certainty. Only proofs that are formalized in 
a formal system whose axioms, rules of inference and application of rules of 
inference are recursively specified can satisfy those stringent demands. Proofs in, 
for instance, algebraic topology do not meet them, though mathematicians do not 
feel that they need to translate those proofs into a formal system before they can 
be said to know (with adequate justification) the truths of algebraic topology.  

The consequence is that no finitary being can prove CON(PA) finitistically 
with mathematical certainty. The reason this is so is obvious. If mathematical 
certainty is secured only in virtue of a finitistic proof within a system of logic, no 
finite being can prove CON(PA) with mathematical certainty unless they con-
struct a finitistic proof of it within a system of logic. But the Gödel theorems 
forbid this. (A being with infinitary powers can construct a proof of CON(PA) 
with mathematical certainty only if constructions in a system of logic requiring 
infinitary operations confer mathematical certainty upon the theorems proved 
within that system. Church did not consider this matter in his discussion of 
mathematical certainty.)  

When anti-functionalists, such as Penrose, claim that human beings can know 
CON(PA) they must qualify their claim. We cannot know CON(PA) with math-
ematical certainty. But if we can know it with less than mathematical certainty or 
in some epistemic modality than mathematical certainty, it is possible that 
a finitary computational machine can acquire that knowledge as well. If so, the 
Gödel incompleteness theorems cannot drive a wedge between what a human 
being can know and what a finitary computational machine can know. 

 
  



 USING KREISEL’S WAY OUT… 123 
 

5. Putnam’s First Version of His Argument That Not All Methods 
of Inquiry Can Be Formalized 

An early argument Putnam (1988) uses against the view that methods of in-
quiry can be formalized by a finitary computational machine is his Gödelian 
argument that that there can be no prescriptive competence description of human 
reasoning (including the reasoning in mathematical proofs). Suppose that there is 
a description P of human prescriptive mathematical competence. There will be 
many functions that are provably recursive according to P. List the index of each 
partial recursive function that P can prove to be total recursive. There will be 
infinitely many functions on this list—since a mathematician can (in principle) 
prove infinitely many functions are general recursive. This list of functions can 
be diagonalized, and the diagonal function will be total, since there are infinitely 
many functions on the list.  

However, if it could be proved that P is a sound proof procedure, it could also 
be proved that the diagonal function is a total recursive function. Unfortunately, 
such a proof would also show that P is inconsistent. Why is that? Suppose that 
the proof is on the list—in which case, the diagonal function would be on the list. 
But by the definition of a diagonal function, if it is the jth member on the list, 
then diagonal function (j) = diagonal function (j + 1). It follows that any formali-
zation of human mathematical proof ability cannot both (i) be sound and (ii) can 
be proven to be sound using human mathematical proof abilities.  

Putnam’s conclusion needs to be emended: no formalization of human math-
ematical proof ability can both be sound and be such that it is part of human 
mathematical proof ability to finitarily prove that soundness, with mathematical 
certainty and from within P. We cannot prove with mathematical certainty and 
finitistic reasoning that P is correct. It follows that we cannot prove with mathe-
matical certainty and finitistic reasoning that the competence theory for human 
mathematical proof ability is correct.  

It is impossible for us—whether we are or are not subject to the Gödel in-
completeness theorems—to finitarily prove with mathematical certainty from 
within P that the competence level description is true of us. If we were able to 
finitarily prove it is true of us, with mathematical certainty and from within P, we 
would have proven that the formal theory encapsulated by the competence de-
scription is consistent. But this is prohibited by Gödel’s second incompleteness 
theorem. Notice we would have to ascend to a stronger computational system to 
finitarily prove, with mathematical certainty, the consistency of our competence 
description. If so, then the competence description that we finitarily prove to be 
correct, with mathematical certainty, in the stronger system is not our compe-
tence description. Since we ascended to a new computational system, the compe-
tence description of the weaker computational system is no longer true of us.  

Suppose that human minds are not subject to the Gödel incompleteness theo-
rems. The Gödel incompleteness theorems rule out the possibility that a finitary 
human mind can finitarily prove, with mathematical certainty, that a finitary 
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computer program that simulates it is correct. What this means is that whether 
human minds are or are not subject to the Gödel incompleteness theorems, the 
human mind cannot finitarily prove with mathematical certainty that a program 
that simulates it is correct. Thus whether human minds are or are not subject to 
the Gödel incompleteness theorems, they cannot justify claims in cognitive sci-
ence about its computational structure. EGF arguments do not need to show that 
there is something a human mind can do that any finitary computing machine 
cannot do in order to make philosophically interesting claims about the mind. In 
this case, the claim concerns the limits of cognitive science in providing a rigor-
ous, scientific study of the human mind. 

EGF argument (such as the one Putnam makes above) must (as we argued 
earlier) make a very strong assumption: that justifications of claims in cognitive 
science are mathematically certain. This follows from the use of the Gödel in-
completeness theorems. We know, with mathematical certainty, that we cannot, 
with mathematical certainty, finitarily prove the correctness of the program, P, 
that describes our competence. If P is the master program for human cognition, 
we can’t mathematically prove it is correct with mathematical certainty. Do any 
other scientific disciplines impose such stringent epistemic requirements upon 
the claims they make? I think it is too high a price to ask of cognitive science, 
and one that is incompatible with the epistemic demands other scientific disci-
plines impose upon their own claims. This is an important issue that deserves 
further attention.  

Notice that statistical methods and proof methods in an epistemic modality 
other than that of mathematical certainty (we will call them ‘weak methods’) will 
be included in P. There’s no absurdity or inconsistency in this inclusion, since 
they do not finitarily prove the correctness of P with mathematical certainty. 
Rather, they prove it with less than mathematical certainty or in some other epis-
temic modality. The central issue for EGF arguments is what we should take as 
the standard of epistemic justification of P. If we take the standard of epistemic 
justification to be mathematical certainty, then they refute computational func-
tionalism. If the standard is less than mathematical certainty or some other epis-
temic modality, they lose all their potency in refuting functionalism. 

This version of Putnam’s anti-functionalist argument using the Gödel incom-
pleteness theorems—that there can be no prescriptive competence description of 
human mathematical reasoning—succeeds only if the epistemic modality of the 
proof relation is that of mathematical certainty achieved by finitistic reasoning. 
Where that is not the case, the argument fails. 

6. An Exposition of Putnam’s Second Gödelian Argument  
Against Functionalism 

Whether there is or is not a finitary computational description of total human 
mentality is an open question. However, if we cannot (now) know the ultimate 
finitary computational description of total human mentality—should there be 
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one—then we cannot (now) know whether its program is (or is not) infeasibly 
long. This presents an irresolvable difficulty for any MGF or EGF arguments—
such as the Lucas-Penrose arguments. To assume the program is feasibly long—
and one which can be shown consistent by human minds—is a logical error. 
Putnam diagnosed this error in Penrose’s argument. As we saw earlier, since is it 
possible the program is infeasibly long, it is therefore possible that even if hu-
man minds do not have a complete finitary computational description, they can-
not be distinguished from finitary computational machines because they will not 
be able to prove the consistency of an infeasibly long program. (Even if we do 
have infinitary minds, our physical bodies in some of their aspects are finitarily 
restricted—and so we would not be able to read all of the lines in a program 
which is infeasibly long.) To neglect this possibility is a logical error. Yet Putnam 
makes a Gödelian argument against functionalism without making either logical 
error—he does not assume the program is feasibly long and he does not have to 
consider the possibility that it is infeasibly long. How is it done?  

One way out of this difficulty for EGF and MGF arguments is to show that 
all epistemically justified methods that prove CON(P) with less than mathemati-
cal certainty or in some other epistemic modality (the weak methods) are subject 
to the Gödel incompleteness theorems. Putnam claims that all weak methods are 
subject to the Gödel incompleteness theorems. This argument appears in Reflex-
ive Reflections (Putnam, 1994b). The argument employs Gödel’s second incom-
pleteness theorem. In what follows, I use the acronym “PGA” (“Putnam’s use of 
the second Gödel incompleteness theorem in his argument that all weak methods 
are subject to the Gödel incompleteness theorems”).  

PGA claims that our prescriptive inductive competence is subject to the Gö-
del incompleteness theorems. Putnam cites his earlier work on Carnapian induc-
tive logics and on computational learning theory, only to assert that it does not 
matter whether this work is taken into account in PGA, since PGA will assume 
there is some finitary computational description of our prescriptive inductive 
competence and that one does not need to know what that description looks to 
make the PGA argument. “P” denotes a finitary computational description of our 
inductive (or non-demonstrative) and demonstrative prescriptive competence.  

Putnam uses an idea in the Montague-Kaplan Paradox of the Knower (Fe-
ferman, 1960) that is an application of self-reference. It is T h e  C o m p u t a -
t i o n a l  L i a r  (CL): 

(CL) There is no evidence on which acceptance of the sentence CL is justi-
fied (Putnam, 1994b) 

CL is arithmetizable, and its arithmetization is a sentence of arithmetic to 
which the Gödel diagonal lemma applies. The diagonal lemma tells us that for 
any predicate that is definable in the language of Peano arithmetic, there is some 
sentence that is true if and only if its Gödel number is false of that predicate. The 
diagonal lemma allows us to couple P with CL.  
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It follows from Gödel’s work that there is a sentence of mathematics which is true 
if and only if P does not accept that very sentence on any evidence, where P is 
any procedure itself definable in mathematics—not necessarily a recursive proce-
dure. (Putnam, 1994b) 

In an important caveat to CL, Putnam says that “[…] if the inductive logic 
P uses the notion of degree of confirmation rather than the notion of acceptance, 
then one replaces ‘is justified’ by ‘has instance confirmation greater than .5’, […]” 
(1994b, p. 426, note 5). This is significant, since the notions of a justified belief 
and of acceptance of a justified belief play critical roles in non-quantitative mod-
els of inductive reasoning, while “has instance confirmation greater than .5” and 
“degree of confirmation” play critical roles in both quantitative and logical mod-
els of inductive reasoning. This caveat gives us reason to think that Putnam takes 
P to be a computational description of any kind of inductive reasoning and not 
just logical models of inductive reasoning, such as those found in computational 
learning theory.  

If there is evidence which justifies the acceptance of CL, it easily follows that 
CL is false, and it is a sentence of pure mathematics. Since P formalizes our 
prescriptive competence in demonstrative and non-demonstrative reasoning, our 
(fully justified) reasoning tells us to accept a mathematically false proposition.  

The negation of CL is that there is evidence on which the acceptance of CL is 
justified. If there is evidence on which the acceptance of the negation of CL is 
justified, then we know from what was just established above that CL is a math-
ematically false sentence. (Putnam notes that it is an omega inconsistency.) It 
follows that should P converge on CL—that is gives an answer to CL—to which 
we are justified (by P), then that evidence for the answer licenses us to accept 
a mathematical falsehood. So it has been established that CL cannot be shown 
true or shown false using P, which is a computational description of our pre-
scriptive competence in demonstrative and non-demonstrative (inductive) rea-
soning. (Gödel assumed that the formal system in which he worked is omega-
consistent in order to show that proof of the negation of the Gödel sentence leads 
to contradiction, in this case, an omega-inconsistency. Omega-consistency is 
weaker than consistency. If a formal system is omega-consistent, it follows that it 
is consistent. Putnam makes the same assumption.) 

Given that anyone is justified in believing that if P converges on CL, it li-
censes one to believe a sentence that is mathematically false, Putnam formulates 
a criterion of adequacy (CA) for accepting any formalization of human prescrip-
tive demonstrative and non-demonstrative competence  

(CA) The acceptance of a formal procedure P as a formalization of (part or all) 
of prescriptive inductive (demonstrative and non-demonstrative) compe-
tence is only justified if one is justified in believing that P does not con-
verge on P’s own Gödel sentence (i.e., CL) as argument. 
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From CL and CA, it follows that no human being can demonstrate that P is 
prescriptive whenever our minds work in the exact way that P says they should 
work. When we believe CA and also believe that P is both complete and also 
correct in describing our prescriptive demonstrative and non-demonstrative 
competence, it easily follows that we will believe that P does not converge on 
CL. However, that is to believe CL. But notice that this belief is justified, and 
that (by assumption) all justification of beliefs can be formalized in P. Since we 
are committed to believing CL, we are in a contradiction. That is Putnam’s in-
genious PGA.  

Notice that Putnam has not made any claims that there is something human 
minds can do that no finitary computing machine can do, nor has he assumed 
that P is feasibly long. (That is why Putnam does not commit the logical error 
that Penrose commits). He has, though, shown that P could not be justified with-
in cognitive science without licensing us to believe a contradiction. One conse-
quence of PGA is that any formal theory proposed in cognitive science of how 
we do inductive reasoning cannot be justified without also licensing us to believe 
a contradiction. (This is a disturbing and important result that has not caught the 
attention of cognitive scientists working on the problem of formally characteriz-
ing inductive reasoning.)  

6.1. PGA and the Kaplan-Montague Paradox 

Is it really the case that the key terms in CL can be arithmetized? If they can-
not be arithmetized, then PGA fails. I contrast Putnam’s Computational Liar with 
the version that Kaplan and Montague (1960) constructed in order to show the 
Gödel incompleteness theorems extend to the modal predicates “knowledge” and 
“necessity”. Kaplan and Montague needed to find for the knowledge predicate 
suitable analogues of the Hilbert-Bernays derivability conditions for the prova-
bility predicate. Montague employed a weak epistemic system consisting of the 
four schemata: 

(i.) Kα → α 
(ii.) Kα, if α is an axiom of first-order logic 
(iii.) K(α → µ) → (Kα → Kµ) 
(iv.) K(Kα → α) 

Montague (1963) appreciated Tarski’s insight (1983), in the latter’s proof of 
the indefinability of truth in first-order logic, that two prima facie consistent 
theories cannot always be combined into a consistent theory. In Tarski’s indefin-
ability work, Robinson arithmetic relativized to ß cannot be combined with Tar-
ski’s schema for the language of Robinson arithmetic relativized to ß and ex-
tended with a truth predicate T. Montague saw that this insight can be general-
ized: two prima facie true theories, one a theory of its own syntax and the other 
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a theory that has principles capturing the logic of concepts such as knowledge, 
belief or necessity, cannot be combined into a consistent theory. The tool neces-
sary for the proof is the Gödel diagonal lemma: 

Suppose T is an extension of Robinson arithmetic relativized to ß. Let α be 
a formula whose only free variable is v0. Then there is a sentence ζ such that:  

├ T ζ  if and only if  α(ζ/vo), where, 
if n is the Gödel number of ζ, ζ is the nth numeral. 

The key to the Montague-Kaplan proof is the fact that knowledge is a proper-
ty of “proposition-like” objects recursively built from atomic constituents. Given 
enough arithmetic, it is easy to associate with each “proposition-like” object 
a Gödel number. Then, structural properties and relations between “proposition-
like” objects can be arithmetically simulated by explicitly defined arithmetical 
predicates of the Gödel numbers of the “proposition-like” objects.  

Recall Putnam’s Computational Liar:  

CL There is no evidence on which acceptance of the sentence CL is justified. 

We need to arithmetize the properties and relations in CL in order to use Gö-
del’s diagonal lemma. Can “evidence”, “acceptance”, and “justified” be arith-
metized? It is not obvious that they can. Consider the ramified type theory in 
Russell and Whitehead’s Principia Mathematica. No one has succeeded in show-
ing it is subject to the Gödel incompleteness theorems, for there is no general 
theory of the intensional provability relation. It will do no good to simply assert 
that consistency cannot be proved within any sufficiently strong system because 
Gödel’s second incompleteness theorem tells us this. Richmond Thomason (1980; 
1989) has pointed out in this connection that “it has never been possible to state 
the [second incompleteness] theorem at this level of generality with a degree of 
precision that will support a mathematical proof” (1989, p. 54). 

Intensional provability relations link arithmetical theories to a given set of 
propositions when the arithmetical theory is able to prove each of the proposi-
tions in the set. That there cannot be a general theory of the kind Thomason spec-
ifies follows from an interesting result on the peculiarities of the intensional 
proof relation. It is a result of Feferman (1960) that Gödel’s arithmetical formali-
zation of the proposition that Peano arithmetic is consistent can be proved, under 
substitution of different linguistic expressions for the same classes of numbers in 
that arithmetical formalization.  

PGA requires that “evidence”, “acceptability”, and “justified” can be arith-
metized. We can formalize the evidence relation and the property of acceptance 
within computable learning theory, but this raises the question of whether that 
formalization captures all of the uses of these terms in inductive reasoning and if 
the terms can be arithmetized. What of the property of being justified? How 
would we axiomatize its basic features in the way that Kaplan and Montague 
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axiomatized the basic features of knowledge? What happens to PGA if the notion 
of being justified is omitted? Without it, we cannot say that P tells us that we are 
prescriptively justified in believing an arithmetically false sentence. Thus we will 
not be able to show that an absurdity results if P converges upon either CL or the 
negation of CL. In which case, we cannot even express the condition of adequa-
cy that is necessary for obtaining the contradiction. 

O b j e c t i o n : It is true that omitting the notion of “justifies” in PGA blocks 
deriving the contradiction. But that is not a problem for the anti-functionalist end 
to which PGA is applied. You succumb to a dilemma if you argue there is no 
obvious arithmetization of “is justified”. The first horn is that if there is an 
arithmetization of “is justified”, then the contradiction is secured. For the second 
horn, suppose it cannot be arithmetized. If so, then it cannot be part of cognitive 
science. Thus, either way, cognitive science is in jeopardy. On the first horn, 
cognitive science cannot prove that it is correct and on the second horn, induc-
tive reasoning can’t be computationally described. On either horn, the anti-
functionalist wins. 

R e s p o n s e : The first horn of the dilemma is that if “is justified” is arithmetiza-
ble, then PGA is secured. Below we argue that even if PGA is sound, it cannot be 
used to secure the claim that human minds are not finitary computing machines 
or the claim that cognitive science cannot be justified. The second horn is easily 
dismissed, though. That “X” is not arithmetizable does not logically imply “X” is 
not formalizable. Why think any property or relation whatsoever, even though 
formalizable, can be arithmetized? Certainly, Gödel numbers can be assigned to 
formalized sentences and to formalized properties. But it does not follow from 
that fact that any formalized property is arithmetizable. The example of Principia 
ramified type theory, discussed above, illustrates the point. The burden of proof 
is upon Putnam, to show that the epistemic property of being justified, under 
a suitable formalization, can be arithmetized. (Artemov-Fitting logics of justifi-
cation are not a method of reasoning to achieve justification, but a method for 
reasoning about justifications. An open question is whether a Montague-Kaplan 
type paradox could be constructed using their justification predicate.)  

6.2 Strengthened PGA Leads to an Absurdity  

One problem with PGA is that if not all inductive methods or, more broadly, 
methods of inquiry into the world, are subject to the Gödel incompleteness theo-
rems, then it is possible that in using methods that are subject to the Gödel in-
completeness theorems, we can employ weak inductive methods that are not 
subject to the Gödel incompleteness theorems to prove CON(method subject to 
the Gödel incompleteness theorems) or the Gödel sentence (of a method subject 
to the Gödel incompleteness theorems) in another epistemic modality or with 
mathematical certainty less than the degree of mathematical certainty of the 
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proof procedure of the formal system in which the methods are formalized. Both 
human minds (that have or do not have a finitary computational description) and 
finitary computing machines that are subject to the Gödel incompleteness theo-
rems can use weak methods that are not subject to the Gödel incompleteness 
theorems. Any EGF or MGF argument that ignores this possibility commits 
a logical error no less serious than the logical error Penrose commits in his anti-
functionalist argument. On the other hand, if the above possibility is taken seri-
ously, then EGF and MGF arguments can fail. What can be done? One sugges-
tion is to show all methods of inquiry into the world are subject to the Gödel 
incompleteness theorems. 

Suppose we strengthen PGA in the following way: all methods of inquiry into 
the world are subject to the Gödel incompleteness theorems. (Putnam appears to 
say this is how he wants his argument to be interpreted; see Putnam, 1988.) Such 
methods include all inductive methods, all demonstrative methods and all meth-
ods to which Putnam calls attention in (1988): rational interpretation, reasonable 
reasoning and general intelligence. Although he makes the strengthened PGA 
argument in (1994a), he alludes to it in:  

This is analogous to saying the true nature of r a t i o n a l i t y —or at least of hu-
man rationality—is given by some “functional organization”, or computational 
description […]. But if the description is a formalization of our powers to reason 
rationally in toto—a description of a l l  our means of reasoning—then inability to 
know something by the “methods formalized by the description” is inability to 
know that something i n  p r i n c i p l e . (Putnam, 1988) 

Strengthened PGA claims all inductive methods, all notions of epistemic jus-
tification, all methods of inquiry into the nature of the world are subject to the 
Gödel incompleteness theorems. The truth of (x) CON(method of inquiryx) is 
essential to the soundness of PGA. If we can’t prove (x) CON(method of inquiryx), 
then we cannot show that strengthened PGA is sound. Why is that? If we can’t 
prove (x) CON(method of inquiryx), method of inquiryx might be inconsistent, in 
which case anything is provable. If so, we can’t prove that the epistemic notions 
of “acceptance” and “justifies” are subject to the Gödel incompleteness theorems. 
Even if we can prove CON(method of inquiryi) using method of inquiryj 
(a stronger extension of method of inquiryi), if CON(method of inquiryj) can’t be 
proved, then it’s possible that both CON(method of inquiryi) and NOT-
CON(method of inquiryi) can be proved within method of inquiryj. If each meth-
od of inquiry is subject to the Gödel incompleteness theorems, then no method of 
inquiry can be proved consistent. If no method of inquiry can be proved con-
sistent, it is possible no method of inquiry is consistent.  

I will now argue that strengthened PGA engenders an absurdity. Suppose that 
all methods of inquiry (such as statistical methods and methods that deliver 
proofs in another epistemic modality) are subject to the Gödel incompleteness 
theorems. That supposition would have as a consequence that all of our reason-
ing (in whatever method of inquiry that reasoning occurs) about the Gödel in-
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completeness theorems is subject to the Gödel incompleteness theorems. In 
which case, that reasoning might not be correct, and so that reasoning could not 
be epistemically justified. Why is that? For any method of reasoning, its’ con-
sistency cannot be proved. Thus it is left open that any method of reasoning 
might be inconsistent. Consider the following: for any chain of reasoning that 
establishes proposition p, it is possible there is another chain of reasoning that 
establishes not-p. This is so because it is possible that all methods of inquiry are 
inconsistent. If so, one could validly reason to p and one could validly reason to 
not-p, for any inconsistent method of inquiry. Thus, for all p, p cannot be epis-
temically justified, since for each p, one might validly infer not-p and p. This is 
an absurdity. Take this absurdity to be a reductio of the argument that all forms of 
reasoning are subject to the Gödel incompleteness theorems. 

Given this absurdity, the most natural explanation of it is that one assumed 
that all methods of inquiry are subject to the Gödel incompleteness theorems. 
Give up that assumption, and the absurdity is removed. But giving up that as-
sumption means there must exist some methods of inquiry that are not subject to 
the Gödel incompleteness theorems. If so, it is possible that any such method can 
prove CON(P) or CON(method of inquiry subject to the Gödel incompleteness 
theorems) with less than mathematical certainty or in some other epistemic mo-
dality. And if that is the case, then any finitary computational machine could also 
make such inferences. No cognitive difference would be registered between 
human minds and any finitary computational machine. (There might be signifi-
cant cognitive differences between human minds and finitary computational 
machines which can compute functions that human minds cannot compute, ow-
ing to resource limitations, such as the length of time allowed for computing 
values of the function.)  

7. A Fundamental Logical Problem for EGF and MGF 

We now introduce a logical difficulty that arises in MGF and EGF arguments, 
how anti-functionalists might respond to it and whether Putnam can satisfactorily 
respond to it. We remark that a difficulty noticed by George Boolos (1986) will 
not be considered here. Boolos argued the Gödel disjunction (Gödel, 1995) is not 
derivable from the Gödel incompleteness theorems without first clarifying what 
it means for a human mind to be equivalent to a finite computing machine. What 
does it mean to assert that the human mind is equivalent to a Turing machine? 
We do not consider it here, because Nathan Salmon (2001) has convincingly 
argued the Gödel disjunction can be used to make philosophically interesting 
claims about the limitations of the human mind even if we do not have a precise 
description of what it is for human minds to be equivalent to Turing machines. 
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7.1. The Logical Problem Confronting EGF and MGF Arguments Is Recur-
sively Unsolvable 

The possibilities Kreisel (1972) notes for finitistically proving CON(PA) with 
less than mathematical certainty or in some other epistemic modality must be 
taken seriously by anti-functionalists who offer EGF or MGF arguments. Failure 
to take them into account is a logical error in EGF or MGF arguments. Why is 
that? Where a human agent can finitistically prove CON(P) with less than math-
ematical certainty or in some other epistemic modality—and that is how such 
human agents prove CON(PA) and the Gödel sentence for PA, so also might 
a finitary computational machine hypothesized to provide a computational de-
scription of human mentality. If so, neither MGF nor EGF arguments can distin-
guish human mentality from finitary computational machines. Failure to consider 
this possibility is a logical error in Lucas-Penrose-Putnam arguments. However, 
taking this possibility into account is a recursively unsolvable problem. The anti-
functionalist is then faced with a dilemma: either the anti-functionalist fails to 
take into account Kreisel’s way out, in which case they commit a logical error in 
their argument or else they do take it into account, in which case they must solve 
a recursively unsolvable problem.  

The anti-functionalist might voice the following objection to the claim that 
they commit a logical error by failing to take into account Kreisel’s way out: 
“The functionalist must find a specific method of inquiry or program that proves 
CON(P) with less than mathematical certainty or in another epistemic modality. 
The anti-functionalist is not required to find such a method. No logical error is 
committed by failing to consider the possibility of such a way out”. This objec-
tion can be easily dismissed. The anti-functionalist makes the claim that a human 
mind not fully characterized by any finitary computational machine can deter-
mine the truth of CON(P). But it is possible that there is a method of inquiry or a 
program that can determine CON(P) with less than mathematical certainty or in 
some other epistemic modality. It is up to the anti-functionalist to dismiss that 
possibility. To dismiss it, the anti-functionalist must prove a negative existential 
claim: there is no such method of inquiry or program. It will be shown below 
that dismissing this possibility is a recursively unsolvable task.  

Recall that Putnam’s objection to Penrose’s argument is that the program 
P might be so large that it cannot be humanly surveyed, and so no human could 
establish CON(P). Putnam only needs to cite the possibility that the program P is 
so large that no human could survey it. Since it is a possibility which, if true, 
would undermine Penrose’s argument, Penrose must respond to it. It is not 
a legitimate argumentative move for Penrose to reply that Putnam must provide 
an actual P which cannot be humanly surveyed. The burden of proof is on Pen-
rose—to show that the actual P can be humanly surveyed. Of course, P has yet to 
be written, since we do not now have a complete finitary computational descrip-
tion of human mentality (should there be one), so Penrose cannot counter Put-
nam. That is why Putnam’s critique of Penrose’s argument is so devastating.  
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Anti-functionalists who wish to avoid that logical error by taking these possi-
bilities into account confront a computationally daunting task. Call that task 
“DISJUNCTION”. It is the following: The anti-functionalist must show that 
either: (i) each method or program for mathematically or non-mathematically 
finitistically proving, with less than mathematical certainty or in some other 
epistemic modality, the consistency of P (the ultimate computer program that 
completely describes the human cognitive mind) is subject to the Gödel incom-
pleteness theorems or (ii) if that cannot be done, because such a method or pro-
gram is not subject to the Gödel incompleteness theorems, show that the proofs 
delivered by those methods or programs are not epistemically justified.  

From DISJUNCTION there is a dilemma for anti-functionalists using EGF or 
MGF arguments:  

F i r s t  h o r n : The anti-functionalist must show, for each possible method or 
program capable of finitistically demonstrating the consistency of P with less 
than mathematical certainty or in some other epistemic modality, that it is either 
subject to the Gödel incompleteness theorems or that, where it is not subject to 
the Gödel incompleteness theorems, it is epistemologically inadequate.  

S e c o n d  h o r n : If the anti-functionalist does not enumerate all of these possi-
bilities, a logical error is committed in their EGF or MGF argument.  

DISJUNCTION has logical complexity Π(1,2). Suppose an anti-functionalist 
offers an MGF argument. In virtue of DISJUNCTION, they must be able to 
perform an infinitary computational task. If they have infinitely many resources, 
they will be able to complete the task. If not, then they will not. But if they do 
not complete the task, then they commit a logical error in MGF. Thus the anti-
functionalist who uses an MGF argument must either have the capacity to make 
infinitary computations or else commits a logical error. But it is not known 
whether human beings do or do not have infinitary computational capacities.  

The anti-functionalist must show that human beings can prove CON(P), but 
the machine for which P is its program cannot prove CON(P). Neither the hu-
man nor the machine can finitistically prove CON(P) with mathematical certain-
ty in the program for P. So the anti-functionalist must finitistically prove CON(P) 
with less than mathematical certainty or in some other epistemic modality that is 
not available to the machine. To show these methods are not available to the 
machine, she must (according to DISJUNCTION) be able to make infinitary 
computations to canvass all of the possibilities for doing just that or else commit 
a logical error. But, once again, it is not known whether human beings do or do 
not have infinitary computational capacities. 
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7.2. DISJUNCTION is Π(1,2) in the analytic hierarchy 

(a) The first disjunct in DISJUNCTION . 

How many methods of reasoning are there for finitistically proving CON(P) 
with less than mathematical certainty or in some other epistemic modality? Since 
formal systems such as PM, FOL, and sentential logic prove their truths with 
mathematical certainty, and since the Gödel theorems tell us that we cannot fi-
nitistically establish CON(P) with mathematical certainty, those formal systems 
cannot be used. But probabilistic formal systems can deliver their truths with less 
than mathematical certainty.  

For instance, assume we use a statistical method based on a Carnapian meas-
ure function to finitistically prove CON(P) with less than mathematical certainty. 
Then there are infinitely many possible methods that can be used, since Carnapi-
an inductive logics employ a caution parameter that has infinitely many values 
and which differentiates different logics (Carnap, 1952; 1962). (This establishes 
an existence proof that there are infinitely many inductive methods. For recent 
work on new probabilistic proof methods in randomness and computation, see 
Wigderson, 2019) How many different systems of formal inductive reasoning are 
there? How many probabilistic logics are there? How many hybrid modal proba-
bilistic logics? Thus far we have the following computational problem: (i) Look 
at each method for finitistically proving CON(P) with less than mathematical 
certainty or in some other epistemic modality. (ii) Show it is subject to the Gödel 
incompleteness theorems.  

What of proving some proposition in an epistemic modality other than that of 
mathematical certainty? For instance, philosophical nonmathematical reasoning 
that cannot be translated into first-order logic might be an example. One problem, 
though, is that Hilbert’s thesis that any argument can be translated into first-order 
logic makes it difficult to claim that there is reasoning in a natural language that 
cannot be captured in first-order logic.    

There are infinitely many applicable methods of reasoning with less than 
mathematical certainty or in another epistemic modality. Each of them must be 
enumerated and checked for being subject to the Gödel incompleteness theorems. 
And there is an additional regress-like wrinkle. It is the following. Suppose 
a program P* proves CON(P) with less than mathematical certainty or in some 
other epistemic modality. The anti-functionalist needs to verify that P* is subject 
to the Gödel incompleteness theorems. (If not, then neither an MGF nor an EGF 
argument can be deployed.) 

The wrinkle is that even if P* is subject to the Gödel incompleteness theo-
rems, there might be a program P** that can be used to mathematically and fi-
nitistically prove CON(P*) with less than mathematical certainty or in some 
other epistemic modality. Suppose that P** is shown to be subject to the Gödel 
incompleteness theorems. If so, there is a possibility there is a program P*** that 
can be used to mathematically prove CON(P**) with less than mathematical 
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certainty or in some other epistemic modality. So we have the possibility of an 
infinite regress for each program or method for proving CON(P*) and its star 
relatives that we have shown to be subject to the Gödel incompleteness theorems.  

The procedure then, is the following. Look at each method1,i for proving 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity. Show it is subject to the Gödel incompleteness theorems. If it is, look at each 
method2,j for proving CON(“method1,i”) with less than mathematical certainty or 
in some other epistemic modality. Show it is subject to the Gödel incompleteness 
theorems. If it is, look at each method3,k for proving CON(“method2,j”) with less 
than mathematical certainty or in some other epistemic modality. Show it is sub-
ject to the Gödel incompleteness theorems. Continue in this way ad infinitum. 

Let’s consider an objection the anti-functionalist might raise to the specter of 
the infinite regress. She tells us that there will be no infinite regress, because of 
her dialectical situation in EGF or MGF arguments. Whenever computational 
functionalists propose a method M, all she has to do is to show M is subject to 
the Gödel incompleteness theorems. She plays a waiting game. She waits for the 
computational functionalist to propose a method, and only then does she need to 
show that the proposed method is subject to the Gödel incompleteness theorems 
(Lewis, 1969; 1979; Lucas, 1961; 1970).  

This objection fails, for two reasons. The first is that methods of proof that 
prove a theorem with less than mathematical certainty or in some other epistemic 
modality are methods of proof that will be used to prove the consistency of the 
methods for proving CON(P) that are susceptible to the Gödel incompleteness 
theorems. So we are still considering a specific machine M and not any other 
machine, M’. The anti-functionalist does not, contra J. R. Lucas, play a wait and 
see game with the computational functionalist.  

Second, all MGF and EGF arguments are responsible to certain epistemic 
standards: if there are any relevant possibilities that undermine the arguments, 
they must be examined. If it is possible there is a method or program P not sub-
ject to the Gödel incompleteness theorems that finitistically proves CON(M) 
with less than mathematical certainty or in some other epistemic modality, then 
that undermining possibility must be discharged.  

The anti-functionalist implicitly makes a negative existence claim in EGF 
and MGF arguments: there is no method or program subject to the Gödel incom-
pleteness theorems by which CON(P) can be finitistically shown correct with 
less than mathematical certainty or in some other epistemic modality. Since there 
are infinitely many possibilities for finitistically proving CON(P) with less than 
mathematical certainty or in some other epistemic modality, each of them must 
be taken into account. If not then the negative existence claim fails.  

7.3. How Program Length Contributes to the Complexity of DISJUNCTION 

Suppose that P is so long it can’t be surveyed by any human agent, whether 
they are finitistically computationally describable or not. If that is the case, we 
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will not know if there are any programs or methods that can be used to prove 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity. But there might be ways of compressing the length of P so that we can then 
determine if there are methods that can be used to prove CON(P). One way of 
doing this is to reduce P to some program P* that is humanly surveyable. (One 
then looks at methods for proving CON(P*) with less than mathematical certain-
ty or in some other epistemic modality.) There are three ways in which this can 
be done. One method is by a relative interpretation of P in P*, another is by a 
translation of P into P* and the third is a reduction of P to P*. There are logical 
differences between interpretations, translations and reductions, which are the 
subject of reductive proof theory. What is common to all three is that the map 
from P into P* is recursive and preserves negation. The latter condition ensures 
that logical consistency is preserved under the map. 

The maps between P and P* preserve consistency, provided P* is consistent. 
Since the assumption is that P is consistent, we need to find a short and con-
sistent P*. Suppose P* is not feasibly short. It is possible there is a P** that is 
consistent and feasibly short to which P* can be reduced or translated or into 
which it can be interpreted. At each level of reduction for which there is a con-
sistent and infeasibly long Pn*, it is possible that in a reduction to the next level, 
by either a translation, reduction or interpretation, there is a consistent and feasi-
bly short P(n+1)*. 

To avoid in EGF and MGF arguments the logical error committed by Penrose, 
we have to consider the possibility that P is infeasibly long and then to consider 
how it might be compressed. The possibility of an infinite chain of reductions of 
length omega is a prospect that cannot be a priori ruled out. (The chain length 
could be omega, since a reduction might not decrease the length of Pn*.) There 
are also other methods that can compress P. For instance, P could be translated 
into another programming language in which compression devices called MAC-
ROS are available or other higher-order programming constructs that facilitate 
program compression. There are infinitely many different programming systems, 
so there are that many possibilities that might need examination in the search for 
a feasibly short P. There are also speed-up theorems in the theory of computabil-
ity that tell us there’s no recursive bound on the speed-up of some programs 
(over the initial program for which there is speed-up).  

The anti-functionalist can object to the preceding infinite regress generated 
by program compression considerations in the same way she objected to the first 
infinite regress above: “The computationalist must first present to me a feasibly 
short P. Once that is done, we can then see if there are methods or programs that 
finitistically prove CON(P) with less than mathematical certainty or in some 
other epistemic modality”. Once again, the anti-functionalist misconceives of her 
epistemic situation in the anti-functionalism dialectic. If it is possible that there is 
a feasibly short P, then she must examine the possibilities under which it can be 
obtained. Many of these possibilities (such as relative interpretability) might be 
dead-ends, might generate infinite regresses or might create trade-off problems. 
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7.4. The First Disjunct of DISJUNCTION is Π(1,2) in the Analytic Hierarchy 

We first noted that there might be infinitely many distinct methods for finitis-
tically proving CON(P) with less than mathematical certainty or in some other 
epistemic modality. For each such method, the anti-functionalist must show 
either that it is subject to the Gödel incompleteness theorems or that it is not 
epistemically justified. We then noted that for each method M that proves 
CON(P) and is shown subject to the Gödel incompleteness theorems, there might 
be a method M * that proves CON(method M ) with less than mathematical cer-
tainty or in some other epistemic modality. If so, the anti-functionalist must show 
method M * is subject to the Gödel incompleteness theorems. In general, for each 
M that is shown subject to the Gödel incompleteness theorems, there might be an 
M * that proves its correctness for which it must be shown it is subject to the 
Gödel incompleteness theorems. After that, we saw that if P (or any of the meth-
ods or any of the M *’s) is infeasibly long, we need to see if we can compress it to 
obtain a feasibly short P (or short M *, etc.) Each of these feasibly short M’s must 
then be shown to be subject to the Gödel incompleteness theorems. 

There are infinitely many methods of reasoning that might finitistically prove 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity. For each method Mi subject to the Gödel incompleteness theorems, it is pos-
sible there is a method or program that finitistically proves CON(Mi) with less 
than mathematical certainty or in some other epistemic modality. Let Mj be the 
method that finitistically proves CON(Mi), where i ≠ j. If Mi is subject to the 
Gödel incompleteness theorems, then there might be an Mk (i ≠ j ≠ k) that finitis-
tically proves CON(Mi) and which must then be shown by the anti-functionalist 
to be subject to the Gödel incompleteness theorems. For each of the infinitely 
many Mi’s, there are infinitely many M in*’s. Finally, for every Mi and M in*, it is 
possible it is infeasibly long and thus we need to look for a compression of it into 
a feasibly short program. But for each Mi and M in*, there might be an infinite 
sequence of compression reductions Ri.   

Each method or procedure can be considered to be a function from the natu-
ral numbers to natural numbers. Determining that a method or procedure is or is 
not subject to the Gödel incompleteness theorems is a recursive predicate. The 
predicate is applied to each method or procedure, of which there are infinitely 
many. So there is a quantifier over the set of methods and procedures—it is 
a function quantifier. For all such methods or procedures, it is possible there 
exists a method or procedure not subject to the Gödel incompleteness theorems 
which verifies its consistency with less than mathematical certainty or in some 
other epistemic modality. (Mx) (∃My) (My is not subject to the Gödel incomplete-
ness theorems AND My proves CON(Mx) with less than mathematical certainty 
or in some other epistemic modality). In the analytic hierarchy, this sentence has 
logical complexity Π(1,2). 
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(b) The second disjunct in DISJUNCTION 

Recall the second disjunct in DISJUNCTION: If a method or program for 
proving CON(P) with less than mathematical certainty or in some other epistem-
ic modality is not subject to the Gödel incompleteness theorems, then show that 
the proofs delivered by that method or program are not epistemically justified. 
The anti-functionalist must show that for each method or program examined by 
the procedure described in the first disjunct of DISJUNCTION that is not subject 
to the Gödel incompleteness theorems, it is not epistemically justified. This must 
be done to save any EGF or any MGF argument. Suppose the anti-functionalist 
argument is an EGF argument. The claim is: P cannot be proved correct because 
it is subject to the Gödel incompleteness theorems (and thus cognitive science 
cannot be justified). But there might be other ways to prove CON(P) with less 
than mathematical certainty or in another epistemic modality. If those ways are 
subject to the Gödel incompleteness theorems, the claim remains intact. If any of 
those ways are not subject to the Gödel incompleteness theorems, they prima 
facie refute the claim. The only way to save the claim is to show that the meth-
ods or programs not subject to the Gödel incompleteness theorems are not epis-
temically justified. That is, proofs delivered by those methods or programs are 
not epistemically warranted.  

Since any method or any procedure might not be subject to the Gödel incom-
pleteness theorems, then every subset of the infinite methods tree might need to 
be tested for epistemic adequacy—that it is epistemically justified. Of course, no 
point in the infinite methods tree might need to be tested, if every point repre-
sents a method or program that is subject to the Gödel incompleteness theorems.  

How we can show that a method or program is not epistemically justified? If 
what is proved by a method has a 50% chance of being true, we can conclude the 
method is not justified. However, what do we say when the probability of being 
true is greater than ½? What is the cut-off point? What if we do not have suffi-
cient statistics for showing the likelihood of what a method proves? What epis-
temological theory do we employ in assessing epistemic justification of a method? 
Even if we are guided by statistical methods used in the sciences, those methods 
still make philosophical presuppositions about the nature of probabilities.  

Suppose that a method uses nonmathematical philosophical reasoning 
(Kreisel, 1972) that contains no quantitative information necessary for obtaining 
probabilities. How do we assess these methods for epistemic justification? Is the 
epistemic justification of a quantitative method different in kind from the epis-
temic justification of a non-quantitative method? What does it mean to say we 
search the space of epistemologies for various construals of epistemic justifica-
tion (Audi, 1988; Lehrer, 1990)? Given that EGF and MGF arguments are philo-
sophical arguments claiming to refute a philosophical position in the philosophy 
of mind, any elucidation of the notion “epistemic justification of P (for any P)” 
must be philosophically respectable. If the philosophical construal of “epistemic 
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justification of P (for any P)” is not philosophically respectable, the anti-
functionalist will not be able to satisfy the second disjunct of DISJUNCTION. 

These issues concerning epistemic justification are critical problems for the 
anti-functionalist. Without establishing that methods or procedures not subject to 
the Gödel incompleteness theorems are not epistemically justified, EGF and 
MGF arguments fail. The anti-functionalist must be prepared to decide what 
counts as epistemic justification of the correctness of P (for any P), and so what 
counts as the epistemic justification of cognitive science. Being able to assess the 
epistemic justification of methods that prove CON(P) with less than mathemati-
cal certainty or in another epistemic modality is a necessary condition for the 
success of EGF and MGF arguments. An important philosophical project, then, is 
elucidation of the notion “epistemic justification of proofs of CON(P) with less 
than mathematical certainty or in another epistemic modality”.   

7.5. Chains and Tangled Chains in the Methods Tree Exhibiting Defeater 
Relations 

Suppose that a method or procedure is not subject to the Gödel incomplete-
ness theorems and that it is not epistemically justified. Does it follow it can be 
dismissed by the anti-functionalist? No, for this method might epistemically 
justify CON(M *), where method M * is not subject to the Gödel incompleteness 
theorems and epistemically justifies CON(P). This may happen if we allow rela-
tive interpretations, translations and reductions between P, the method and M *. 
But it can happen even if these relations do not occur. There might be chains in 
the methods tree, of arbitrary length, in which a method that does not epistemi-
cally justify P epistemically justifies a method which epistemically justifies P. 
Such chains can be of arbitrary length. Each of these chains must be examined 
by the anti-functionalist. It is well-known is epistemology that justification of 
a proposition can be defeated and can be restored after defeat, given the appropriate 
conditions (Pollock, 1999). The same can happen with methods for proving CON(P). 

For example, suppose we have a chain in the methods tree of length 1,000 in 
which the 1,000th element in the chain is not subject to the Gödel incompleteness 
theorems. It is a method that does proves CON(P) with less than mathematical 
certainty or in some other epistemic modality, but is not epistemically justified 
when considered in isolation from all of the other methods in the chain. However, 
the 529th method in the chain epistemically justifies the 530th method in the chain, 
which, in turn, epistemically justifies the 531st method in the chain. This contin-
ues, until the 1000th element in the chain is epistemically justified.  

Even if the nth method in a chain is not epistemically justified by the n-1st 
method in that chain (where the two methods are consider in isolation from all 
other methods), it does not follow the anti-functionalist can dismiss it, since 
there might be chains, of arbitrary length starting with the n-kth method, between 
the n-1st and n-kth methods, which transmit epistemic justification in such a way 
that the n-1st method is epistemically justified, and in consequence of this, is able 
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to epistemically justify the nth method. Additionally, one method in a chain might 
defeat epistemic justification of another method in the chain. If a chain of meth-
ods is finitely long, the power set of that chain consists of all subsets of methods 
which might need to be considered by the anti-functionalist. If a chain is infinite-
ly long (because there are infinitely many methods or programs), then all possi-
ble chains that can be built with those methods or programs will have the power 
set of that infinitely long chain, and need to be considered by the anti-
functionalist.  

An additional complication in building such chains is the existence of meth-
ods or programs that defeat epistemic justification of CON(P) or of CON(Mi). 
Moreover, those methods or programs might not be formalized or even formal-
izable—suppose they are instances of what Kreisel means by “nonmathematical 
philosophical reasoning”. Justification can be achieved by many different forms 
of reasoning. If your aim is to show that some proposition is not justified, then 
you must consider all of the ways in which it could be justified. 

Suppose that Mk defeats justification of Mi, and Mi can prove correct CON(P) 
with less than mathematical certainty or in another epistemic modality. However, 
there might be a method or program Mk–i that defeats justification of Mk, thus 
restoring Mi so that it can prove correct CON(P). Call this a tangled chain of 
methods or programs. Notice this problem is similar to the logical problem fac-
ing defeater epistemologies (Pollock, 1999). There might be chains of defeaters, 
of arbitrary length, in which the 999th member of the chain defeats the 347th 
member of the chain, while the 876th member of the chain defeats the 999th. 
Simply enumerating and individually assessing each element in the chain is not 
enough. Each element in the chain must be evaluated for justificatory relations 
with every other sequence of elements in the chain. 

Although formalizable methods or procedures can be considered to be func-
tions over the natural numbers, I am less confident about methods or procedures 
for, say, nonmathematical philosophical reasoning. Perhaps they can be formal-
ized and considered to be functions over the natural numbers. But the relation of 
one method justifying another might not be recursive, and might not even be 
formalizable. So it might be that no logical complexity measure can be assigned 
to the second disjunct of DISJUNCTION.  

We have the following results:  
(i) It is possible there are epistemically justified methods or programs which 

prove, with less than mathematical certainty or in some other epistemic modality, 
CON(P). EGF arguments must show there are no methods which can do that. If 
not, the conclusion of the EGF argument—that cognitive science cannot be 
demonstrated to be a correct theory—fails. EGF arguments assume human minds 
have a finitary computational description. Showing there are no epistemically 
justified methods or programs which can prove CON(P) with less than mathe-
matical certainty or in some other epistemic modality is recursively unsolvable. 
Finitary human minds that have a finitary computational description cannot 
complete this task. If human minds have a metarecursive computational structure, 
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they might be able to complete the task. But we do not know if human minds 
have a metarecursive computational structure.  

(ii) To save the MGF conclusion that there is a cognitive task human minds 
can do that finitary computing machines can’t, it must be shown either (a) that 
human minds can prove CON(P) with mathematical certainty or (b) that there is 
no epistemically justified method or program by which CON(P) can be proved, 
with less than mathematical certainty or in some other epistemic modality. Since 
only an infinitary mind can prove CON(P) with mathematical certainty (and only 
if mathematical certainty can be defined for an infinitistic system of reasoning), 
(a) has no empirical basis in cognitive science. There is no empirical evidence 
that human minds can perform infinitary tasks, such as constructing infinite 
proof trees. EGF arguments must establish (b), and we saw they cannot do so, 
because it is a recursively unsolvable task. It is a mystery how a human mind, 
even one that has no finitary computational description, could complete the task 
(unless it has a metarecursive computational structure, but we do not know 
whether this is so.) 

8. A Categorization of Anti-Functionalist Arguments  
Using the Gödel Incompleteness Theorems Into Sixteen Cases 

There are sixteen cases that are determined by partitioning anti-functionalist 
arguments into (i) epistemic and metaphysical uses of the Gödel incompleteness 
theorems—that is, EGF and MGF arguments, (ii) Penrose error cases (infeasibly 
long programs), and (iii) showing some, but not all weak inductive methods, are 
subject to the Gödel incompleteness theorems (PGA) and showing that all meth-
ods of inquiry into the world (i.e., all inductive methods) are subject to the Gödel 
incompleteness theorems (strengthened PGA).  

There are eight cases when PGA or strengthened PGA succeeds. There are an 
additional eight cases when PGA or strengthened PGA fails. (We contend they 
both fail.) What is surprising is that even if PGA or strengthened PGA succeeds, 
the anti-functionalist acquires virtually no advantage over the computational 
functionalist in anti-functionalism arguments. It’s important to note that in all 
MGF cases it is not assumed that human minds are finitary, nor is it assumed that 
they are infinitary. If human minds are infinitary and have a metarecursive struc-
ture, should we consider them to have a computational description analogous to 
finite minds with a computational structure? If human minds are infinitary and 
do not have a metarecursive structure, we should not consider them to have 
a computational description. But it is unknown whether human minds are or not 
infinitary. Similarly, although some cognitive scientists and philosophers believe 
human minds are finitary and can be described computationally, it is not known 
whether they are finitary.  

In the first kind of EGF argument, it is assumed human minds are finite. Not 
so for the second kind of EGF argument (see Section 4.2.2 above). However, the 
second kind of EGF argument shows that metaphysical claims established by 
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MGF arguments are epistemically justified. Thus MGF arguments need to be 
categorized—the second kind of EGF argument does not. The phrase “EGF ar-
guments” below refers to the first kind of EGF argument.  

8.1. The First Eight Cases: PGA and Strengthened PGA Succeed 

A successful PGA shows that some, though not all, weak methods of inquiry 
are subject to the Gödel incompleteness theorems. The first four cases cover 
a successful PGA. There are two cases for an EGF refutation of functionalism 
and two cases for an MGF refutation of functionalism. The two cases for each 
are when the computational description P is feasibly short and when it is infeasi-
bly long.  

C a s e  ( i ): Recall that EGF arguments assume human minds are fully character-
ized by a finitary computational description. Suppose P is feasibly short. Since 
not all weak inductive methods have been shown to be subject to the Gödel in-
completeness theorems, there may be weak methods that prove CON(P) with 
less than mathematical certainty or in another epistemic modality. If so, an EGF 
argument fails, since it is the point of an EGF argument to show that human 
minds cannot justify the finitary computational description P of themselves. That 
is, there isn’t a proof of CON(P) that is epistemically justified. But a weak meth-
od might provide such a proof.  

C a s e  ( i i ): Suppose an EGF argument and that P is infeasibly long. Since not 
all weak methods have been shown to be subject to the Gödel incompleteness 
theorems, use weak methods to perform a statistical analysis to recover the full 
size of P from the fragments available. Then use weak methods to establish 
CON(P), with less than mathematical certainty. The EGF argument fails, for the 
same reasons in case (i). 

C a s e  ( i i i ): Assume an MGF argument. Recall that MGF arguments show 
human minds do not have a finitary computational description, and argue that 
human minds are metaphysically different from finitary computing machines, 
since there are cognitive activities we can perform, that finitary computing ma-
chines cannot perform. Suppose that P is feasibly short. Even if human minds do 
not have a finitary computational description, we cannot use weak inductive 
methods or programs subject to the Gödel incompleteness theorems to establish 
CON(P), in the epistemic modality of the proof procedures of the weak methods. 
We can only use weak methods or programs not subject to the Gödel incom-
pleteness theorems to establish CON(P) with less than mathematical certainty or 
in another epistemic modality. However, finitary computing machines can do the 
same thing, so we can’t establish a metaphysical difference between them and 
human minds. The MGF argument fails.  
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C a s e  ( i v ): Assume an MGF argument and that P is infeasibly long. Even if 
human minds do not have a finitary computational description, we cannot use 
weak inductive methods subject to the Gödel incompleteness theorems to do 
a statistical analysis of the fragments of P and recover P from that analysis and 
then prove CON(P). We can only use weak methods or programs not subject to 
the Gödel incompleteness theorems to do this. However, so can finitary compu-
ting machines. Once again, there is no metaphysical difference which we can 
establish between them and finitary human minds. The MGF argument fails.  

Now we look at the four cases in which strengthened PGA succeeds. Recall 
that strengthened PGA shows that all methods of inquiry into the structure of the 
world (i.e., all inductive methods) are subject to the Gödel incompleteness theo-
rems. The four cases are analogous to the four cases for PGA. 

C a s e  ( v ): Assume an EGF argument and that P is feasibly short. If so, then 
there are no weak methods or programs that can be used to show CON(P). In 
that case, the EGF argument succeeds, since we have shown that a human mind 
with a computational description P cannot justify P. 

C a s e  ( v i ): Assume an EGF argument and that P is infeasibly long. Since there 
are no weak methods or programs available for a statistical analysis of fragments 
of P to recover P, nor for showing CON(P), it follows that the EGF refutation 
succeeds. We have shown that a human mind with a finitary computational de-
scription P cannot justify P. 

C a s e  ( v i i ): Assume an MGF argument and that P is feasibly short. There are 
no weak methods that can be used to show CON(P). In which case, even human 
minds with no finitary computational description will not be able to justify P. 
However, finitary computing machines cannot do this either. In which case, there 
is no discernible metaphysical difference (concerning computability) between 
human minds with no finitary computational description and finitary computing 
machines. Hence, the MGF argument fails.  

C a s e  ( v i i i ): Assume an MGF argument and that P is infeasibly long. There 
are no weak methods or programs that can be used to perform a statistical analy-
sis on a fragment of P and recover P, nor to show CON(P). In which case, even 
human minds with no finitary computational description will not be able to justi-
fy P. However, finitary computing machines cannot do this either. In which case, 
there is no discernible metaphysical difference (concerning computability) be-
tween human minds with no finitary computational description and finitary com-
puting machines. Hence, the MGF argument fails.  

These analyses reveal an interesting truth. It is that all MGF arguments fail, 
even though either PGA or strengthened PGA succeeds. On the other hand, 
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though EGF arguments fail even where PGA succeeds, EGF arguments succeed 
where strengthened PGA succeeds. Thus there is a critical philosophical differ-
ence between MGF and EGF arguments.  

Note that if it is demonstrated that human minds are able to construct infinite 
proof trees and do not have a metarecursive structure that allows for a computa-
tional description analogous to a computational description of finitary minds, 
then all MGF arguments will succeed wherever PGA and strengthened PGA 
succeed. Using the Gödel theorems to refute functionalism by an MGF argument 
can only succeed if it is a fact (and known to us) that human minds can construct 
infinite proof trees, but have no metarecursive structure that allows for a compu-
tational description analogous to a computational description of finitary minds. If 
that cannot be demonstrated, then even though PGA or strengthened PGA suc-
ceeds, no MGF argument can succeed. 

8.2. The Second Set of Cases: PGA and Strengthened PGA Fail 

We now look at the same kinds of cases, under the assumption that PGA and 
strengthened PGA fail (in the way in which I have argued they fail). Cases ix–xii 
will happen when PGA fails. That is, PGA fails to show that some weak induc-
tive methods are subject to the Gödel incompleteness theorems. 

C a s e  ( i x ): Suppose an EGF argument and that P is feasibly short. Since it has 
not been shown that any weak methods are subject to the Gödel incompleteness 
theorems, all weak methods are available for proving CON(P), with less than 
mathematical certainty. So a human mind that has a finitary computational de-
scription can prove P is correct (i.e., justify P). Since there are more weak meth-
ods available for proving CON(P) with less than mathematical certainty, and in 
other epistemic modalities, than there are when PGA succeeds, EGF arguments 
fail more often when PGA fails than they do when PGA succeeds. 

C a s e  ( x ): Suppose an EGF argument and P is infeasibly long. Since it has not 
been shown that any weak inductive methods are subject to the Gödel incom-
pleteness theorems, all weak inductive methods are available for statistically 
recovering P and proving CON(P). So a human mind that has a finitary computa-
tional description can epistemically justify P. Since there are more weak meth-
ods available for recovery of P and proof of CON(P), and in other epistemic 
modalities, than there are when PGA succeeds, EGF arguments fail more often 
when PGA fails than they do when PGA succeeds. 

C a s e  ( x i ): Suppose an MGF argument and that P is feasibly short. Although 
all weak inductive methods are available for proving CON(P) with less than 
mathematical certainty, all of these methods are also available to finitary compu-
ting machines. In which case, there is no means of discerning a metaphysical 
difference (concerning computability) between human minds with no finitary 



 USING KREISEL’S WAY OUT… 145 
 

computational description and finitary computing machines. MGF arguments fail 
when strengthened PGA fails, but no worse (or no better) than they failed when 
PGA succeeded.  

C a s e  ( x i i ): Suppose an MGF argument and P is infeasibly long. Although all 
weak inductive methods are available for statistically recovering P and for prov-
ing CON(P) with less than mathematical certainty, all of these methods are 
available to the finitary computing machine. In which case, there are no means of 
discerning a metaphysical difference (concerning computability) between human 
minds with no finitary computational description and finitary computing ma-
chines. MGF arguments fail when strengthened PGA fails, but no worse (or no 
better) than they did when PGA succeeded. 

Now we examine the four cases when strengthened PGA fails, because of the 
absurdity to which it succumbs. Recall the absurdity: P encompasses all of the 
epistemically adequate weak methods M of inquiry into the world that could 
prove CON(P) with less than mathematical certainty or in another epistemic 
modality. Suppose that all methods of inquiry are subject to the Gödel incom-
pleteness theorems. For each method M, we cannot prove that it is consistent. So 
it is possible that each method M is inconsistent. For any chain of reasoning that 
establishes proposition p, it is possible there is another chain of reasoning that 
establishes not-p. One could validly reason to p and one could validly reason to 
not-p, for any inconsistent method of inquiry. Thus, for all p, p cannot be epis-
temically justified, since for each p, one might validly infer not-p and validly 
infer p. This is an absurdity. Take this absurdity to be a reductio of the argument 
that all forms of reasoning are subject to the Gödel incompleteness theorems. 

C a s e  ( x i i i ): Suppose an EGF argument and P is feasibly short. The reasoning 
is exactly the same as it is for case (ix). All weak methods are available for prov-
ing CON(P) with less than mathematical certainty or in another epistemic modal-
ity. So a human mind that has a finitary computational description can epistemi-
cally justify P. Since there are more weak methods available for proving CON(P) 
with less than mathematical certainty, and in other epistemic modalities, than 
there are when PGA succeeds, EGF arguments fail more often when strength-
ened PGA fails than they do when strengthened PGA succeeds. 

C a s e  ( x i v ): Suppose an EGF argument and P is infeasibly long. The reason-
ing is exactly the same as it is for case (x). All weak methods are available for 
statistically recovering and proving CON(P) with less than mathematical certain-
ty. So a human mind that has a finitary computational description can epistemi-
cally justify P. Since there are more weak methods available for recovery of 
P and proof of CON(P), and in other epistemic modalities, than there are when 
PGA succeeds, EGF arguments fail more often when strengthened PGA fails 
than they do when strengthened PGA succeeds. 
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C a s e  ( x v ): Suppose a MGF argument and P is feasibly short. The reasoning is 
exactly the same as it is for case (xi). All weak methods are available for proving 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity to finitary computing machines and human minds with no finitary computa-
tional description. In which case, there is no means of discerning a metaphysical 
difference (concerning computability) between human minds with no computa-
tional description and finitary computing machines. MGF arguments fail when 
strengthened PGA fails, but no worse (or no better) than they did when strength-
ened PGA succeeded. 

C a s e  ( x v i ): Suppose a MGF argument and P is infeasibly long. The reasoning 
is exactly the same as it is for case (xii). All weak methods are available for sta-
tistically recovering P and for proving CON(P), with less than mathematical 
certainty or in another epistemic modality, to finitary computing machines and 
human minds with no finitary computational description. In which case, there is 
no means of discerning a metaphysical difference (concerning computability) 
between human minds with no finitary computational description and finitary 
computing machines. MGF arguments fail when strengthened PGA fails, but no 
worse (or no better) than they did when strengthened PGA succeeded. 

That concludes the categorization of cases under PGA and strengthened PGA, 
where they succeed and where they fail. Do we have any reason to believe that 
P will be infeasibly long? Now, we have no such reason. We do not know what 
ultimate cognitive science will look like, so we do not know, now, whether in 
ultimate cognitive science the ultimate program P will be infeasibly long. We do 
not have a theory of feasible computability that will tell us whether programs 
that have outputs of certain kinds are feasibly short. We do not know if human 
minds can be completely described computationally. We do not know if there is 
an ultimate cognitive science.  

9. Twelve Objections to the Absurdity Engendered by Strengthened PGA 

There are several anti-functionalist objections to the absurdity that threatens 
to destroy PGA and strengthened PGA and thus threatens to destroy EGF and 
MGF arguments. I enumerate and respond to them below. 

O b j e c t i o n  1: Even if P is infeasibly long, human minds can epistemically 
justify P, though no finite computing machine (which P formally characterizes) 
can. Since all epistemically adequate weak methods of inquiry into the world—
including any that confer empirical justification upon CON(P)—are, by PGA, 
subject to the Gödel incompleteness theorems, no finite computing machine 
formally characterized by P can employ those methods to prove, with less than 
mathematical certainty or in another epistemic modality, CON(P). However, 
human minds can do that, since statistical methods fall under the weak methods 
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subsumed by P and statistical methods are employed where human minds face 
resource limitations or do not have all the facts. The burden of proof is on the 
shoulders of the functionalist, to show that for programs greater than length L no 
statistical method subsumed under P can empirically justify CON(P).  

R e s p o n s e: It is true that no finitary computing machine formally characterized 
by P can use the statistical methods subsumable under P, provided that strength-
ened PGA succeeds. But human minds, even under the assumption they have no 
finitary computational description, are similarly forbidden. If all formalized 
statistical methods are shown by strengthened PGA to be subject to the Gödel 
incompleteness theorems, then no finitary human mind can use them to recover 
P and then prove CON(P).  

O b j e c t i o n  2: Finitary human mind can empirically justify CON(P) by reduc-
ing its consistency problem to a consistency problem for a formal system that 
does not subsume any of the weak methods of inquiry into the world that are 
subsumed by P. We then use weak methods to prove, with less than mathemati-
cal certainty, CON(REDUCING FORMAL SYSTEM) and use the reduction to 
conclude CON(P).  

R e s p o n s e: If P subsumes all methods of inquiry into the world, then any for-
mal system that does not subsume them is probably not a formal system to which 
P can be reduced. Suppose that, for the sake of argument, it is. Reductive proof 
theory requires there is a recursive function that maps every proof in the reduced 
system to a proof in the reducing system. Moreover, this mapping must itself be 
provable in a formal system that is, in general, included in the reducing system. 
When these conditions are satisfied, the reducing system will be a conservative 
extension of the reduced system. There is nothing in the reduced system that 
cannot be proved in the reducing system and, more importantly, there is nothing 
in the language of the reduced system that can be proved in the reducing system, 
though not proved in the reduced system. In other words, for any proof in PGA 
that any epistemically adequate weak method in P is subject to the Gödel incom-
pleteness theorems, there will be a corresponding proof in the reducing system 
that whatever is the analogue of the weak method in P is subject to the Gödel 
incompleteness theorems.   

O b j e c t i o n  3: If P is infeasibly long, it fails as an explanatory theory in cogni-
tive science. Any finitary computational description we can’t follow is one that 
can’t be explanatory for us. Thus, under the assumption human beings have no 
finitary computational description that characterizes their complete mentality, an 
infeasibly long P secures for anti-functionalists the conclusion that cognitive 
science is not justified. If a scientific theory has no explanatory value, it loses 
epistemic justification.  
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R e s p o n s e: This objection does not advance the anti-functionalist even one 
square forward in the functionalism debate. If it turns out that P is infeasibly 
long, then human beings might never discover it. What we do discover will be an 
approximation to P which we do find explanatory and that is not infeasibly long. 
The objection which the anti-functionalist just voiced is really a skeptical objec-
tion, and it is one which could be voiced in any scientific discipline whatsoever. 
The anti-physicalists can say that the ultimate theory of physics is super-long and 
thus has no explanatory value. The same response to the anti-functionalist holds 
here as well. Yes—it is a worry, but no—it is not a worry that gives the anti-
functionalist any advantage, for it is a general skeptical worry. 

O b j e c t i o n  4: Let’s try to refine the preceding objection. Genuine warranted 
assertibility and epistemic justification have no finitary computational descrip-
tion. These methods, because they are not formalizable, are not subject to the 
Gödel incompleteness theorems. Finitary human minds—under the assumption 
they have no finitary computational description—can use these methods to pro-
duce a proof of CON(P). So there is something a finitary human mind can do 
that no finitary computing machine can do. 

R e s p o n s e: This is a confused objection. How can methods resisting formaliza-
tion be used to prove the correctness of a formal system? Strengthened PGA 
shows that all epistemically adequate weak methods are subject to the Gödel 
incompleteness theorems. Thus it shows that all epistemically adequate weak 
methods have no c o m p l e t e  finitary computational description. But if strength-
ened PGA fails, it is left open that there are formalizable epistemically adequate 
weak methods that can prove, with less than mathematical certainty or in another 
epistemic modality, CON(P). If strengthened PGA fails, then the anti-functionalist 
must compute the solution to a recursively unsolvable problem, in order to show 
that there are no epistemically adequate weak methods that are not subject to the 
Gödel incompleteness theorems. The point is that the only way we have of show-
ing that there is no complete finitary computational description of X is by using 
a Gödelian argument. Strengthened PGA is such a Gödelian argument, but it fails.  

O b j e c t i o n  5: The absurdity is a travesty of mathematical reasoning. If you are 
right, then you have shown that the Gödel theorems in their original context—
proving the incompleteness of Peano arithmetic and the unprovability of 
CON(PA)—fail to work. One can run your absurdity argument on the provability 
predicate and easily reach the absurd conclusion that there is no unprovable 
sentence in Peano arithmetic. You would have shown that Gödel is wrong. Since 
that is too absurd to consider, we must conclude that you are wrong! 

R e s p o n s e: That is an important objection However, you did not think very 
clearly about the matter at hand. The provability predicate is not defined by Pea-
no arithmetic. We have independent reasons for believing in its cogency and we 
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could construct it even if Peano arithmetic did not exist. What we are able to do 
in Peano arithmetic is to arithmetize it and then employ the diagonal lemma to 
secure the incompleteness theorems.  

The situation is quite different when it comes to program P—the computa-
tional description of our methods of inquiry into the world. Recall that in PGA 
the analogue of the notion of “proof” for Peano arithmetic is the notion of “justi-
fies”. However, P defines the notion of justification. If there were no P, there 
would be no notion of justification. If it turns out that the notion of justification 
cannot itself be justified—and that is exactly what PGA attempts to show—then 
we have no coherent notion of justification. If there are truths about justification 
we are forbidden from justifying, the notion is incoherent. In which case, we 
can’t appeal to the Montague-Kaplan-Thomason axioms for axiomatizing “justi-
fies” so that it can meaningfully satisfy the Gödel diagonal lemma, since we 
have no reason to think that these axioms applied to “justifies” are true. On the 
other hand, we do have independent reasons for thinking that the Hilbert deriva-
bility conditions for the provability predicate are true, independently of the ques-
tion of the consistency of Peano arithmetic.  

O b j e c t i o n  6: You cannot be serious that human minds with no finitary com-
putational description have no epistemic advantages over finitary computing 
machines. Can’t a human mind with no finitary computational description survey 
an infeasibly long P? If not, then what could possibly be the difference between 
the human minds and finitary computing machines? Are you proposing that they 
are identical? 

R e s p o n s e: No, we are not. But just because a human mind has no finitary 
computational description does not entail it is able to construct infinite proof 
trees or that it has the computational resources to survey an infeasibly long P. 
Human minds that have no finitary computational description might not have any 
epistemic advantages over finitary computing machines. Even infinitary agents 
cannot prove the consistency of Peano arithmetic using a finitary and effective 
proof, since finitary and effective proofs of it are prohibited by Gödel’s incom-
pleteness theorems. If all weak methods for proving CON(PA) are subject to the 
Gödel incompleteness theorems, then an agent with an infinitary mind can only em-
ploy an infinitary method to prove CON(PA). In which case, the anti-functionalist 
must demonstrate that human minds are infinitary or give up the view that there is 
an epistemic difference between human minds that have no finitary computational 
description and finitary computing machines governed by P.  

If human minds, under the assumption they have no finitary computational 
description, prove CON(P) with less than mathematical certainty or in another 
epistemic modality, by weak methods not subject to the Gödel incompleteness 
theorems, they are not distinguishable from finitary computing machines that can 
similarly employ those weak methods to prove CON(P). If those weak methods 
are subject to the Gödel incompleteness theorems, then neither the human mind 
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that has no finitary computational description nor the finitary computing ma-
chine can prove CON(P) in the characteristic epistemic modality of the proof 
procedures of the formal systems that formalize the weak methods.  

The anti-functionalist wants to prove that all weak methods which could, un-
der some standard of epistemic adequacy, prove CON(P), with less than mathe-
matical certainty or in some other epistemic modality, are subject to the Gödel 
incompleteness theorems. Yet this task is just what engenders the absurdity. If all 
weak methods which could, under some standard of epistemic adequacy, prove 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity, are subject to the Gödel incompleteness theorems, then they cannot be used 
to prove CON(P), even by minds that have no finitary computational description. 
This is so, because whatever the epistemic modality of the proof of CON(P) no 
agent, no matter what its computational structure (whether finitary or metarecur-
sive), can prove CON(P) in that epistemic modality.  

O b j e c t i o n  7: An epistemic use of the Gödel theorems does, in fact, render 
a metaphysical conclusion. It shows that the cognitive structure of the human 
mind is subject to the Gödel incompleteness theorems. That, in turn, shows that 
we cannot be metaphysically distinguished from finitary computing machines.  

R e s p o n s e: However, that is a moot conclusion, since the anti-functionalist 
who employs an EGF argument proceeds from the assumption that the human 
mind has a finitary computational description. That is, she proceeds from the 
adoption of the metaphysical picture of the human kind as a finitary computing 
machine. The Gödel theorems tell us about the limitations faced by such finitary 
computational descriptions, but the basic metaphysics is already in place. EGF 
arguments don’t conclude to a metaphysical conclusion, as is done in MGF ar-
guments.  

O b j e c t i o n  8: That the anti-functionalist falls into an absurdity in escaping 
from the simple logical error of Penrose is a clever observation, but it is false. 
We do not say that an absurdity arises out of the fact that Peano arithmetic is 
subject to the Gödel incompleteness theorems. A formal system strong enough to 
carry out (minimally) Robinson arithmetic is one for which we cannot, with 
mathematical certainty, employing a finitistic and effective proof procedure, 
prove its consistency. However, that we cannot is not license for us to infer that 
we can reasonably doubt that Peano arithmetic is subject to the Gödel incom-
pleteness theorems. That is absurd. It is too easy a move. Certainly, we would 
have encountered someone in mathematics making it long ago. But no one did, 
because it is nothing short of being numbingly stupid. 

R e s p o n s e: You are quite right about Peano arithmetic. No absurdity—of the 
kind we have specified—arises, and it would be numbingly stupid to claim one 
does. It is the assumption that all forms of reasoning are subject to the Gödel 
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incompleteness theorems which produces the absurdity. The absurdity shows the 
assumption is false. Gödel did not prove that all formal systems are incom-
plete—only those that are string enough for Peano arithmetic.  

Additionally, the epistemic situations with respect to Peano arithmetic and 
with respect to P are quite different. There is probably not a single mathemati-
cian who genuinely doubts the consistency of Peano arithmetic. There are infini-
tary proofs of it—Gentzen discovered one in the mid-thirties and Ackermann 
polished it five years later. We have good reason to believe that the Gentzen 
proof works. We have, then, no reason to believe that the Gödel incompleteness 
theorems fail to hold of a formal system that encompasses Peano arithmetic. 
There is no absurdity, even though we cannot prove, with mathematical certainty, 
using a finitistic and effective proof procedure, the consistency of Peano arithme-
tic. From that we do not conclude that Peano arithmetic might be inconsistent.  

The epistemic situation is much different with respect to P, which is a finitary 
computational description based on a cognitive theory, an ultimate one at that. 
We do not have the same intuitions about its consistency that we have about the 
consistency of Peano arithmetic, for we do not even have the cognitive theory 
that underlies P. It is a suppositional device to carry out the anti-functionalist 
argument. Nor, for the same reasons, do we have an infinitary proof of CON(P). 
If P encompasses all finitary methods of inquiry into the world, and we show 
that all of these methods are subject to the Gödel incompleteness theorems, then 
we have no methods of inquiry left with which to carry out the consistency proof 
of P, other than infinitary ones. We cannot, however, say that we have good 
reason to believe that P is consistent, since we have no idea what it will look like 
and, even if we did, it is still based on a cognitive theory which has to be tested. 
If we cannot test it, because all our procedures for testing it are subject to the 
Gödel incompleteness theorems, we are in an epistemic situation of maximal 
ignorance. We have no good reason to believe it is consistent and no good reason 
to believe it is inconsistent. In that epistemic situation, we cannot accept the 
result that all epistemic methods of inquiry are subject to the Gödel incomplete-
ness theorems. The absurdity cannot be dismissed by comparing it with the 
disanalogous epistemic situation in Peano arithmetic. It is, then, a genuine epis-
temic problem for the anti-functionalist.  

O b j e c t i o n  9: You mistakenly think that since PGA and strengthened PGA 
incur an absurdity, it is left open for finitary human minds and finitary computing 
machines to use any weak methods of empirical inquiry into the structure of the 
world. The absurdity does not entitle the agent to use all weak methods. Given 
there is an absurdity, how would you determine the weak methods which escape 
being subject to the Gödel incompleteness theorems because of the absurdity? 
You cannot stipulate there are weak methods that can be used by a human agent. 
Just as a paradoxical sentence (such as the Liar sentence) can’t be assumed true, 
agents can’t conclude from the absurdity of strengthened PGA that there are 
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weak methods that are not subject to the Gödel incompleteness theorems and that 
are thereby legitimate to use. 

R e s p o n s e: That is a perceptive point, but it is misguided. The analogy with 
Liar sentences is not acceptable. Once we show a Liar sentence is paradoxical, 
we cannot assume it is true, nor can we assume that it is false. In some truth 
theories, we withhold assignment of a truth-value to it, in which case it has a null 
functional status in our discourses.  

On the other hand, the assumption in strengthened PGA that led to the ab-
surdity is that all methods of inquiry into the world are subject to the Gödel in-
completeness theorems. The absurdity shows that assumption is false—not all 
methods of inquiry into the world are subject to the Gödel incompleteness theo-
rems. So it is left open that there are weak methods which are not subject to the 
Gödel incompleteness theorems. 

O b j e c t i o n  1 0: Any intuitions about the consistency of P must be seen as 
evidence for the claim that we have infinitary capacities. We would not have 
those intuitions unless there is some infinitary reasoning process, below the 
threshold of conscious perception, which accounts for them. The best explana-
tion of why we have these intuitions is that there is some infinitary reasoning 
mechanism in us which causes us to have those intuitions. Thus, even though 
there is an absurdity for the anti-functionalist who wants to show all weak meth-
ods are subject to the Gödel incompleteness theorems, the intuitions we would 
(since P does not exist—it is merely a hypothetical construct) have about the 
correctness of P are reliable indicators of our infinitary capacities. The absurdity 
is no hindrance to the anti-functionalist, since human minds are infinitary and we 
do not even need PGA.  

R e s p o n s e: If we do have intuitions that P is consistent, and we set a probabil-
ity level for the reliability of those intuitions higher than the reliability we 
would—in probabilistic terms—rate the weak methods for showing P is con-
sistent, with less than mathematical certainty or in some other epistemic modality, 
and we know that there are no other weak methods available and that only infini-
tary methods can prove the correctness of P with mathematical certainty, what 
can we reasonably conclude about the nature of our cognitive capacities? We 
can’t reasonably conclude that we have infinitary cognitive capacities. It would 
be the case that the best explanation of our intuitions is that an infinitary reason-
ing mechanism causes us to have them if we had no alternative explanations of 
them. But we have alternative explanations of how we could have such intuitions, 
and these explanations do not posit infinitary reasoning processes. For instance, 
we have experiences with cognitive theories of inductive reasoning, and we see 
an analogy between them and P. If they are known to be consistent, we conclude 
that it is highly likely P is consistent as well. We might, also, be simply mistaken. 
Our probabilistic intuitions are notoriously shaky, a fact well-known to cognitive 
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psychologists. In that case, the best explanation for our intuitions is that we have 
made errors in probabilistic reasoning. If we had independent evidence the hu-
man mind performs infinitary operations, then the explanation of our intuitions 
about the correctness of P in terms of infinitary operations would be superior to 
the two alternatives we have just cited. But, in the absence of that evidence, the 
two alternatives are not inferior to it, since they are sensitive to established work 
in cognitive psychology, while there is no established work that shows we have 
infinitary reasoning powers.  

O b j e c t i o n  11: We can use the Gödel incompleteness theorems to show that 
there are capacities which human minds have that finitary computing machines 
do not have. Let the formal system characterizing the capacities of a finitary 
computing machine be P. Suppose P is subject to the Gödel incompleteness 
theorems. Then the finitary computing machine can’t prove CON(P) and can’t 
prove its own Gödel sentence. However, a human mind can prove CON(P) and 
the Gödel sentence in P by ascending to a more powerful formal system, P*, that 
contains P. The finitary computing machine characterized by P, however, cannot 
ascend to P*.  

R e s p o n s e: That point is well-known in the functionalism debate. Perhaps ascent 
to P* may prove futile, since P* may be so long that finitary human minds cannot 
survey it and thus cannot prove that it is consistent. That is the Penrose error. 

However, even if we discount the Penrose error, there is still a problem. Re-
call that what the second Gödel incompleteness theorem rules out is the possibil-
ity of finitistically proving, with mathematical certainty, and within the system P, 
CON(P). If one ascends to P*, then CON(P) can be proved finitistically with 
mathematical certainty, period. However, this is true only if one can finitistically 
prove, with mathematical certainty, that P* is consistent. But now the Gödel 
theorems take root in P*. It is impossible to finitistically prove CON(P*) with 
mathematical certainty, within P*. That means that the ascent to P* is futile un-
less P* can be proved consistent. But that cannot be done within P*. It can only 
be done by ascending to a stronger system P** that contains both P and P*. With-
in P**, one can finitistically prove CON(P) and CON(P*) with mathematical 
certainty, but only if P** is consistent. 

Notice the epistemic pattern which emerges. For any n less than omega, one 
can finitistically prove with mathematical certainty CON(Pn) in the formal sys-
tem Pn+1 only if one can finitistically prove, with mathematical certainty, 
CON(Pn+1). However, for any n less than omega, it is impossible to finitistically 
prove CON(Pn) with mathematical certainty within Pn. 

The anti-functionalist will have to ascend infinitely high to the infinitary 
formal system Pomega, in order to finitistically prove, with mathematical cer-
tainty, CON(P). That is just to say that the anti-mechanist will have to possess 
the cognitive capacity to construct an infinite proof tree in order to finitistically 
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prove, with mathematical certainty, CON(P). Indeed, this is true for any Pn, 
where n is less than omega.  

It easily follows from these considerations that the anti-functionalist has no 
advantage over the functionalist in showing that there are cognitive capacities 
which finitary human minds possess, but which a finitary computing machine 
lacks. If human minds possess an infinitary cognitive capacity, there is some-
thing we possess that finitary computing machines lack. But there is no conclu-
sive evidence that we possess an infinitary cognitive capacity. It is open to us to 
prove CON(P) with less than mathematical certainty or in another epistemic 
modality, but it is open to finitary computing machines to do the same as well. If 
the methods for proving CON(P) with less than mathematical certainty or in 
some other epistemic modality are subject to the Gödel incompleteness theorems, 
then the very same considerations expressed above will apply to this case also. In 
which case, the anti-functionalist has no advantage over the functionalist in 
demonstrating there is a cognitive capacity which human minds possesses that 
finitary computing machines lack.  

O b j e c t i o n  1 2: The anti-functionalist using an MGF argument has an avenue 
of escape. Although there cannot be a finitistic proof within P that establishes, 
with mathematical certainty, CON(P), it is possible for a human mind (not sus-
ceptible to the Gödel incompleteness theorems) to prove CON(P), with mathe-
matical certainty, by using mathematical reasoning that is not subject to the Gö-
del incompleteness theorems. 

R e s p o n s e: That is a good objection, but it might not work. If the mathematical 
reasoning in question is captured by a formal system that is not subject to the 
Gödel incompleteness theorems, it might be too weak to finitistically prove 
CON(P) with mathematical certainty. Perhaps CON(P) could be finitistically 
proved with mathematical certainty in the ramified type theory of Principia 
Mathematica. But since there is no adequate theory of its intensional proof pred-
icate (which is why it is not subject to the Gödel incompleteness theorems), it is 
not known whether such a proof will have mathematical certainty.  

On the other hand, if there is a system of mathematical reasoning which is 
not subject to the Gödel incompleteness theorems only because it cannot be 
formalized (justified perhaps on philosophical grounds), such as Brouwer’s view 
of intuitionism, it is not known whether such reasoning can establish its conclu-
sions with mathematical certainty and it is not known whether such reasoning is 
(or is not) finitary.  

There are systems of mathematical reasoning that are captured only by infini-
tary formal systems (such as the system in Turing’s completeness theorem), that 
are not subject to the Gödel incompleteness theorems. But there is no conclusive 
evidence human agents can engage in infinitary reasoning, where proper infini-
tary reasoning implies the ability of the reasoner to construct infinitary proof 
trees. This will not help the anti-functionalist who uses an MGF argument. 
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The moral, then, is that the anti-functionalist can dream of a system of 
finitary mathematical reasoning which can finitistically prove CON(P) with 
mathematical certainty, and which is not subject to the Gödel incompleteness 
theorems But we have no reason to believe such a system of mathematical rea-
soning exists, nor that it is logically possible.  

10. The Epistemology of Mathematical Certainty:  
A New Project for Philosophy of Mind 

Proving that an arbitrary mathematical sentence is true is beyond the pale of 
a mechanical proof procedure, since the set of mathematical truths is not recur-
sive, not recursively enumerable, and not definable in arithmetic. This is another 
reason why mechanical proof procedures that verify a proof of a theorem in 
mathematics must be mechanical. If we attempt to show that each line in a proof 
preserves truth by showing that each line in the proof is true in and of itself and 
without examining how it was obtained, there is no guarantee we will be able to 
complete the job of verifying the proof of the theorem (even if we have the time 
and resources). On the other hand, if the proof verification procedure is mechani-
cal, then we do not check that each line of the proof is true. Rather, we check that 
it has the requisite syntactical form. The relation “p is a proof of α” is recursive, 
where “α” is a sentence in some language and “p” is a proof of that sentence. It 
follows that all of the theorems in that language are recursively enumerable. 
There is a fundamental dichotomy between proof and truth arising from these 
considerations. Mathematical truth is not recursively enumerable, while mathe-
matical provability is recursively enumerable. One way of describing the Gödeli-
an incompleteness phenomena is that they witness this dichotomy.  

If we relax the standards of mathematical proof, we might not have assurance 
that intersubjective agreement can be reached as to whether a derivation is 
a legitimate proof of its conclusion. In which case, we cannot be assured we will 
be mathematically certain of the truth of the theorem derived. It is the epistemo-
logical requirement in mathematics that a proof establish with mathematical 
certainty the truth of its conclusion that allows the anti-functionalist to capitalize 
on the Gödel incompleteness theorems in EGF and MGF arguments. Relaxing 
this requirement in mathematics is relevant to the philosophy of mind. We must 
ask: what is the epistemic goodness of weak mathematical methods—those 
which do not confer mathematical certainty on what they establish?  

An area in philosophy of mathematics that connects with philosophy of mind 
is mathematical intuitionism. Can intuitionistic reasoning as originally envisaged 
by Brouwer deliver mathematical certainty? Is it infinitistic? If so, does it have 
a metarecursive computational structure? Work needs to be done to explore 
Kreisel’s musing:  

There is the old and familiar idea, or: idealization, which regards a t h o u g h t  and, 
in particular, a p r o o f  of a general proposition as an infinite object. [I]nfinite ob-
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jects are better r e p r e s e n t a t i o n s of proofs than the words we use to com-
municate proofs… (1967, p. 203) 

and Brouwer: 

These m e n t a l  mathematical proofs that in general contain infinitely many terms 
must not be confused with their linguistic accompaniments, which are finite and 
necessarily inadequate, hence do not belong to mathematics. (1967, p. 460, note 8) 

A virtue of Lucas-Penrose-Putnam anti-functionalist arguments is that they con-
nect mathematical logic with the philosophy of mind and might cast light on 
issues in the foundations of mathematics.  
N o t e 1: An anonymous reviewer of this paper made several important remarks: 
that Kreisel (1965; 1967) and Gödel (in his Dialectica paper; see Gödel, 1990) 
perhaps hold the view that human minds are capable of infinitary mental proofs, 
that Gödel (1995) perhaps believes mathematics is empirical (and so statistical 
methods would be an appropriate means of proving theorems), and that there is 
an interesting problem in Kripke’s Schema (formalizing Brouwer’s creating 
subject)—namely, the assumptions in his argument using the schema are incom-
patible with infinitary mental proofs. Van Atten (2018) provides an excellent 
discussion of this matter. If human minds are capable of infinitary mental proofs, 
the question of whether such mental acts have a metarecursive computational 
structure is raised and with it, whether such a computational structure can be 
accommodated within functionalism. I thank the anonymous reviewer for these 
remarks and other useful suggestions. 
N o t e 2: This paper revises and expands two earlier versions (Buechner, 2007; 
2010). The most prominent changes are the nature of the problem that I contend 
arises for Putnam’s use of the Gödel incompleteness theorems to refute function-
alism and the nature of the problem that arises for functionalists whose burden of 
proof is to show there are no ways (that avoid the incompleteness theorems) of 
establishing the consistency of first-order arithmetic with less than mathematical 
certainty or in some other epistemic modality than that of mathematical certainty. 
The most significant overlap is in the categorization of the Lucas-Penrose-
Putnam anti-functionalist arguments. Although there are changes of emphasis in 
that categorization in this paper, I still believe it is a significant contribution to 
the role of the Gödel incompleteness theorems in the functionalism debate. 
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1. Introduction 

Gödel’s incompleteness theorem is one of the most remarkable and profound 
discoveries in the 20th century, an important milestone in the history of modern 
logic. Gödel’s incompleteness theorem has wide and profound influence on the 
development of logic, philosophy, mathematics, computer science and other 
fields, substantially shaping mathematical logic as well as foundations and phi-
losophy of mathematics from 1931 onward. The impact of Gödel’s incomplete-
ness theorem is not confined to the community of mathematicians and logicians, 
and it has been very popular and widely used outside mathematics. 

Gödel’s incompleteness theorem raises a number of philosophical questions 
concerning the nature of mind and machine, the difference between human intel-
ligence and machine intelligence, and the limit of machine intelligence. It is well 
known that Turing proposed a convincing analysis of the vague and informal 
notion of “computable” in terms of the precise mathematical notion of “comput-
able by a Turing machine”. So we can replace the vague notion of computation 
with the mathematically precise notion of a Turing machine. In this paper, fol-
lowing Koellner in (2018), we stipulate that the notion “the mind cannot be 
mechanized” means that the mathematical outputs of the idealized human mind 
outstrip the mathematical outputs of any Turing machine.2 A popular interpreta-
tion of Gödel’s first incompleteness theorem (G1) is that G1 implies that the 
mind cannot be mechanized. The Mechanistic Thesis claims that the mind can be 
mechanized. In this paper, we will not examine the broad question of whether the 
mind can be mechanized, which has been extensively discussed in the literature 
(e.g. Penrose, 1989; Chalmers, 1995; Lucas, 1996; Lindström, 2006; Feferman, 
2009; Shapiro, 1998; 2003; Koellner, 2016; 2018; 2018; Krajewski, 2020). In-
stead we will only examine the question of whether G1 implies that the mind 
cannot be mechanized. 

This is a paper for a special issue of Semiotic Studies devoted to Krajewski’s 
paper (2020). We first give a summary of Krajewski’s work in (2020). In (2020), 
Krajewski gave a detailed analysis of the alleged proof of the nonmechanical, or 
non-computational, character of the human mind based on Gödel’s incomplete-
ness theorem. Following Gödel himself and other leading logicians, Krajewski 
refuted the Anti-Mechanist Arguments (the Lucas Argument and the Penrose 
Argument), and claimed that they are not implied by Gödel’s incompleteness 
theorem alone. Moreover, Krajewski (2020) demonstrated the inconsistency of 
Lucas’s arithmetic and the semantic inadequacy of Penrose’s arithmetic. Krajew-
ski (2020) also discussed two consequences of Gödel’s incompleteness theorem 
directly related to Anti-Mechanist Arguments: our consistency is not provable 
(Gödel’s Undemonstrability of Consistency Thesis), and we cannot define the 

 
2 In this paper, we will not consider the performance of actual human minds, with 

their limitations and defects; but only consider the idealized human mind and look at what 
it can do in principle (Koellner, 2018a, p. 338). 
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natural numbers. The discussion in Krajewski’s paper is mainly from the philo-
sophical perspective. However, the discussion in this paper is mainly from the 
logical perspective based on some recent advances on the study of Gödel’s in-
completeness theorem and Gödel’s Disjunctive Thesis. Basically, we agree with 
Krajewski’s analysis of the Anti-Mechanist Arguments and his conclusion that 
Gödel’s incompleteness theorem alone does not imply that the Anti-Mechanist 
Arguments hold. However, some discussions in (2020) are vague. Moreover, in 
the recent work on Gödel’s Disjunction Thesis one finds precise versions which 
can actually be proved. The motivation of this paper is to give some supplemen-
tary notes to Krajewski’s recent paper (2020) on the Anti-Mechanist Arguments 
based on Gödel’s incompleteness theorem. 

This paper is structured as follows. In Section 2, we review some notions and 
facts we will use in this paper. In Section 3, we give some supplementary notes 
to Section 5–6 in Krajewski’s (2020) and classify some misunderstandings of 
Gödel’s incompleteness theorem related to Anti-Mechanist Arguments. In Sec-
tion 4, we give a more detailed discussion of Gödel’s Disjunctive Thesis as in 
Section 7 in Krajewski’s (2020) based on recent advances of the study on Gö-
del’s Disjunctive Thesis in the literature. In Section 5, we give a more precise 
discussion of Gödel’s Undemonstrability of Consistency Thesis and the defina-
bility of natural numbers as in Section 8 in Krajewski’s paper. 

2. Preliminaries 

In this section, we review some basic notions and facts used in this paper. 
Our notations are standard. For textbooks on Gödel’s incompleteness theorem, 
we refer to (Enderton, 2001; Murawski, 1999; Lindström, 1997; Smith, 2007; 
Boolos, 1993). There are some good survey papers on Gödel’s incompleteness 
theorem in the literature (Smoryński, 1977; Beklemishev, 2010; Kotlarski, 2004; 
Visser, 2016; Cheng, in press). 

In this paper, we focus on first order theory based on countable language, and 
always assume the arithmetization of the base theory with a recursive set of non-
logical constants. For a given theory T, we use L(T ) to denote the language of T. 
For more details about arithmetization, we refer to (Murawski, 1999). Under the 
arithmetization, any formula or finite sequence of formulas can be coded by 
a natural number (called the Gödel number of the syntactic item). In this paper, 
⸢φ⸣ denotes the numeral representing the Gödel number of φ. 

We say a set of sentences Σ is recursive if the set of Gödel numbers of sen-
tences in Σ is recursive.3 A theory T is decidable if the set of sentences provable 
in T is recursive; otherwise it is undecidable. A theory T is recursively axiomatiz-
able if it has a recursive set of axioms, i.e. the set of Gödel numbers of axioms of 
T is recursive. A theory T is finitely axiomatizable if it has a finite set of axioms. 
A theory T is essentially undecidable iff any recursively axiomatizable consistent 

 
3 For ease of exposition, we will pass back and forth between the two. 



162 YONG CHENG  
 

extension of T in the same language is undecidable. We say a sentence φ is inde-
pendent of T if T ⊬ φ and T ⊬ ¬φ. A theory T is incomplete if there is a sentence 
φ in L(T) which is independent of T; otherwise, T is complete (i.e., for any sen-
tence φ in L(T), either T ⊢ φ or T ⊢ ¬φ). Informally, an interpretation of a theory 
T in a theory S is a mapping from formulas of T to formulas of S that maps all 
axioms of T to sentences provable in S. If T is interpretable in S, then all sentenc-
es provable (refutable) in T are mapped, by the interpretation function, to sen-
tences provable (refutable) in S. Interpretability can be accepted as a measure of 
strength of different theories. For the precise definition of interpretation, we refer 
to (Visser, 2011) for more details. 

Theorem 2.1 (Tarski, Mostowski, Robinson, 1953, Theorem 7, p. 22). Let T1 and 
T2 be two consistent theories such that T2 is interpretable in T1. If T2 is essentially 
undecidable, then T1 is also essentially undecidable. 

Robinson Arithmetic Q was introduced in (1953) by Tarski, Mostowski and 
Robinson as a base axiomatic theory for investigating incompleteness and unde-
cidability. 

Definition 2.2. Robinson Arithmetic Q is defined in the language {0, S, +, ·} 
with the following axioms: 

Q1: ∀x∀y (Sx = Sy → x = y); 
Q2: ∀x (Sx ≠ 0); 
Q3: ∀x (x ≠ 0 → ∃y (x = Sy)); 
Q4: ∀x∀y (x + 0 = x); 
Q5: ∀x∀y (x + Sy = S(x + y)); 
Q6: ∀x (x · 0 = 0); 
Q7: ∀x∀y (x · Sy = x · y + x). 

The theory PA consists of axioms Q1–Q2, Q4–Q7 in Definition 2.2 and the 
following axiom scheme of induction: 

(φ(0) ∧ ∀x(φ(x) → φ(Sx))) → ∀xφ(x), 

where φ is a formula with at least one free variable x. 
Let 𝔑𝔑 = 〈ℕ, +, ×〉 denote the standard model of PA. We say φ ∈ L(PA) is 

a true sentence of arithmetic if 𝔑𝔑 ⊨ φ. We define that Th(ℕ, +, ·) is the set of 
sentence φ in L(PA) such that 𝔑𝔑  ⊨  φ. Similarly, we have the definition of 
Th(ℤ, +, ·), Th(ℚ, +, ·) and Th(ℝ, +, ·). 

We introduce a hierarchy of L(PA)-formulas called the “arithmetical hierar-
chy” (Murawski, 1999; Hájek, Pudlák, 1993). Bounded formulas (Σ0

0, or Π0
0, or 
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Δ0
0

 formula) are built from atomic formulas using only propositional connectives 
and bounded quantifiers (in the form ∀x ≤ y or ∃x ≤ y). A formula is Σn+1

0  if it 
has the form ∃xφ where φ is Π𝑛𝑛

0. A formula is Π𝑛𝑛+1
0  if it has the form ∀xφ where 

φ is Σn
0. Thus, a Σn

0-formula has a block of n alternating quantifiers, the first one 
being existential, and this block is followed by a bounded formula. Similarly for 
Π𝑛𝑛

0-formulas. A formula is Δn
0

 if it is equivalent to both a Σn
0

 formula and a Π𝑛𝑛
0

 
formula. 

A theory T is said to be ω-consistent if there is no formula φ(x) such that 
T ⊢ ∃xφ(x) and for any n ∈ ω, T ⊢ ¬φ(n�). A theory T is 1-consistent if there is no 
such formula φ(x) which is Δ1

0 . A theory T is sound iff for any formula φ, if T ⊢ φ, 
then 𝔑𝔑 ⊨ φ; a theory T is Σ1

0-sound iff for any Σ1
0

 formula φ, if T ⊢ φ, then 𝔑𝔑 ⊨ φ. 
In the following, unless stated otherwise, let T be a recursively axiomatizable 

consistent extension of PA. There is a formal arithmetical formula ProofT(x,y) 
(called Gödel’s proof predicate) which represents the recursive relation 
ProofT(x,y) saying that y is the Gödel number of a proof in T of the formula with 
Gödel number x. Define ProvT(x) ≜ ∃yProofT(x,y). Since we will discuss gen-
eral provability predicates based on proof predicates, now we give a general 
definition of proof predicate which is a generalization of properties of Gödel’s 
proof predicate ProofT(x,y). 

Definition 2.3. We say a formula PrfT(x,y) is a proof predicate of T if it satisfies 
the following conditions:4 

(1) PrfT(x,y) is Δ1
0(PA);5 

(2) PA ⊢ ∀x(ProvT(x) ↔ ∃yPrfT(x,y)); 
(3) for any n ∈ ω and formula φ, ℕ ⊨ ProofT(⸢φ⸣, n) ↔ PrfT(⸢φ⸣, n); 
(4) PA ⊢ ∀x∀x’∀y(PrfT(x,y)∧PrfT(x’, y) → x = x’). 

We define the provability predicate PrT(x) from a proof predicate PrfT(x,y) 
by ∃yPrfT(x,y), and the consistency statement Con(T ) from a provability predi-
cate PrT(x) by ¬PrT(⸢0 ≠ 0⸣). 

D1: If T ⊢ φ, then T ⊢ PrT(⸢φ⸣); 
D2: If T ⊢ PrT(⸢φ → ϕ⸣) → (PrT(⸢φ⸣) → PrT(⸢ϕ⸣)); 
D3: T ⊢ PrT(⸢φ⸣) → PrT(⸢PrT(⸢φ⸣)⸣). 

 
4 We can say that each proof predicate represents the relation “y is the code of a proof 

in T of a formula with Gödel number x”. 
5 We say a formula φ is Δ1

0(PA) if there exists a Σ1
0

 formula α such that PA ⊢ φ ↔ α, 
and there exists a Π1

0 formula β such that PA ⊢ φ ↔ β. 
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D1–D3 is called the Hilbert-Bernays-Löb derivability condition. Note that D1 
holds for any provability predicate PrT(x). We say that provability predicate 
PrT(x) is standard if it satisfies D2 and D3. In this paper, unless stated otherwise, 
we assume that Con(T ) is the canonical arithmetic sentence expressing the con-
sistency of T and Con(T) is formulated via a standard provability predicate. 

The reflection principle for T, denoted by RfnT, is the schema PrT(⸢φ⸣) → φ 
for every sentence φ in L(T ). The reflection principle for T restricted to a class of 
sentences Γ will be denoted by Γ-RfnT. 

Let α(x) be a formula in L(T). We can similarly define the provability predi-
cate and consistency statement w.r.t. formula α(x) as follows. Define the formula 
Prfα(x,y) saying “y is the Gödel number of a proof of the formula with Gödel 
number x from the set of all sentences satisfying α(x)”. Define the provability 
predicate Prα(x) of α(x) as ∃yPrfα(x,y) and the consistency statement Conα(T) 
as ¬Prα(⸢0 ≠ 0⸣). We say that formula α(x) is a numeration of T if for any n, 
T ⊢ α(n�) iff n is the Gödel number of some sentence in T. 

3. Some notes on Gödel-Based Anti-Mechanist Arguments 

There has been a massive amount of literature on the Anti-Mechanist Argu-
ments due primarily to Lucas and Penrose (see Lucas, 1961; Penrose; 1989) 
which claim that G1 shows that the human mind cannot be mechanized. The 
Anti-Mechanist Argument began with Nagel and Newman in (2001) and contin-
ued with Lucas’s publication in (1961). Nagel and Newman’s argument was 
criticized by Putnam in (1960) and earlier by Gödel (Feferman, 2009), while 
Lucas’s argument was much more widely criticized in the literature. See Fefer-
man (2009) for a historical account and Benacerraf (1967) for an influential 
criticism of Lucas. Penrose proposed a new argument for the Anti-Mechanist 
Argument in (1994; 2011). Penrose’s new argument is the most sophisticated and 
promising Anti-Mechanist Argument which has been extensively discussed and 
carefully analyzed in the literature (Chalmers, 1995; Feferman, 1995; Lindström, 
2001; 2006; Shapiro, 1998; 2003; Gaifman, 2000; Koellner, 2016; 2018a; 2018b, 
etc.) 

Most philosophers and logicians believe that variants of the arguments of Lu-
cas and Penrose are not fully convincing. However, they do not agree so well on 
what is wrong with arguments of Lucas and Penrose. One strength of Krajew-
ski’s paper (2020) is that it provides a detailed review of the history of Anti-
Mechanist Arguments based on Gödel’s incompleteness theorem (Krajewski, 
2020, Section 3) and an analysis of these Gödel-Based Anti-Mechanist Argu-
ments (e.g. Lucas’s argument in Section 4 and Penrose’s argument in Section 6 in 
[Krajewski, 2020]). In this section, based on Krajewski’s work, we give some 
supplementary notes of Krajewski’s Sections 5–6. 

For us, the Gödel-Based Anti-Mechanist Argument comes from some misin-
terpretations of Gödel’s incompleteness theorem. To understand the source of 
these misinterpretations or illusions, we should first have correct interpretations 
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of Gödel’s incompleteness theorem. In the following, we first review some im-
portant facts about Gödel’s incompleteness theorem which are helpful to clarify 
some misinterpretations of Gödel’s incompleteness theorem. 

Gödel proved his incompleteness theorem in (1931) for a certain formal sys-
tem P related to Russell-Whitehead’s Principia Mathematica and based on the 
simple theory of types over the natural number series and the Dedekind-Peano 
axioms (Beklemishev, 2010, p. 3). Gödel’s original first incompleteness theorem 
(1931, Theorem VI) says that for formal theory T formulated in the language of 
P and obtained by adding a primitive recursive set of axioms to the system P, if 
T is ω-consistent, then T is incomplete. The following theorem is a modern re-
formulation of Gödel’s first incompleteness theorem. 

Theorem 3.1 (Gödel’s first incompleteness theorem (G1)). If T is a recursively 
axiomatized extension of PA, then there exists a Gödel sentence G such that: 

(1) if T is consistent, then T ⊬ G; 
(2) if T is ω-consistent, then T ⊬ ¬G. 

Thus if T is ω-consistent, then G is independent of T and hence T is incom-
plete. If T is consistent, Gödel sentence G is a true Π1

0
 sentence of arithmetic. 

Gödel’s proof of G1 is constructive: one can effectively find a true Π1
0

 sentence 
G of arithmetic such that G is independent of T assuming T is ω-consistent. Gö-
del calls this the “incompletability or inexhaustability of mathematics”. Note that 
only assuming that T is consistent, we can show that G is a true sentence of 
arithmetic unprovable in T. But it is not enough to show that T ⊬ ¬G only as-
suming that T is consistent. To show that T ⊬ ¬G, we need a stronger condition 
such as “T is 1-consistent” or “T is Σ1

0-sound”. 
Let T be a recursively axiomatized extension of PA. After Gödel, Rosser con-

structed Rosser sentence R (a Π1
0 sentence) and showed that if T is consistent, 

then R is independent of T. Rosser improved Gödel’s G1 in the sense that Rosser 
proved that T is incomplete only assuming that “T is consistent” which is weaker 
than “T is 1-consistent”. 

In this paper, let 〈Mn : n ∈ ω〉 be the list of Turing machines and Th(Mn) be 
the set of sentences produced by the Turing machine Mn. Let C = {n : Th(Mn) is 
a consistent theory} and S = {n : Th(Mn) is a sound theory}. 

The following proposition on inconsistency and unsoundness is from (Kra-
jewski, 2020). 

Proposition 3.2. 

(1) If F is a partial recursive function such that C ⊆ dom(F) and F(n) ∉ 
Th(Mn) for any n ∈ C, then {F(n) : n ∈ dom(F)} is inconsistent. 
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(2) If F is a partial recursive function such that S ⊆ dom(F) and F(n) ∉ 
Th(Mn) for any n ∈ S, then {F(n) : n ∈ dom(F)} is inconsistent. 

A natural question is: whether there exists such a function F with these prop-
erties. However, the effective version of Gödel’s first incompleteness theorem 
(EG1) tells us that there exists a partial recursive function F such that for any 
n ∈ ω, if Th(Mn) is consistent, then F(n) is defined and F(n) is the Gödel number 
of a true arithmetic sentence which is not provable in Th(Mn). Thus there exists 
such a function F with the properties as stated in Proposition 3.2. 

One popular interpretation of EG1 is: for any Turing machine Mn, F(n) picks 
up the true sentence of arithmetic not produced by Mn. However, this is a misin-
terpretation of EG1 which in fact says that for such a partial recursive function F, 
if Th(Mn) is consistent, then F(n) is the Gödel number of a true sentence of 
arithmetic which is not provable in Th(Mn). A natural question is: whether there 
exists an effective procedure such that we can decide whether Th(Mn) is con-
sistent. The answer is negative since C is a complete Π1

0
 set as Koellner points 

out in (2018a). 
Krajewski (2020) claimed that C and S are not recursive. However, as Kra-

jewski (2020) commented, Proposition 3.2 on inconsistency and unsoundness 
does not require that for n ∈ dom(F), F(n) is the code of a true arithmetic sen-
tence. But we do not see that C or S is not recursive from Proposition 3.2. How-
ever, if we add the condition that for n ∈ dom(F), F(n) ∈ Truth \ Th(Mn), then 
we can show that C and S are not recursive. Let us take C for example and show 
that C is not recursive. 

Proposition 3.3. C is not recursive.6 

P r o o f . Suppose C is recursive. Let A = {F(n) : n ∈ C}. Then A is recursive 
enumerable. Suppose A = Th(Mm) for some m. Note that A ⊆ Truth, and so A is 
consistent. By the definition of C, m ∈ C and hence F(m) ∈ A. But, on the other 
hand, F(m) ∉ Th(Mm) = A which leads to a contradiction.          □ 

Since C is undecidable, it is impossible to effectively distinguish the case that 
Th(Mn) is consistent and the case that Th(Mn) is not consistent.  

In fact, Theorem 3.2 can be generalized in the following form: 

Theorem 3.4. Let P be any property about first order theory (i.e. consistency, 
soundness, 1-consistency, etc). Let C = {n : Th(Mn) has property P}. Suppose 
F is a partial recursive function satisfying the following conditions: 

(1) C ⊆ dom(F), 

 
6 In fact, C is a complete Π1

0 set as Koellner points out in (2018a). 



 GÖDEL’S INCOMPLETENESS THEOREM… 167 
 

(2) for each n ∈ C, F(n) ∉ Th(Mn). 
Then, {F(n) : n ∈ dom(F)} does not have property P. 

P r o o f . Let A = {F(n) : n ∈ dom(F)}. Suppose A has property P. Since F is par-
tial recursive, A is recursively enumerable. Suppose A = Th(Mk) for some k. 
Since A has property P, we have k ∈ C. Thus, F(k) ∉ Th(Mk) = A which contra-
dicts that F(k) ∈ A.                    □ 

Gödel announced the second incompleteness theorem (G2) in an abstract 
published in October 1930: no consistency proof of systems such as Principia, 
Zermelo-Fraenkel set theory, or the systems investigated by Ackermann and von 
Neumann is possible by methods which can be formulated in these systems (see 
Zach, 2007, p. 431). For a theory T, recall that Con(T) is the canonical arithme-
tic sentence expressing the consistency of T under Gödel’s recursive arithmetiza-
tion of T. The following is a modern reformulation of G2: 

Theorem 3.5. Let T be a recursively axiomatized extension of PA. If T is con-
sistent, then T ⊬ Con(T ). 

From G2, we cannot get that Con(T ) is independent of T only assuming that 
T is consistent. It is provable in T that if T is consistent, then T ⊢ Con(T ) ↔ G 
and thus T ⊬ Con(T). However, it is not provable in T that if T is consistent, then 
T + Con(T) is also consistent.7 So it is not enough to show that T ⊬ ¬Con(T) 
only assuming that T is consistent. But we could prove that Con(T) is independ-
ent of T by assuming that T is 1-consistent which is stronger than the condition 
“T is consistent”.8 Let 1-Con(T ) be the sentence in L(PA) expressing that T is 1-
consistent. Fact 3.6 is a summary of these results. 

Fact 3.6. Let T be a recursively axiomatized consistent extension of PA. 

(1) T ⊢ Con(T ) → Con(T + ¬Con(T)); 
(2) T ⊬ Con(T ) → Con(T + Con(T )); 
(3) T ⊢ Con(T ) → Con(T + R);9 
(4) T ⊢ 1-Con(T ) → Con(T + Con(T )). 

An illusion of the application of Gödel’s incompleteness theorem is that we 
can add consistencies (or Out-Gödeling) forever: from Con(T), we have 

 
7 See (Boolos, 1993, Theorem 4, p. 97) for a modal proof in GL of this fact using the 

arithmetic completeness theorem for GL. 
8 It is an easy fact that if T is 1-consistent and S is not a theorem of T, then PrT(⸢S⸣) is 

not a theorem of T. 
9 Recall that R is the Rosser sentence. 
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Con(T + Con(T )), then Con(T + Con(T + Con(T))) and so on. However, by Fact 
3.6, this does not hold. For the iteration of adding the consistency statement (or 
Out-Gödeling), we need a stronger condition: T is 1-consistent. The following 
fact shows the difference between Con(T) and 1-Con(T ). 

Fact 3.7 (Smoryński, 1977). Let T be a recursively axiomatized consistent exten-
sion of PA. Then T ⊢ Con(T ) ↔ Π1

0-RfnT and T ⊢ 1-Con(T) ↔ Σ1
0-RfnT. 

As a corollary of Fact 3.7, 1-Con(T ) ⊢ l-Con(T + Con(T)) (see Proposition 3 
in Pudlák, 1999). Thus, if we assume 1-Con(T ), then we can prove Con(T ), 
Con(T + Con(T )), Con(T + Con(T + Con(T))) and we can continue forever 
(note that the assumption 1-Con(T) is stronger than all these statements). 

In summary, the differences between Rosser sentence and Gödel sentence, as 
well as between Con(T ) and 1-Con(T ) are very important. However, these dif-
ferences are often overlooked in informal philosophical discussions of Gödel’s 
incompleteness theorem. 

4. Gödel’s Disjunctive Thesis 

The focus of Krajewski’s paper (2020) is not about Gödel’s Disjunctive The-
sis even if he gives a very brief discussion of Gödel’s Disjunctive Thesis related 
to the Anti-Mechanist Arguments in Section 7. In this section, we give a more 
detailed discussion of Gödel’s Disjunctive Thesis and its relevance to the Mech-
anistic Thesis based on recent advances on the study of Gödel’s Disjunctive 
Thesis. This section is a summary of Koellner’s papers (2018a) and (2018b), and 
we follow Koellner’s presentation very closely. 

Gödel did not argue that his incompleteness theorem implies that the mind 
cannot be mechanized. Instead, Gödel argued that his incompleteness theorem 
implies a weaker conclusion: Gödel’s Disjunctive Thesis (GD). 

The first disjunct: The mind cannot be mechanized. 
The second disjunct: There are absolutely undecidable statements.10 
Gödel’s Disjunctive Thesis (GD): Either the first disjunct or the second disjunct 

holds.11 

 
10 In the sense that there are mathematical truths that cannot be proved by the ideal-

ized human mind. 
11 The original version of GD was introduced by Gödel in (1951; see p. 310): “So the 

following disjunctive conclusion is inevitable: either mathematics is incompletable in this 
sense, that its evident axioms can never be comprised in a finite rule, that is to say, the 
human mind (even within the realm of pure mathematics) infinitely surpasses the powers 
of any finite machine, or else there exist absolutely unsolvable diophantine problems of 
the type specified (where the case that both terms of the disjunction are true is not exclud-
ed, so that there are, strictly speaking, three alternatives)”. 
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Gödel’s Disjunctive thesis (GD) concerns the limit of mathematical 
knowledge and the possibility of the existence of mathematical truths that are 
inaccessible to the idealized human mind. The first disjunct expresses an aspect 
of the power of the idealized human mind, while the second disjunct expresses 
an aspect of its limitations.12 

What about Gödel’s view toward the first disjunct and the second disjunct? 
For Gödel, the first disjunct is true and the second disjunct is false; that is the 
mind cannot be mechanized and human mind is sufficiently powerful to capture 
all mathematical truths. Gödel’s incompleteness theorem shows certain weak-
nesses and limitations of one given Turing machine. For Gödel, mathematical 
proof is an essentially creative activity and his incompleteness theorem indicates 
the creative power of human reason. Gödel believes that the distinctiveness of 
the human mind when compared to a Turing machine is evident in its ability to 
come up with new axioms and develop new mathematical theories. Gödel shared 
Hilbert’s belief expressed in 1926 in the words: “in mathematics there is no igno-
ramuses, we should know and we must know” (see Reid, 1996, p. 192). Based on 
his rationalistic optimism, Gödel believed that we are arithmetically omniscient 
and the second disjunct is false.13 However, Gödel admits that he cannot give 
a convincing argument for either the first disjunct or the second disjunct. Gödel 
thinks that the most he can claim to have established is his Disjunctive Thesis. 
For Gödel, GD is a “mathematically established fact” of great philosophical 
interest which follows from his incompleteness theorem, and it is “entirely inde-
pendent from the standpoint taken toward the foundation of mathematics” (Gö-
del, 1951, p. 310).14 In the following, we give a concise overview of the current 
progress on Gödel’s disjunctive thesis based on Koellner’s work in (2016; 2018a; 
2018b). 

Let K be the set of sentences in L(PA) that the idealized human mind can 
know. Let Truth be the set of sentences in L(PA) which are true in the standard 
model of arithmetic and Prov be the set of sentences in L(PA) which are prova-
ble in PA. Gödel refers to Truth as objective mathematics and K as subjective 
mathematics. Recall that a theory T in L(PA) is sound if T ⊆ Truth. In this paper, 
we assume that K is sound. However, from G1, we have Prov ⊊ Truth since 
Gödel’s sentence is a true sentence of arithmetic not provable in PA.15 

 
12 We refer to (Horsten, Welch, 2016), a recent comprehensive research volume about 

GD, for more discussions of the status of GD. 
13 For more discussions of the status of the second disjunct, we refer to (Horsten, 

Welch, 2016). 
14 In the literature there is a consensus that Gödel’s argument for GD is definitive, but 

until now we have no compelling evidence for or against any of the two disjuncts (Hor-
sten, Welch, 2016). 

15 Let us take Fermat’s last theorem for another example. People have shown that 
Fermat’s last theorem is a true sentence of arithmetic but, as far as I know, it is still an 
open problem whether Fermat’s last theorem is provable in PA. So Fermat’s last theorem 
belongs to K but it is open whether it belongs to Prov. 
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Note that GD concerns the concepts of relative provability, absolute provabil-
ity, and truth. Before we present the analysis of GD, let us first examine two key 
notions about provability: relative provability and absolute provability. The no-
tion of relative provability is well understood and we have a precise definition of 
relative provability in a formal system. But the notion of absolute provability is 
much more ambiguous and we have no unambiguous formal definition of abso-
lute provability as far as we know. The notion of absolute provability is intended 
to be intensionally different from the notion of relative provability in that abso-
lute provability is not conceptually connected to a formal system. In contrast to 
the notion of relative provability, there is little agreement on what principles of 
the notion “absolute provability” should be adopted. In this paper, we identify 
the notion of “relatively provable with respect to a given formal system F” with 
the notion of “producible by a Turing machine M” (where M is the Turing ma-
chine corresponding to F)16 and we identify the notion of “absolute provability” 
with the notion of “what the idealized human mind can know”. 17 Under this 
assumption, K is just the set of sentences that are absolutely provable. 

In this paper, we assume without loss of generality that Q ⊆ Th(Mn) such that 
both G1 and G2 apply to Th(Mn). For a natural number n, we say that a statement 
φ is relatively undecidable w.r.t. theory Th(Mn) for some n if φ ∉ Th(Mn) and 
¬φ ∉ Th(Mn). We say that a statement φ is absolutely undecidable if φ ∉ K and 
¬φ ∉ K. Let us first examine what the incompleteness theorem tells us about the 
relationship between Th(Mn), K and Truth. 

Note that G1 tells us that for any sufficiently strong consistent theory F con-
taining Q, there are statements which are relatively undecidable with respect to F. 
But as Gödel argued, these statements are not absolutely undecidable; instead 
one can always pass to higher systems in which the sentence in question is prov-
able (see Gödel, 1995, p. 35). For example, from G2, Con(PA) is not provable in 
PA; but Con(PA) is provable in second order arithmetic (Z2). Since G2 applies to 
Z2, the Π0

1 -truth Con(Z2) is not provable in Z2. But Con(Z2) is provable in 
Z3 (third order arithmetic) which captures the Π0

1-truth that was missed by Z2. 
This pattern continues up through the orders of arithmetic and up through the 
hierarchy of set-theoretic systems; at each stage a missing Π0

1-truth is captured at 
the next stage (see Koellner, 2018a, p. 347). 

Now let us examine the question of whether the incompleteness theorem 
shows that GD holds. From the literature, we have found a natural framework 
EAT in which we can show that if the concepts of relative provability, absolute 
provability and truth satisfy some principles, then one can give a rigorous proof 
of GD, vindicating Gödel’s claim that GD is a mathematically established fact 
(see Koellner, 2018a, p. 355). 

 
16 Note that sentences relatively provable with respect to a given formal system F can 

be enumerated by a Turing machine. 
17 Williamson (2016) makes the similar definition that a mathematical hypothesis is 

absolutely decidable if and only if either it or its negation can in principle be known by 
a normal mathematical process; otherwise it is absolutely undecidable. 
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Now we introduce two systems of epistemic arithmetic: EA and EAT. For the 
presentation of EA and EAT, we closely follow Koellner’s discussion in (2016; 
2018a). The first is designed to deal with Th(Me) and K, and the second is de-
signed to deal with Th(Me), K and Truth. For EAT, we only require a typed 
truth predicate.18 The basic system EA of epistemic arithmetic has axioms of 
arithmetic and axioms of absolute provability, and the extended system EAT has 
additional axioms of typed truth.19 In EA and EAT, K is treated as an operator 
rather than a predicate. From results in Gödel (1986), Myhill (1960), Montague 
(1963), Thomason (1980), and others, if one formulates a theory of absolute 
provability with K as a predicate then inconsistency may come (see Koellner, 
2016). The basic axioms of absolute provability are:20 

K1: Universal closures of formulas of the form Kφ where φ is a first-order 
validity. 

K2: Universal closures of formulas of the form (K(φ → ψ) ∧ Kφ) → Kψ. 
K3: Universal closures of formulas of the form Kφ → φ. 
K4: Universal closures of formulas of the form Kφ → KKφ.21 

The language L(EA) is L(PA) expanded to include an operator K that takes 
formulas of L(EA) as arguments. The axioms of arithmetic are simply those of 
PA, only now the induction scheme is taken to cover all formulas in L(EA). For 
a collection Γ of formulas in L(EA), let KΓ denote the collection of formulas 
Kφ where φ ∈ Γ. The system EA is the theory axiomatized by Σ∪ KΣ, where 
Σ consists of the axioms of PA in the language L(EA) and the basic axioms of 
absolute provability. The language L(EAT) of EAT is the language L(EA) aug-
mented with a unary predicate T. The system EAT is the theory axiomatized by 
Σ∪ KΣ, where Σ consists of the axioms of PA in the language L(EAT), the basic 

 
18 A typed truth predicate is one that applies only to statements that do not themselves 

involve the truth predicate. In contrast, a type-free truth predicate is one which also ap-
plies to statements that themselves involve the truth predicate. The principles governing 
typed truth predicates are perfectly straightforward and uncontroversial, while the princi-
ples governing type-free truth predicates are much more delicate (Koellner, 2018a). 

19 These systems were first introduced by Myhill (1960), Reinhardt (1985a; 1985b; 
1986) and Shapiro (1985), and then investigated by many others (e.g. Horsten, 1998; 
Leitgeb, 2009; Carlson, 2000; Koellner, 2016; 2018a and others). 

20 The basic conditions we will impose on knowability are: (1) if the idealized human 
mind knows φ and φ → ψ then the idealized human mind knows ψ; (2) if the idealized 
human mind knows φ then φ is true; (3) if the idealized human mind knows φ then the 
idealized human mind knows that the idealized human mind knows φ. 

21 K1-known as logical omniscience-says that K holds of all first-order logical validi-
ties; K2 says that K is closed under modus ponens, and so distributes across logical deri-
vations; K3 says that K is correct; and K4 says that K is absolutely self-reflective (Koell-
ner, 2018a). 
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axioms of absolute provability (in the language L(EAT)), and the Tarskian axi-
oms of truth for the language L(EA). 

From the incompleteness theorem, Gödel made the following two claims 
about the relationship between Th(Me), K and Truth. 

Claim One: For any e ∈ ℕ, K(Th(Me) ⊆ Truth) → Th(Me) ⫋ K.22 
Claim Two: Either ¬∃e(Th(Me) = K) or ∃φ(φ ∈ Truth∧φ ∉ K∧¬φ ∉ K).23 

Gödel’s Claim One is formalizable and provable in EAT. In fact, something 
stronger is provable in EA as the following theorem shows: 

Theorem 4.1 (Reinhardt, 1985a). Assume that S includes EA. Suppose F(x) is 
a formula with one free variable. 

(1) If for each sentence φ, S ⊢  K(F(⸢φ⸣) →  φ). Then there is a sentence 
ϕ such that S ⊢ Kϕ∧K¬F(⸢ϕ⸣). 

(2) If for each sentence φ, S ⊢ K(Kφ → F(⸢φ⸣)). Then S ⊢ K¬K(Con(F)). 

From the following theorem, GD is also formalizable and provable in EAT 

which confirms Gödel’s claim that GD is a mathematically established fact.24 

Theorem 4.2 (Reinhardt, 1986). Assume EAT. Then GD holds. 

Following Reinhardt, we should distinguish three levels of the mechanistic 
thesis. 

(1) The weak mechanistic thesis (WMT): ∃e(K = Th(Me)); 
(2) The strong mechanistic thesis (SMT): K∃e(K = Th(Me));  
(3) The super strong mechanistic thesis (SSMT): ∃e K(K = Th(Me)). 

Note that WMT is just the first disjunct which says that there is a Turing machine 
which coincides with the idealized human mind in the sense that the two have 
the same outputs. Note that SMT says that the idealized human mind knows that 

 
22 The informal proof of Claim One is as follows: Suppose K(Th(Me) ⊆ Truth). Since 

it is knowable that Th(Me) is consistent, it is knowable that there is a true sentence of 
arithmetic which is not provable in Th(Me). So Th(Me) ⊊ K. 

23 The informal proof of Claim Two is as follows: Suppose Th(Me) = K for some e. 
Since Th(Me) is R.E. but Truth is not arithmetic, K ⊊  Truth. So we can find some 
φ ∈ Truth but φ ∉ K and ¬φ ∉ K. 

24 It is a little delicate to formalize GD in EAT since K is formalized as an operator in 
EAT and so we are prohibited from quantifying into it. For the details, we refer to Rein-
hardt (1986) and Koellner (2016; 2018a). 
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there is a Turing machine which coincides with the idealized human mind. Note 
that SSMT says that there is a particular Turing machine such that the idealized 
human mind knows that that particular machine coincides with the idealized 
human mind. 

Suppose WMT holds. Then there exists an e* such that in fact K = Th(Me∗). It 
might seem at first that if we know that there is such an e* then we will be able to 
find, in a computable way, the indices e such that K = Th(Me). But this is an 
illusion, as demonstrated by Rice’s Theorem, which we shall now explain. 

In recursion theory, the sets Th(Me) are known as computably enumerable 
sets. Each such set is the domain of a partial computable function φe. Rice’s 
Theorem states that for any class C of partial computable functions, {e : φe ∈ C} 
is computable iff either C = ∅ or C is the class of all partial computable functions. 
Now consider the set of indices that we are interested in, namely, {e : K = 
dom(φe)}, that is, {e : φe ∈ C} where C = {φe : K = dom(φe)}. It follows immedi-
ately from Rice’s theorem that {e : K = dom(φe)} is not computable. 

The following theorem shows that we can prove in EAT that there does not 
exist a particular Turing machine such that the idealized human mind knows that 
that particular Turing machine coincides with the idealized human mind. 

Theorem 4.3 (Reinhardt, 1985a). EAT + SSMT is inconsistent. 

The following theorem shows that, from the viewpoint of EAT it is possible 
that the idealized human mind is in fact a Turing machine. From Theorem 4.3, it 
just cannot know which one. 

Theorem 4.4 (Reinhardt, 1985b). EAT + WMT is consistent. 

From Theorem 4.4, the first disjunct is not provable in EAT. But Gödel did 
think that one day we would be in a position to prove the first disjunct, and what 
was missing, as he saw it, was an adequate resolution of the paradoxes involving 
self-applicable concepts like the concept of truth. Gödel thought that “[i]f one 
could clear up the intensional paradoxes somehow, one would get a clear proof 
that mind is not machine”.25 

The following technical theorem from Carlson shows that, from the point of 
view of EAT, it is possible that the idealized human mind knows that it is a Tu-
ring machine: it just cannot know which one. 

Theorem 4.5 (Carlson, 2000). EAT + SMT is consistent. 

Now we give a summary for the question whether Gödel’s incompleteness 
theorems imply the first disjunct. The incompleteness theorems imply that 

 
25 This quotation is from Hao Wang’s reconstruction of his conversations with Gödel 

(see Wang, 1996, p. 187). 



174 YONG CHENG  
 

¬∃e K(K = Th(Me)). But from Theorem 4.4, it does not follow that ¬∃e(K = 
Th(Me)); and from Theorem 4.5, it does not even follow that ¬K∃e(K = Th(Me)). 
The difference between ∃e K and K∃e before K = Th(Me) is essential. Assuming 
the principles embodied in EAT, it is possible to know that we are a Turing ma-
chine (i.e. K∃e(K = Th(Me))); it is just not possible for there to be a Turing ma-
chine such that we know that we are that Turing machine (i.e. ∃e K(K = 
Th(Me))). 

Penrose proposed a new argument for the first disjunct in (1994, 2011). Pen-
rose’s new argument is the most sophisticated and promising argument for the 
first disjunct. It has been extensively discussed and carefully analyzed in the 
literature (see Chalmers, 1995; Feferman, 1995; Lindström, 2001; 2006; Shapiro, 
1998; 2003; Gaifman, 2000; Koellner, 2016; 2018b, etc). The question of wheth-
er Penrose’s new argument establishes the first disjunct is quite subtle. Penrose’s 
new argument involves treating truth as type-free, and so for the analysis and 
formalization of Penrose’s new argument, we need to employ type-free notions 
of truth. However, we now have many type-free theories of truth and there is no 
consensus as to which option is best. Koellner was the first to discuss Penrose’s 
new argument in the context of type-free truth. And he shows that when one 
shifts to a type-free notion of truth then one can treat K as a predicate (as a con-
trast, in the context of EA and EAT, K cannot be treated as a predicate). 

In the literature, Koellner proposed the framework DTK which employs Fe-
ferman’s type-free theory of determinate truth DT and some additional axioms 
governing K to the axioms of DT.26 The following results about the system DTK 
are due to Koellner. From (Koellner, 2016; 2018b), DTK is consistent (see 2016, 
Theorem 7.14.1) and DTK proves GD (see 2016, Theorem 7.15.3). However, the 
particular argument Penrose gives for the first disjunct fails in the context of 
DTK (see 2018b, Theorem 4.1). Moreover, even if we restrict the first and sec-
ond disjunct to arithmetic statements, DTK can neither prove nor refute either 
the first disjunct or the second disjunct (see 2016, Theorems 7.16.1–7.16.2). 
From the point of view of DTK, it is in principle impossible to prove or refute 
either disjunct. Koellner concluded that  

Since the statements that “the mind cannot be mechanized” and “there are abso-
lutely undecidable statements” are independent of the natural principles governing 
the fundamental concepts and, moreover, are independent of any plausible princi-
ples in sight, it seems likely that these statements are themselves “absolutely un-
decidable”. (Koellner, 2018b, p. 469)27 

 
26 For the details of the system DT and DTK, see (Koellner, 2016; 2018b). 
27 Koellner concluded in (2018b, p. 480) with a disjunctive conclusion of his own: 

“Either the statements that ‘the mind cannot be mechanized’ and ‘there are absolutely 
undecidable statements’ are indefinite (as the philosophical critique maintains) or they are 
definite and the above results and considerations provide evidence that they are about as 
good examples of ‘absolutely undecidable’ propositions as one might find”. 
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In our previous discussion of GD, the first disjunct and the second disjunct, 
we identified absolutely undecidability with knowability of the idealized human 
mind and define that φ is absolutely undecidable if φ ∉ K and ¬φ ∉ K. Under 
this framework, the second disjunct is equivalent to “K is not complete”. Under 
the assumption that K ⊆ Truth, the second disjunct is equivalent to 
“K ⊊ Truth”. However, G1 only tells us that Prov ⊊ Truth, and it does not tell 
us that K ⊊ Truth. 

Another natural informal definition of absolutely undecidability is: φ is abso-
lutely undecidable if there is no consistent extension T of ZFC with well-
justified axioms such that φ is provable in T. In this paper, we focus on whether 
Gödel’s incompleteness theorem implies that the human mind cannot be mecha-
nized. In philosophy of set theory, there are extensive discussions about whether 
there exists an absolutely undecidable statement in set theory. For a detailed 
discussion of the question of absolutely undecidability in set theory and especial-
ly whether the Continuum Hypothesis is absolutely undecidable, we refer to 
Koellner (2006). 

5. Gödel’s Undemonstrability of Consistency Thesis and the Definability of 
Natural Numbers 

In Section 8, Krajewski (2020) discussed two consequences of Gödel’s in-
completeness theorem directly related to the Anti-Mechanist Arguments: Gödel’s 
Undemonstrability of Consistency Thesis and the undefinability of natural num-
bers. For us, Krajewski’s discussion on these two consequences is mainly philo-
sophical and not very precise. In this section, we want to give a more precise 
logical analysis of Gödel’s Undemonstrability of Consistency Thesis and the 
undefinability of natural numbers. 

Let us first examine the definability of natural numbers. As a consequence of 
Gödel’s incompleteness theorem, Krajewski (2020) claimed that we can not 
define the natural numbers in the sense that there is not a complete axiomatic 
system which fully characterizes all truths about natural numbers. We give some 
supplementary notes to make this point more precise. 

Firstly, whether a theory about natural numbers is complete depends on the 
language of the theory. In the languages L(0, S), L(0, S, <) and L(0, S, <, +), 
there are, respectively, recursively axiomatized complete arithmetic theories (see 
Enderton, 2001, Section 3.1–3.2). For example, Presburger arithmetic is a com-
plete theory of the arithmetic of addition in the language L(0, S, +) (see Mu-
rawski, 1999, Theorem 3.2.2, p. 222). However, if a recursively axiomatized 
theory contains enough information about addition and multiplication, then it is 
incomplete and hence it must miss some truths about arithmetic. For example, any 
recursively axiomatized consistent extension of Q is incomplete. Thus, in Krajew-
ski’s sense, we can not define the natural numbers in any recursively axiomatized 
consistent extension of Q. 
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Secondly, if we discuss the definability of a set with respect to a structure, 
then the definability of natural numbers depends on the structure we talk about. 
It is well known that ℕ is definable in (ℤ, +, ·) and (ℚ, +, ·) (Epstein, 2011, 
Chapter XVI), and Th(ℕ, +, ·) is interpretable in Th(ℤ, +, ·) and Th(ℚ, +, ·). 
Since Th(ℕ, +, ·) is undecidable,28 by Theorem 2.1, Th(ℤ, +, ·) and Th(ℚ, +, ·) 
are all undecidable and hence not recursive axiomatizable. But Th(ℝ, +, ·) is 
a decidable, recursively axiomatizable theory (even if not finitely axiomatizable) 
and Th(ℝ, +, ·) = RCF (the theory of real closed field; see Epstein, 2011, p. 320–
321). As a corollary, ℕ is not definable in the structure 〈ℝ, +, ·〉 (if ℕ is definable 
in 〈ℝ, +, ·〉, then Th(ℕ, +, ·) is interpretable in Th(ℝ, +, ·) and thus, by Theorem 
2.1, Th(ℝ, +, ·) is undecidable which leads to a contradiction). In summary, if we 
consider matters of definability relative to the base structure, then whether the set 
of natural numbers is definable depends on the base structure: ℕ is definable in 
(ℤ, +, ·) and (ℚ, +, ·), but ℕ is not definable in 〈ℝ, +, ·〉. 

Now we examine Gödel’s Undemonstrability of Consistency Thesis (i.e. G2). 
The intensionality of Gödel sentence and the consistency sentence has been 
widely discussed in the literature (e.g. Feferman, 1960; Halbach, Visser, 2014a; 
2014b; Visser, 2011). Halbach and Visser examined the sources of intensionality 
in the construction of self-referential sentences of arithmetic in (2014a; 2014b) 
and argued that corresponding to the three stages of the construction of self-
referential sentences of arithmetic, there are at least three sources of intensionali-
ty: coding, expressing a property and self-reference. Visser (2011) located three 
sources of indeterminacy in the formalization of a consistency statement for 
a theory T: 

(I) the choice of a proof system; 
(II) the choice of a way of numbering; 

(III) the choice of a specific formula numerating the axiom set of T. 

In summary, the intensional nature ultimately traces back to the various parame-
ter choices that one has to make in arithmetizing the provability predicate. That 
is the source of both the intensional nature of the Gödel sentence and the con-
sistency sentence. 

For a consistent theory T, we say that G2 holds for T if the consistency state-
ment of T is not provable in T. However, this definition is vague, and whether G2 
holds for T depends on how we formulate the consistency statement. We refer to 
this phenomenon as the intensionality of G2. Both mathematically and philo-
sophically, G2 is more problematic than G1. The difference between G1 and G2 
is that in the case of G1 we are mainly interested in the fact that it shows that 
some sentence is undecidable if PA is ω-consistent. We make no claim to the 
effect that that sentence “really” expresses what we would express by saying “PA 

 
28 I.e. there does not exist an effective algorithm such that given any sentence φ in 

L(PA), we can effectively decide whether (ℕ, +, ·) ⊨ φ or not. 
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cannot prove this sentence”.29 But in the case of G2 we are also interested in the 
content of the statement. 

The status of G2 is essentially different from G1 due to the intensionality of 
G2. We can say that G1 is extensional in the sense that we can construct a con-
crete independent mathematical statement without referring to arithmetization 
and provability predicate. However, G2 is intensional and “whether G2 holds for 
T” depends on varied factors as we will discuss. 

In the following, we give a very brief discussion of the intensionality of G2 
(for more details, we refer to Cheng, in press). In this section, unless otherwise 
stated, we make the following assumptions: 

(1) The theory T is a recursively axiomatized consistent extension of Q; 
(2) The canonical arithmetic formula to express the consistency of T is 
Con(T ) ≜ ¬PrT(⸢0 ≠ 0⸣);  
(3) The canonical numbering we use is Gödel’s numbering; 
(4) The provability predicate we use is standard;  
(5) The formula numerating the axiom set of T is Σ1

0. 

Based on works in the literature, we argue that “whether G2 holds for T” de-
pends on the following factors: 

(1) the choice of the base theory T; 
(2) the choice of a provability predicate; 
(3) the choice of an arithmetic formula to express consistency; 
(4) the choice of a numbering; 
(5) the choice of a specific formula numerating the axiom set of T. 

These factors are not independent of each other, and a choice made at an ear-
lier stage may have influences on the choices made at a later stage. In the follow-
ing, when we discuss how G2 depends on one factor, we always assume that 
other factors are fixed as in the default assumptions we make and only the factor 
we are discussing is varied. For example, Visser (2011) rests on fixed choices for 
(1) and (3)–(5) but varies the choice of (2); Grabmayr (2020) rests on fixed 
choices for (1)–(2) and (4)–(5) but varies the choice of (3); Feferman (1960) 
rests on fixed choices for (1)–(4) but varies the choice of (5). 

In the following, we give a brief discussion of how G2 depends on the above 
five factors. For more discussions of these factors, we refer to (Cheng, in press). 

“Whether G2 holds for T” depends on the choice of the base theory. A foun-
dational question about G2 is: how much of information about arithmetic is re-

 
29 I would also like to thank the referee for pointing out this difference between G1 

and G2. 
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quired for the proof of G2. If the base theory does not contain enough infor-
mation about arithmetic, then G2 may fail in the sense that the consistency 
statement is provable in the base theory. Willard (2006) explored the generality 
and boundary-case exceptions of G2 under some base theories. Willard con-
structed examples of recursively enumerable arithmetical theories that couldn’t 
prove the totality of successor function but could prove their own canonical 
consistency (see Willard, 2001; 2006). Pakhomov (2019) defined a theory H<ω 
and showed that it proves its own canonical consistency. Unlike Willard’s theo-
ries, H<ω isn’t an arithmetical theory but a theory formulated in the language of 
set theory with an additional unary function. 

“Whether G2 holds for T” depends on the definition of provability predicate. 
Recall that T is a recursively axiomatizable consistent extension of Q. Being 
a consistency statement is not an absolute concept but a role w.r.t. a choice of the 
provability predicate. Note that G2 holds for any standard provability predicate 
in the sense that if provability predicate PrT(x) is standard, then T ⊬ ¬PrT(⸢0 ≠ 
0⸣). However, G2 may fail for some nonstandard provability predicates. Rosser 
provability predicate is an important kind of non-standard provability predicate 
in the study of meta-mathematics of arithmetic. Define the Rosser provability 
predicate PrT

R(x) as the formula ∃y(PrfT(x,y)∧∀z ≤ y¬PrfT(  (x), z)).30 Define 
the consistency statement ConR(T) via Rosser provability predicate as ¬PrT

R(⸢0 ≠ 
0⸣). Then G2 fails for Rosser provability predicate: T ⊢ ConR(T). 

“Whether G2 holds for T” depends on the choice of arithmetic formulas to 
express consistency. We have different ways to express the consistency of T. The 
canonical arithmetic formula to express the consistency of T is Con(T) ≜ 
¬PrT(⸢0 ≠  0⸣). Another way to express the consistency of T is Con0(T ) ≜ 
∀x(Fml(x)∧PrT(x) → ¬PrT(    x)).31 

Kurahashi (2019) constructed a Rosser provability predicate such that G2 
holds for the consistency statement formulated via Con0(T ) (i.e. the consistency 
statement formulated via Con0(T ) and Rosser provability predicate is not prova-
ble in T ), but G2 fails for the consistency statement formulated via Con(T) (i.e. 
the consistency statement formulated via Con(T ) and Rosser provability predi-
cate is provable in T ). 

“Whether G2 holds for T” depends on the choice of numberings. Any injec-
tive function γ from a set of L(PA)-expressions to ω qualifies as a numbering. 
Gödel’s numbering is a special kind of numberings under which the Gödel number 
of the set of axioms of PA is recursive. Grabmayr (2020) showed that G2 holds for 
acceptable numberings; But G2 fails for some nonacceptable numberings.32 

Finally, “Whether G2 holds for T” depends on the numeration of T. As a gen-
eralization, G2 holds for any Σ1

0
 numeration of T: if α(x) is a Σ1

0
 numeration of T, 

 
30  is a function symbol expressing a primitive recursive function calculating the code 

of ¬φ from the code of φ. 
31 Fml(x) is the formula which represents the relation that x is a code of a formula. 
32 For the definition of acceptable numberings, we refer to (Grabmayr, 2020). 
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then T ⊬ Conα(T ). However, G2 fails for some Π1
0

 numerations of T. For exam-
ple, Feferman (1960) constructed a Π1

0
 numeration τ(u) of T such that G2 fails 

under this numeration: T ⊢ Conτ(T). 
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The controversy surrounding the alleged refutation of Mechanism by Gödel’s 
theorem is hard to approach. The discrepancy between the fact that the argument 
has been rigorously and unanimously rejected by logicians on one hand and the 
fact that proponents1 are still defending it on the other hand, is striking. It indi-
cates a deeper misunderstanding entrenched in the controversy. The verdict of 
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claim that Gödel’s results refute Mechanism, mainly to John Lucas and Roger Penrose. 
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logicians was succinctly formulated by Hilary Putnam (1975a, p. 366): “misap-
plication of Gödel’s theorem, pure and simple”. The same critic later rejected 
a variant of the argument as a “sad episode in our current intellectual life” (Put-
nam, 1994). A more polite version of the same conclusion is the one by Stewart 
Shapiro (1998, p. 275): “My conclusion (perhaps slightly exaggerated) is that 
there is no plausible mechanist thesis on offer that is sufficiently precise to be 
undermined by the incompleteness theorems”.   

Nevertheless, the idea keeps provoking thinkers who again and again rush to 
add their take in the spirit of the opening sentence of John Lucas’s original paper 
(1961, p. 112): “Gödel’s Theorem seems to me to prove that Mechanism is false, 
that is, that minds cannot be explained as machines”. Lucas (2011) himself re-
mained unimpressed by the criticism: “Since many critics are unaware of the 
argument, and are unlikely to look back at papers published some time ago, it is 
worth articulating the argument afresh”. Lucas is willing to reiterate his feeling 
and he obviously believes that his extant answer to objections is sufficient. Ap-
parently, something more is needed than Stewart Shapiro’s (1998, p. 273) “mod-
est aim of forging connections between different parts of [the] literature and 
clearing up some confusions, together with the less modest aim of not introduc-
ing any more confusions”. 

In this paper I will attempt to explain why proponents ignore logical argu-
ments, and I will argue that they in fact want to establish a philosophical point 
which is not directly related to Mechanism. Instead they have in mind a funda-
mental feature of understanding which is the core tenet of philosophical herme-
neutics, namely the insurmountable gap between any intended meaning and any 
of its formulations. The intention always contains more than what is captured by 
the expression. The proof of Gödel’s theorem is particularly interesting specimen 
of this gap, in this case between our understanding of natural numbers, and its 
expression by a logical theory like Peano Arithmetic. However, this is a metalog-
ical observation which does not disprove Mechanism, since it does not exclude 
the possibility that the human mind can be simulated by a formal system which 
absolutely surpasses human understanding, and therefore lies in a realm where 
no hermeneutics can be applied. Whether admitting such a formal system is 
reasonable or not becomes a futile argument without clear criteria. The main 
mistake of the proponents is that they appeal to a logical result which, as such, 
has no bearing on the dispute. They do not realize that in order to even make 
their claim intelligible, it is necessary to translate it into a logical language, 
whereby the proper hermeneutic insight is lost. 

One of the first aspects of the translation is the definition of the Turing Ma-
chine which is equivalent to the recursive formal system. The difference between 
Turing Machines and their instantiations is stressed in the first section. The sec-
ond section summarizes the discussion after the anti-Mechanist claim is properly 
formulated in logical terms and explains why its validity cannot be established. 
The third chapter develops the argument that the main feature of human mind 
that proponents want to highlight can be best described in terms of philosophical 
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hermeneutics. The chapter also explains why the hermeneutic feature cannot be 
suitably captured within the framework of logic. The fourth section analyzes the 
proof of Gödel’s theorem in order to illustrate how an informal, that is, ordinary 
mathematical understanding of natural numbers is crucially responsible for its 
validity. This prompts considerations about the mutual dependence between 
formal and informal aspects of logic. The conclusion then points out the main 
lesson that can be learned from the curious discussion about Mechanism and 
Gödel’s theorem, namely the need to respect methodical limitations of scientific 
disciplines. 

1. Turing Machines and Robots 

One of the standard reproaches against the anti-Mechanist thesis is that it is 
based on one of several problematic “idealizations” (Shapiro, 1998; Feferman, 
2009). The main target is the “idealized human mind”, whereas the idealization 
of a machine resulting in the concept of the Turing Machine is usually consid-
ered unproblematic, and the fact that the Turing Machine is not just a machine 
with infinite space and a flawless processor is easily underestimated.2 However, 
only the idealized concept of the Turing Machine makes the proponents’ argu-
ment possible because it corresponds to a recursive formal system in Gödel’s 
proof. The “Turing Machine” is a mathematical entity in pretty much the same 
way as a natural number. The most important part of its definition is the transi-
tion relation which in turn is a finite set of quintuples, called instructions. The 
definition is then extended to a relation between “instantaneous descriptions”, 
which, if the relation is deterministic, finally defines a (partial) map from natural 
numbers to themselves, called a recursively enumerable function. The way from 
“honest machines” to Turing Machines is therefore not a short and simple one. In 
the same way in which natural numbers are the mathematical conceptualization 
of discrete quantity, the Turing Machine is a mathematical conceptualization of 
a fully controlled process. We call such a process “mechanical” but that is only 
a metaphor.  

It is worth noting that Turing (1937) originally used the word “computer” as 
a reference to a diligent and fully reliable clerk. Therefore, calling our electronic 
devices “computers” is just one, and an almost forgotten one, among anthropo-
morphic expressions (like “memory”) we use for (electronic) devices. When we 
ask whether the human mind is a computer, it is therefore a kind of reversed 
metaphor, which actually asks whether the behavior of the mind can be exhaust-
ively described as the activity of a diligent and reliable clerk. The precise sense 
of what “diligent and reliable” means is then mathematically captured by the 
notion of the Turing Machine. The nature of a “fully controlled process” is inde-

 
2 Although already Shapiro correctly observed that the idealization performed in the 

definition of the Turing Machine is “similar to idealizations made throughout mathematics” 
(Shapiro, 2009, p. 275). 
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pendent of its realization, be it by the human mind or by a machine. The Turing 
Machine is therefore actually no machine in the strict sense. The frivolous use of 
metaphors concerning machines is an important contribution to the confusion 
surrounding these issues. When, for example, Paul Benaceraf (1967) calls the 
Turing Machine in question Maud, and notes that “she convinced herself […] of 
her own consistency” but that she “she shouldn’t go around blabbing it”, we may 
see it as a refreshing stylistic feature. However, the concept of the Turing Ma-
chine is so relatively recent (compared to, say, the concept of natural number), 
and so deeply connected to the idea of a “tape”, and a “processing head”, that it 
is difficult for many, at least for a majority of university students, to fully appre-
ciate the fact that the Turing Machine is actually a mathematical object, even 
after they become familiar with other mathematical concepts and start to under-
stand, for example, that working with a five-dimensional vector space does not 
require any magical sensory ability. 

While physical computers people build are instantiations of intended Turing 
Machines (if nothing goes wrong), the opposite is much less obvious, and that is 
where metaphors may betray us. For example, I do not see any good reason for 
Krajewski’s claim (2020, p. 35) that we would “have no doubt” that the robot 
Luke, a fictional result of a long robotic evolutional process, is a Turing Machine. 
Actually, as shown above, such a claim does not even make good sense. Neither 
is it clear to me how Luke’s program (which is the Turing Machine we speak 
about) would be “investigated by human computer scientists” (p. 40). Two com-
pletely different problems are conflated here. The first one is how to obtain the 
“program” from a physical device (including a brain) at our disposal. That is, 
how to describe the behavior of the device by a finite set of states, and by a simi-
larly finite set of transition rules governing their evolution conditioned by a finite 
set of possible instantaneous inputs. This problem, in addition to being close to 
hopeless, is not even remotely related to Gödel’s theorem. Only then comes the 
additional question, namely whether we can understand what the Turing Machine 
obtained in the first phase “does”, that is, to derive some relevant properties of 
the partial recursive function it defines. Even this is a daunting task, but at least it 
is somewhat related to Gödel’s work. 

If we call life-simulating artificial products “robots”, we can then say that the 
problem is an inadvertent identification of robots with Turing Machines. While 
the question whether the Turing Machine can become conscious is as nonsensical 
as whether a sufficiently large natural number can, the question whether robots 
can eventually acquire mind is completely open, or at least it is a question which 
has hardly anything to do with formal logic.3 Hilary Putnam dedicated several 

 
3 The anti-utopia drama R.U.R. in which Karel Čapek coined the word “robot” depicts 

the creation of robots as an invention on the chemical level. The robots are used as a labor 
force, and the question of computation is not particularly stressed. One of the “humaniz-
ing” aspects is the deliberate introduction of pain into their functioning, and the distinctive 
human feature, which robots eventually develop, is love, not understanding of Gödel 
sentences. 
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papers to the relation between minds, robots and Turing Machines, where he 
makes a similar point many times. Even in papers where he defended the thesis 
that “we are Turing Machines” he makes clear that the identity has to be under-
stood as a “functional isomorphism” depending on a description of conscious life 
in terms of a finite set of discrete psychological states. What is at stake is 
a “functional organization”, not “physical realization” (Putnam, 1975a, p. 373). 
Moreover, reflecting later on the implied condition of the existence of discrete 
states describing human experience, Putnam admitted—citing reasons one is 
tempted to describe as common sense—that his earlier “point of view was essen-
tially wrong” (Putnam, 1975b, p. 298).  

2. Why Proponents Are Wrong 

Keeping in mind that we speak about recursive functions, not about robots, 
the intuitive appeal of the question is undoubtedly reduced for a non-
mathematician or even a mathematician who is not a logician. Perhaps, its appeal 
should be reduced for the proponents themselves. In any case, the very meaning 
of the question now requires better clarification. What could it mean that minds 
can, or cannot, be explained as Turing Machines? The question must be reformu-
lated in terms of the mind’s output. Namely, the question becomes whether the 
set of all arithmetical propositions the human mind can in principle prove is or is 
not recursive. When pressed about the use of the incompleteness theorem in their 
claim, the proponents are therefore eventually forced to resort to a purely syntac-
tic competition between the mind and the machine. The machine and the human 
mind will each produce sentences in a given formal system, and the human mind 
will always win by producing a true sentence (the Gödelian one) which the ma-
chine never will, unless the system is inconsistent. As Krajewski stresses (2020, 
p. 11), the content of the competition can be even reduced to establishing the 
solvability of Diophantine equations.4 Since the precise conditions of this com-
petition remain chronically unclear,5 the focus turns to specifications of the ide-
alized human mind. This necessarily leads to a construction of some abstract 
concept, ultimately mathematical but often accompanied by some playful theo-

 
4 I found confusing, in this respect, the numerous remarks Krajewski makes about al-

leged circularity. For example, he says: “we should beware of a circularity: if we simply 
assume that the mind, which is self-conscious, does not operate according to […] rules, 
then we assume what we are supposed to prove by Lucas’s argument, and the whole 
business with Gödel’s theorem is superfluous” (2020, p. 19). Why so? Lucas’s argument 
is that it can be shown beyond doubt from Gödel’s theorem that the mind can outperform 
any Turing Machine in the field of solving Diophantine equations. This is independent of 
what we assume about the mind otherwise. 

5 Lucas’s (2011) metaphor of the dispute against the mechanist in terms of the Oxford 
First and Second Public Examinations is just one example of how unclear it is.  
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logical terminology.6 The discussion is already loaded by two dangerous ambigu-
ities concerning machines (Turing Machines vs. robots) and the human mind 
(understanding vs. output). 

Three basic technical facts govern the discussion. First, the most basic prob-
lem for the anti-Mechanist application of Gödel’s theorem is the impossibility of 
proving the consistency of the considered system within the system itself (the 
impossibility is shown by the second incompleteness theorem). It is therefore not 
sufficient for proponents of human superiority to construct the Gödelian sentence, 
they first have to be able to show that the system is consistent, which is far from 
granted. This fact was quickly pointed out by many critics (it is also behind Put-
nam’s “misapplication” remark), and it became one of the main points of conten-
tion. The second difficulty for the anti-Mechanist claim is that the construction of 
the independent Gödel sentence is itself algorithmic. That is, it can be performed 
by a suitable algorithm, although not the one corresponding to the examined 
theory. This leads to an infinite chase between Turing Machines, each new one 
“out-Gödeling” the previous one and being “out-Gödeled” by the next one. The 
third and technically most involved fact is a partial and final concession to pro-
ponents, called “Gödel’s disjunction”. It claims that either “mind is not a ma-
chine”, that is, the set of sentences knowable by the “idealized human mind” is 
nonrecursive, or, if after all such a set is recursive, then the corresponding Turing 
Machine cannot be known, which in particular means that there are “absolutely 
unknowable” mathematical truths. This observation dates back to Gödel’s own 
reflections on the matter which are often ridiculed for their perceived naïve “Pla-
tonism”, but which nevertheless show both prudence and perspicacity concern-
ing logical facts. Gödel’s disjunction has proven to be a solid logical fact. Most 
important, it turns out that the second possibility, which represents a version of 
Mechanism, cannot be excluded by logical means. The technical layer of the 
literature on this provides a large variety of advanced and very interesting results 
in this direction, effectively warranting Shapiro’s (cited above) “slightly exag-
gerated” informal conclusion. Moreover, the conclusion is shown not to be exag-
gerated at all in particular by the results presented in recent papers by Peter Ko-

 
6 See the title of Benaceraf’s paper (1967) or the skeptical remark of Peter Koellner 

(2018b, p. 476) about the “angelic mind”. Shapiro (1998, p. 273) mocks this terminologi-
cal manner when he writes: “A descriptive title for this paper would be ‘Gödel, Lucas, 
Penrose, Turing, Feferman, Dummett, mechanism, optimism, reflection, and indefinite 
extensibility’. Adding ‘God and the Devil’ would probably be redundant”. On the other 
hand, Peter Vopěnka entertained seriously the idea that the concept of god (or God) and 
his capabilities with respect to infinity helps to explain different conceptions of mathemat-
ics. The antic gods, corresponding to Christian angels, are able to see easily as small (or 
large) quantities as they wish, however always with the possibility to go deeper. The 
Christian God is on the contrary able to see the whole set of natural numbers or the abso-
lute geometric point in one shot. This is obviously a variant of potential and actual infinity. 
However, Vopěnka both suggests that medieval theology directly influenced modern 
mathematics, and tries to use the theological explanation as a common sense basis for the 
non-standard analysis and for its practical use (cf., for example, Vopěnka, 2010).  
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ellner (2018a; 2018b). Both the strength and the weakness of such technical 
results is that they are, by definition, results about some formalized versions of 
the Mechanist claim. Although the details are sophisticated, the nature of the 
results is fairly straightforward. Since provability has its precise technical mean-
ing, it remains to identify formal counterparts for truth and knowability. This 
requires the introduction of predicates or operators T and K, to formulate suitable 
axioms for them, and then to show, by standard (or rather advanced) logical 
means corresponding facts, namely the relative (in)consistency of certain scenar-
ios. As indicated, all these results are devastating for the proponents in the sense 
that carefully formulated versions of Mechanism informed by Gödel’s disjunc-
tion are logically consistent (provided Peano Arithmetic is) in all situations one 
can think of. 

To provide those logical achievements here in more detail is both unneces-
sary and insufficient for the simple reason that the proponents themselves seem 
to ignore them by plainly dismissing the whole glorious technicality in favor of 
alleged informal evidence against the second option of Gödel’s disjunction. The 
discussion could be closed here and shifted to a different kind of philosophical 
investigation of the mind. The trouble is that the proponents want to base their 
philosophical argument on, of all things, Gödel’s theorem. They insist that their 
original insight, if properly understood, is valid despite the objections.7 

We may try to summarize the whole controversy as follows. Proponents as-
sume (implicitly and sometimes explicitly) a self-evident capacity of the human 
mind (“getting hold”, “twigging”, “truth-divining”, see note 7), which can briefly 
be called u n d e r s t a n d i n g . They further see the ability to understand as an 
obviously non-mechanical attribute. This is essentially what Descartes tried to 
say in his oft-quoted anti-Mechanist argument,8 or what John Searle illustrates 
by his Chinese room argument. Descartes apparently considered the test of the 
presence of understanding to be a matter of course, which is not the case any-
more for us who know modern computers. In any case, we simply know (or feel) 

 
7 Relevant quotes are, for example: 
“There is a way of arguing that commends itself to those possessed of minds, who get 

the hang of the Gödelian argument, and twig that they can apply it, suitably adapted, in 
each and every case that crops up. Mechanists may refuse to see the general case, and, 
acknowledging only knock-down arguments, will have to be knocked down each time 
they put forward a detailed case: minds can generalise, and will realise that defeat for the 
Mechanists is always inevitable” (Lucas, 2011). 

“As to the very dogmatic Gödel-immune formalist who claims not even to recognize 
that there is such a thing as mathematical truth, I shall simply ignore him, since he appar-
ently does not possess the truth-divining quality that the discussion is all about” (Penrose, 
1999, p. 582). 

8 “For it is highly deserving to remark, that there are no men so dull and stupid, not even 
idiots, as to be incapable of joining together different words, and thereby constructing 
a declaration by which to make their thoughts understood; and that on the other hand, there 
is no other animal, however perfect or happily circumstanced, which can do the like” (Des-
cartes, 1637, Part V). 
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we are conscious and express meanings, and there is no real argument about this. 
What becomes unclear is whether the existence of understanding can be conclu-
sively proven exclusively on the syntactic level, that is, on the level of produced 
signs. This yields the question whether syntactic rules can simulate understand-
ing successfully, that is, whether the same syntactic output can be obtained with-
out the corresponding understanding. Here an apparently equally obvious propo-
sition arises, namely that Gödel’s incompleteness theorem proves conclusively 
the impossibility of such a simulation. This is the core anti-Mechanist thesis. The 
latter proposition is nevertheless wrong, since the second possibility in Gödel’s 
disjunction remains unrefuted: it may be the case that the entire output corre-
sponding to the (human) understanding is successfully simulated by purely syn-
tactic rules, namely rules that (forever) transcend the (human) understanding in 
question. This is the state of the art from the technical point of view, which, 
however, makes nobody happy. Opponents cannot concede the thesis while pro-
ponents understandably feel that the objection misses the point. Lucas’s objec-
tion could be formulated as follows: The syntactic rules mentioned above must 
make some sense, namely as rules. It is irrelevant, Lucas can insist, whether the 
human mind can or cannot understand them, in any case they are understandable 
“in principle”, understandability is part of their being rules. Consequently, in 
order to save the point, proponents are forced to adopt some kind of metaphysical 
commitment concerning formal systems and the capacity of human mathematical 
understanding, which, however, have no clear backing in Gödel’s theorem. 

3. What Proponents Want to Say 

The proponents were lured into an incorrect logical claim by the necessity to 
formulate their claim as a thesis that permits logical proof, which in turn implied 
dubious metaphysical assumptions. I want to suggest that the real point the pro-
ponents are after is something different, namely the inexhaustibility of under-
standing by expression, of meaning by syntax. Let me start by illustrating the 
uncertain relation between understanding and Turing Machines (or formal sys-
tems) first with an example of a finite structure like chess, and then with the 
question of consistency.  

From the point of view of the present anti-Mechanist argument, chess is 
a trivial case of a finite directed graph of legal positions with edges representing 
moves. Every possible claim about chess is trivially decidable by an exhaustive 
search. On the other hand, it is safe to say that as long as human competitive 
chess will exist, we shall continue to speak about the understanding of a position 
in chess. In order to assess how such an understanding relates to computations 
done by a Turing Machine, let us compare a brute force algorithm with the so-
phisticated engines we can use today that define an evaluation function and op-
timize it within a large, but still limited search space. The evaluation function 
incorporates a formalization of the understanding of chess by top players, or, it is 
blindly inferred from a huge number of matches (in cases such as AlphaZero 
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deep learning program). The evaluation function is the closest parallel to 
a “computer’s understanding” of the game, and it is what practical artificial intel-
ligence is all about. Nevertheless, if we ignore questions of computational com-
plexity (which have no significant place in the anti-Mechanist controversy), the 
tricky nature of evaluation function becomes irrelevant. The brute force algo-
rithm, which contains no advanced intelligence and could be written by any 
decent undergraduate student, becomes unbeatable. This is a rather trivial illus-
tration of the fact, that by “understanding” we mean something else then blind 
syntactic ability. If we want to interpret “artificial intelligence” as an “under-
standing” possessed by Turing Machines, we either have to consider computa-
tional complexity, or to explain why understanding of finite (albeit very large) 
structures is substantially different from understanding of infinite ones. 

 A touchstone for what the role of understanding is within formal logic is the 
question of consistency. Aristotle, in his original formulation of the principle of 
non-contradiction, argued that contradiction must be excluded because it de-
stroys meaning.9 It is completely unclear what somebody says, or whether he 
says anything at all, if the same claim is asserted and denied in the same time and 
the same sense. The care with which the sameness of the two claims is stressed 
underlines how we usually deal with an inconsistency. We either try to repair it 
on the formal level of expression (as a typo), or, when the misprint is excluded, 
we try to search for a deeper distinction which would make the apparent sheer 
contradiction comprehensible. This is more than “overcoming the contradictions 
by pointing to the metaphorical character of expressions” as Krajewski suggests 
in one place (2020, p. 22); unless “metaphor” is understood not as a “mere meta-
phor” but as a substantial feature of any meaningful speech. Let us consider the 
seminal example of a set of all sets that are not elements of themselves. There 
may be an argument about whether the very expression “being its own element” 
makes sense. The answer will depend on what exactly we mean by “incidence”, 
that is, by “being an element of”. We may try to capture the exact meaning by 
various ways of reflection, for example by some kind of Husserlian “eidetic 
variation”. Formal logic proposes to investigate the question on the syntactic 
level of propositions that include the word “incidence”. We are invited to pretend 
that we have no idea at all what the sign ∈ means. We just understand how it can 
be manipulated (note for further purposes that even this is a kind of understand-
ing). Eventually, we discover a sentence that can be derived, according to the 
rules, as well as its negation. What shall we do? Formally speaking, we just dis-
card the theory. On practical level, some kind of “correction” takes place, so 
often invoked in the anti-Mechanist controversy. The set in question certainly 

 
9 “If on the other hand it be said that ‘man’ has an infinite number of meanings, obvi-

ously there can be no discourse; for not to have one meaning is to have no meaning, and if 
words have no meaning there is an end of discourse with others, and even, strictly speak-
ing, with oneself; because it is impossible to think of anything if we do not think of one 
thing…” (Metaphysics, IV, 1006b). See my paper (Holub, 2004) in Czech for a discussion 
of Aristotle’s approach. 
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cannot in the same time and in the same sense be and not be its own element, 
independently of what incidence means. That makes no sense. However, it does 
not imply that a set cannot be its own element. Although making the formula 
“x ∈ x” itself contradictory is one possible (and standard) solution, it is an over-
cautious one. There are theories which allow sets to be elements of themselves. 
The collection of sets that are not elements of themselves is then just not itself 
a set. If we consider the last conclusion paradoxical, then we have not taken the 
formalization seriously. During the formalization, we were asked to forget com-
pletely that variables are supposed to refer to “collections”. In fact, there is 
a standard technical (meta)term for this kind of collection, namely a proper class. 
If this is not a proof of a specific mathematical sense of humor, it is at least 
a proof of a pragmatic approach which cares as little as possible about formal 
contradictions, and instead is driven by understanding.  

In contrast to the essentially infinite nature of both Turing Machine computa-
tion and the consistency requirement, the likely original motivation of the propo-
nents is relevant already for human understanding in its finite form. We have to 
abandon the misleading and unclear idea of simulation and focus instead on the 
tension between expression and its meaning. This happens to be the starting 
point of an area of philosophy as alien to formal logic as philosophical herme-
neutics. According to its main exponents, the core tenet of philosophical herme-
neutics is verbum interius,10 or the surplus of meaning,11 the fact that the mean-
ing intended by the speaker or writer never perfectly matches the linguistic ex-
pression. This precludes a direct approach to the intended meaning for an inter-
locutor or reader, making an interpretation necessary. Moreover, there is no pure 
“original intention”, independent of the expression, for the speaker either. In 
order to fix any meaning, it is necessary to express it. The need for interpretation 
therefore applies to all thinking which becomes, in Plato’s words, an inner dia-
logue of the mind. The dialectics of understanding and expression is grounded in 
the unique perspective of the author and the unique context of the locution as 
opposed to the stability of the expression, which allows others to share the in-
tended meaning, as well as the authors to return, possibly with a surprise, to their 
own previous thoughts. The gap between expression and meaning is revealed by 
a reflection on the expression, and the comparison with meaning it allows. The 
expression is a transparent medium leading directly to the meaning in the case of 
a successful understanding. We become aware of the expression when the under-
standing is disrupted. The expression then loses its transparency, becomes visible 
as an independent reality, and an interpretation is needed in order to reestablish 
understanding. Such an interpretation adds new expressions that may help to 
elucidate the original meaning but, at the same time, they themselves may be-

 
10 See the foreword to Grondin’s (2011), where the author quotes his discussion with 

H. G. Gadamer. 
11 See, for example, Ricoeur’s (1976). 
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come unclear. The process then continues, until an understanding needed for 
practical needs of the particular situation is achieved. 

Hermeneutics shares with logicism the suspicion concerning a direct ap-
proach of consciousness to itself, in some kind of transcendental reflection not 
mediated through any expression. Paul Ricoeur replaces the self-transparent 
Cartesian cogito with a cogito brisé, a broken consciousness. Formal logic is 
a deliberate strategy to make the expression fully “opaque”, fully devoid of 
meaning. Its full focus is on the syntactic rules. We remarked above that even in 
this case an understanding of the formal system qua formal system is required 
(for example, understanding of how well-formed formulas can be obtained). The 
formal system thus becomes a mathematical object in an ordinary sense, which 
substitutes for the original one (like natural numbers) and which can be informal-
ly, or again formally, investigated. However, the investigation should receive no 
guidance from the original, motivating understanding, lest be misled by it. It was 
Frege’s and Hilbert’s hope that restricting understanding in this radical way will 
eventually yield a better grasp of the original meaning. The hope is that syntactic 
or logical rules, while being simpler to control, will nevertheless fully substitute 
for the suspended meaning. This hope was frustrated by Gödel. Even in mathe-
matics, the understanding always means more than what its formulation says 
explicitly.  

4. Informal Mathematics in Gödel’s Proof 

The proof of Gödel’s theorem reveals very clearly the above described her-
meneutic principles through the relation between formal expressions of Peano 
Arithmetic on one side, and the informal mathematical understanding on the 
other side. I will show this by an analysis of the technical content of the proof. 
The main goal of this analysis is to trace informal mathematical aspects of the 
proof. “Informal mathematics” should be understood as ordinary mathematics, 
which in fact uses formalism quite heavily, but which is nevertheless not formal 
in the logical sense. In other words, “informal” means mathematical but at the 
same time meta-logical.12 

Gödel’s incompleteness theorem claims that any recursive formal theory that 
is sufficiently strong contains a sentence such that neither the sentence nor its 
negation is provable in the system. The theory in question can be some theory 
designed to capture our understanding of natural numbers, for example Peano 
Arithmetic. 

The proof of the theorem is based on three technical ingredients.13 The first 
one is the famous Gödel numbering which establishes a correspondence (possi-

 
12 I think this is what Gödel (1931, p. 176) has in mind when he speaks about “meta-

mathematische Überlegungen”.  
13 An excellent self-contained exposition of the main structure of the argument, span-

ning only five pages, can be found in the first chapter of Smullyan (1992, pp. 5–9).  
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bly one-to one) between formal expressions in the language of the theory, and 
natural numbers. This is a crucial step since in this way formulas are transposed 
from the level of language to the level of objects the language is supposed to 
describe. This allows us to eventually interpret the theory in a way that yields 
some information about the theory itself. It should be stressed, however, that the 
correspondence between numbers and formulas is realized on the meta-level, by 
the mathematician writing the proof. Moreover, the existence or meaningfulness 
of the very structure of natural numbers that we use to encode formulas is of 
course in no way guaranteed a priori by the theory that is designed to describe 
them. We rely on our pre-formal (in the logical sense) meta-understanding. 

The second main ingredient of Gödel’s theorem is the d i a g o n a l i z a t i o n , 
which is also the core of other related cornerstones of modern mathematics, such 
as the existence of algorithmically undecidable problems, and the concept of 
higher infinities beyond countable infinity. The simplicity of the idea deserves to 
be stressed and kept in mind. In fact, it is recommended to contemplate the basic 
nature of the diagonal argument as an antidote whenever one is tempted by the 
“mystical charm” (Krajewski, 2020, p. 15) of Gödel’s theorem or related results. 
The finite version of the diagonal argument provides an elegant constructive 
form of the fact that the number of sequences of length n is larger than n (provid-
ed there are at least two distinct symbols). It is always straightforward to exhibit a 
particular missing sequence, namely the “negated diagonal”, that is, the sequence 
whose i-th element is a symbol distinct from the i-th element of the i-th sequence 
of the list. This idea can be extended to any countably infinite list of infinite se-
quences, yielding Cantor’s proof for the uncountability of the continuum.14 

The third main ingredient of Gödel’s theorem is e x p r e s s i b i l i t y, the abil-
ity to describe certain important features of the language in terms of the language 
itself. Here we essentially use the above introduced encoding. More careful for-
mulation should therefore be that the encoding is extended to more complex 
linguistic expressions (ultimately to formal proofs), and the numbers that repre-
sent expressions with desired properties are captured by suitable formal expres-
sions. Specifically, the theory must be able to formulate “n-th expression to 
which number n is substituted” (realizing the diagonal idea), and, most promi-
nently, “m is a proof of n-th expression”. Once more, m actually is a number, 
which encodes a formal proof of the n-the expression. Construction of formulas 
representing the above properties is the technically difficult part of the proof, 

 
14 Let me remark that Cantor’s theorem can serve either as a starting point for doubts 

about actual (as opposed to potential) infinity, or as the entrance gate to “Cantor’s para-
dise” of Set Theory. Set Theory then postpones its moment of reflection to the problem of 
the “universal diagonal” of the collection of sets that are not elements of themselves, 
which is famously contradictory if accepted naively. Set Theory could thus be character-
ized as the grey area created by the diagonal argument and extending between full ac-
ceptance of actual infinity and the rejection of contradiction. 
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requiring a logician of Gödel’s greatness.15 Again, it must be stressed that by 
proof we mean a formal proof here, that is, a sequence of formulas obtained by 
successive elementary derivation steps. This observation can hardly be overesti-
mated. In fact, the difference between formal and informal proof is probably the 
most contentious aspect of the debate. Just as the Turing Machine is no machine 
although it can be instantiated by one, formal proof does not prove anything alt-
hough it is designed to reflect a full-blooded proof and can be interpreted as such. 

What exactly is required from the formal theory to be able to express notions 
needed for the incompleteness theorem can be investigated in several ways. The 
standard mathematical way a theory is shown to be too weak, and therefore 
complete and decidable, is q u a n t i f i e r  e l i m i n a t i o n . This is related to the 
fact, we pointed out above, that finite structures are decidable trivially. Undecid-
ability always arises due to the presence of quantified formulas, formulas which 
dare to claim something about all objects. Quantifier elimination reveals the 
weakness of a theory by showing that each such formula is in fact equivalent to 
one without quantifiers. The theory is shown to be too weak to be able to say 
something universal. 

Seen from this perspective, the gap between the decidable Presburger Arith-
metic and the undecidable Peano Arithmetic becomes curious. The difference 
between them is the presence of multiplication. It turns out that speaking about 
natural numbers in terms of addition only does not allow anything to be said 
universally. Krajewski (2012) considers the appearance of undecidability when 
multiplication is added to be one example of “emergence” in mathematics, as 
a fact that remains irreducibly surprising even for an expert. Let me attempt 
a speculative explanation of this phenomenon.16 It may be argued that multipli-
cation is the place where natural numbers start to apply to themselves. While the 
basic role of natural numbers is to count objects (be they apples or abstract units), 
in multiplication the counted objects become numbers themselves. No more five 
times an apple, instead five times four.17 The four is suddenly not only a quanti-
tative property of a particular assemblage, it becomes a proper object which itself 
deserves to be counted. This can be therefore seen as the required threshold of 
“self-reflection”.18 

Using the above three ingredients, Gödel is able to find an independent sen-
tence, a sentence which can neither be proved nor disproved in the formal system. 
Formally speaking, we have a pair of formulas (the sentence and its negation), 

 
15 There is, of course, the difference between the difficulty of a proof, and the difficul-

ty of discovering it. In today’s form the full proof can be included in an undergraduate 
course. Gödel himself (1931, p. 173) calls the independent sentences he derives in his fa-
mous paper: “Relativ einfache Probleme aus der Theorie der gewöhnlichen ganzen Zahlen”. 

16 I am indebted to a remark by Kateřina Trlifajová for this idea. 
17 Of course, both the multiplicand and multiplier must be allowed to be universally 

quantified. Multiplication by a given individual number can be expressed as a sum. 
18 I wonder whether this speculation can be somehow supported by the analysis of 

quantifier elimination. 
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such that both of them are unprovable, that is, they cannot be obtained from 
other specific formulas (called axioms) in a prescribed way. This purely formal 
fact does not sound very interesting. Its real importance depends on the interpre-
tation we give to the formulas. More specifically, we interpret sentences as 
claims about natural numbers that can be true (or false). Also, we interpret for-
mal proof as an object that faithfully captures ordinary mathematical reasoning, 
which, in turn, depends on the truth preserving quality of certain reductions.  

Finally, we are convinced that the theory in question (Peano Arithmetic to 
start with) is consistent.19 This is a particular case of the way mathematicians 
tend to deal with possible inconsistency, which we have discussed above. The 
consistency of Peano Arithmetic is a particularly bold assumption, and some 
serious mathematicians have even sincerely doubted that it is the case.20 The 
point is that Peano Arithmetic contains infinitely many axioms within the scheme 
of induction. In particular, it contains the induction claim for arbitrarily large and 
complex formulas, even for those we shall never be even able to read, let alone 
to understand what they say.21 However, even if it turned out that Peano Arith-
metic is contradictory, it would not, as Krajewski correctly observes (2020, p. 
22), necessarily disturb ordinary mathematics in any significant way. We can 
imagine that an extremely huge proof of contradiction would somehow miracu-
lously appear somewhere on the internet. It would be fairly easy to verify, using 
computers, that the contradiction is genuine. Nevertheless, it would involve a lot 
of extremely complicated instances of the scheme of induction. Lucas believes 
that we would eventually be able to sort things out, an example of the depth of 
his optimism. From the practical point of view, however, it would just mean that 
some of the involved axioms should be prohibited. Undoubtedly, a new field of 
research would be created to investigate which one, but ordinary mathematicians 
would be, at best, just more conscious of what kind of induction they use. 

Nevertheless, let us believe with Lucas that “we” (whoever that is) are “in 
principle” (whatever that means) able to understand and even to verify the validi-
ty of all axioms. Combining this with the truth preserving quality of formally 
logical inferences, we are ready to claim that no arbitrarily large derivation with-
in the whole monstrous theory can lead to a contradiction simply because such 
a contradiction could, “in principle”, be translated into firm evidence of the fact 
that zero equals one. Finally, granted all this, we are able to contemplate the 
insufficiency of our theory (Peano Arithmetic) to exhaust our intuition.  

 
19 More precisely, we believe that it is ω-consistent, which excludes the possibility that a 

provable universally quantified formula is at the same time disprovable for all numerals. 
20 See, for example, (Nelson, 2006). The intransigence of Nelson’s views has certainly 

been compromised by his mistaken announcement that he actually proved the incon-
sistency of Peano Arithmetic.  

21 Nelson (2006) points out further difficulties related already to induction on relative-
ly simple formulas, which illustrate that our belief in natural numbers is far from self-
evident. 
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It is not that difficult to understand why this magnificent proof leads Lucas to 
celebrate “getting the hang of the argument” and “twigging that we can apply it” 
or Penrose to brag about a “truth-divining quality” (see remark 7) that are sup-
posed to establish the superiority of creativity over rule-following.22 But even if 
we enjoy joining Lucas in his exaltation of the scintillating human mind, we 
have to return to our question about the exact contribution of Gödel’s theorem 
here. We have to do so because we have seen how rather than support optimism, 
the validity of the theorem turns out to depend on it. At best, its proof is one 
among many occasions to experience mathematical understanding at work. It 
also makes clear that our understanding is not exhausted by theorems provable in 
Peano Arithmetic, or in any theory for which we are able to perform a similar 
construction, provided that the theory is consistent. But it does not exclude the 
possibility that our mathematical understanding is governed by a formal system 
for which we are unable to carry out the proof, since we are unable to understand 
it. We have seen that the main difference between proponents and critics is 
whether they care about the latter qualifications. While critics expected that the 
argument will deal with them, proponents instead took them for granted. But 
then Gödel’s theorem is just an instance of mathematical understanding, which 
can be philosophically investigated but whose specific content provides no par-
ticular philosophical contribution. The argument is flat, and it is understandable 
that Lucas wants to turn the page.23 Frege’s original objective was to explain the 
conceptualization involved in mathematics by means of logic. The fact that in 
Gödel’s theorem logicism defeats itself, as it were, by its own means is undoubt-
edly an epochal result. On the other hand, the discussion about the central objec-
tive of logicism has gone on since the sixties within neo-Fregeanism and neo-
logicism.24 Lucas’s paper could have been part of that discussion, less famous 
but philosophically more substantial, had it started with “Gödel’s Theorem seems 
to me to prove that natural numbers cannot be described purely logically…” 

The failure of the project induced by Gödel’s theorem represents a vindica-
tion of (Kantian) intuition. However, as soon as formal logic becomes an estab-
lished mathematical discipline, it can be cultivated independently of its philo-
sophical foundations, as can any other mathematical discipline, like arithmetic or 
geometry. Gödel’s theorem may then lead unprepared students astray to nonsen-
sical conclusions of the following kind. The failure of the attempt to capture fully 
the whole formal truth about natural numbers, seen from the point of view of 
formal logic, casts doubts not primarily on the logic itself but rather on our origi-
nal intuition about natural numbers. Is there something like the standard model at 

 
22 See: “[A]lthough Gödel cannot make us scintillate, he does show that scintillation is 

conceptually possible. He shows us that to be reasonable is not necessarily to be rule-
governed, and that actions not governed by rules are not necessarily random” (Lucas, 
2011). 

23 For the same reason, it is unclear why Krajewski’s “Theorem of Inconsistency of 
Lucas” should be described as “unexpected” (2020, p. 32). 

24 See for example (Kolman, 2005) for a polemic against the neologicism. 
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all? Is the standard model somehow distinguished among other models? Is it 
possible to explain the standard model in set theoretical terms? Which set theo-
retic model is appropriate and why? A working logician sometimes seems to feel 
much more comfortable when speaking about nonstandard models, and some 
even believe that Gödel’s incompleteness theorem actually shows that there is 
nothing like the standard natural numbers.25 However, the proof of the theorem, 
as we stressed, is based on the interpretation of formal sentences as claims about 
natural numbers. What natural numbers? If the logical analysis deconstructs our 
concept of natural numbers, then the deconstruction itself is undermined as far as 
it depends on the interpretation of natural numbers. Where do we stand then? 
The space for sophistry and wild mystical comments is open in this aporia (and 
the opportunity is amply seized). For example, it is a basic “ordinary mathemati-
cal” conclusion that the Gödelian formula, which declares itself to be unprovable, 
indeed is unprovable, and therefore true. If it were provable, then it would be 
true, and therefore unprovable (since that is what it says under the interpretation), 
which is an (informal, ordinary mathematical) contradiction.26 Does this argu-
ment work anymore when we are not sure about the standard interpretation? 
Since the formula is independent of the axioms of the theory under investigation, 
there is a (nonstandard) model in which it is provable. Does Model Theory magi-
cally allow (formal or even informal) contradiction? 

These are questions that require a calm reflection on the technical ingredients 
of Gödel’s theorem listed above, combined with keeping in mind that, when 
proving Gödel’s theorem, we are doing “ordinary mathematics” with ordinary 
natural numbers. Formulas are just sequences of symbols with no magic power 
to destroy our mathematical understanding. These formulas are actually objects 
of our mathematical understanding as much as natural numbers, which is particu-
larly apparent in the encoding of formulas by numbers. Our knowledge, then, is 
fully dependent on the interpretation we give to formulas as claims about natural 
numbers, and on the truth preserving quality of derivation. The sentence is true, 
in natural numbers, because otherwise we would obtain an inconsistency in our 
understanding of natural numbers and of truth derivation. The alleged proof of 
the sentence would be inconsistent with the claim the sentence makes about its 
own unprovability. The latter, recall, depends on the encoding. The sentence 
claims that there is no number with certain subtle properties expressed by a com-
plicated formula. However, the alleged proof of the sentence, if encoded, will 
yield a number with exactly those properties. In order to see this, we have to “get 

 
25 Concerning set theoretic models let me mention a paper by Paul Benacerraf (1965, 

p. 73) which happens to conclude: “They think that numbers are really sets of sets while, 
if the truth be known, there are no such things as numbers; which is not to say that there 
are not at least two prime numbers between 15 and 20”.  

26 See already Gödel’s original paper: “Aus der Bemerkung, dass [R(q); q] seine eige-
ne Unbeweisbarkeit behauptet, folgt sofort, dass [R(q); q] richtig ist, denn [R(q); q] ist ja 
unbeweisbar (weil unentscheidbar). Der im System PM unentscheidbare Satz wurde also 
durch metamathematische Überlegungen doch entschieden” (1931, p. 176). 
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the hang” of the proof, in Lucas’ words. Finally, the Gödelian sentence together 
with all provable sentences of the original theory form a consistent system, 
which therefore has a model. This model is a mathematical structure, which 
looks much like natural numbers, but it contains an element which represents the 
proof of the Gödelian formula in the original theory. Nevertheless, this brings 
about no inconsistency, since the element representing the (non-existing) proof 
of the Gödelian formula is not a standard number, therefore it yields no sequence 
of formulas we would accept as a proof in “ordinary mathematics”. The firm 
basis of all this in informal mathematics is obvious. 

5. Conclusion 

The troubled dispute about Mechanism inspired by Gödel’s theorem is an in-
structive example of difficulties resulting from the lack of respect for methodical 
limitations of different scientific areas. Three levels are at play: mathematical 
logic (formal arithmetic), (informal) mathematics of natural numbers, and the 
philosophical reflection on both these disciplines. Since the anti-Mechanist claim 
has a philosophical nature, after its forced transition to the field of formal logic it 
suffers from not sufficiently distinguishing between technical results on the one 
hand, and the philosophical reflection on their significance on the other. While 
moving between “levels” and “meta-levels” is well established within formal 
logic, it typically happens within the discipline itself. Model Theory builds mod-
els of one theory using another one, obtaining thereby essentially relative results. 
Asking philosophical questions transcending the discipline as a whole is often 
seen with suspicion by logicians, if not directly dismissed as a delusion.27 Frege 
(1998, p. XII) was well-aware of this predicament when he was skeptical about 
prospects of his own work.28 However, the anti-Mechanist thesis is precisely 
a reflection on philosophical consequences of purely technical results. A seem-
ingly paradoxical principle applies to such attempts. In order to estimate the 
relevance of philosophical, informal conclusions drawn from a technical theorem, 

 
27 Peter Koellner (2018b, p. 476), for example, dismisses concepts of “absolute prov-

ability” and “knowability by the idealized human mind” as “not sharp enough for our 
questions […] to have definite sense and determinate truth-values”, but nevertheless 
continues: “With the above discussion in place, I would like to once again suspend the 
above skeptical considerations and assume, for the sake of argument, that the concepts of 
‘absolute provability’ and ‘knowability by the idealized human mind’ are definite”. 

28 “Sonst sind die Aussichten meines Buches freilich gering. Jedenfalls müssen alle 
Mathematiker aufgegeben werden, die beim Aufstossen von logischen Ausdrücken, wie 
“Begriff”, “Beziehung”, “Urtheil” denken: metaphysica sunt, non leguntur! und ebenso 
die Philosophen, die beim Anblicke einer Formel ausrufen: mathematica sunt, non legun-
tur! und sehr wenige mögen das nicht sein. Vielleicht ist die Zahl der Mathematiker über-
haupt nicht gross, die sich um die Grundlegung ihrer Wissenschaft bemühen, und auch 
diese scheinen oft grosse Eile zu haben, bis sie die Anfangsgründe hinter sich haben. Und 
ich wage kaum zu hoffen, dass meine Gründe für die peinliche Strenge und damit verbun-
dene Breite viele von ihnen überzeugen werden”.  
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it is absolutely necessary to investigate the nature of the technicality involved. In 
other words, the conceptualization involved in the formal logic has to be promi-
nently taken into account. Attempts to draw informal conclusions from a formal 
argument understood informally, are, in my opinion, the essence of the impreci-
sion in thinking that causes a big part of the sadness of the corresponding epi-
sodes of our intellectual life.  

The tension between formality and informality creates a difficulty which has 
its impact already on the superficial level of the external organization of relevant 
papers. They typically contain long sections of technical explanations using 
formal language.29 The technical achievements then have to be interpreted, trans-
lated into ordinary language and their relevance has to be established. The tech-
nical language also typically contains lots of terms with suggestive non-technical 
meanings, terms that tend to permeate the informal discussion although the non-
technical meaning may very poorly reflect the term’s technical function. Real 
numbers, to take a trivial example, are no more real than natural numbers. While 
nobody is likely to draw philosophical consequences from the term “real num-
ber”, the term “provable” in our context turned out to be significantly less safe. 
We have discussed the example of the word “machine”.  

I have attempted to show that in the Mechanist controversy the ordinary hu-
man mind, and its capacity to understand, is the first casualty of the battle which 
is officially waged for its sake. It simply turns out that mathematics, or at least 
formal logic, has no good tools to capture the cherished superiority of under-
standing.30 The anti-Mechanist argument is a misguided effort to vindicate the 
capability of a particular human mind by means of the idealized one. We have 
seen how heavily the proof of Gödel’s theorem depends on the informal under-
standing of arithmetic. The proponents make a quixotic attempt to translate the 
evidence for the superiority of the informal understanding to the formal level. 
They want to use the failure of logicism to prove at least this failure in the logi-
cally water-proof way. Gödel’s incompleteness theorems are a kind of touchstone 
for the ambition of formal logic to substitute syntax for semantics for good. Lu-
cas and Penrose are tragic heroes of this fight. They are driven by the obvious 
superiority of meaning over the syntax. However, they make a foolish choice of 
attempting to prove this superiority by the very means of syntax. While the 
Mechanist wants to reduce meaning to the pure manipulation of symbols, Lucas 
and Penrose want to vindicate the superiority of meaning—by pure manipulation 
of symbols. We are however well advised to spend the finite resources of our 
creative mind on something more reasonable than syntactic competitions with 
Turing Machines. 

 
29 The remark by Paul Benaceraf (1967, p. 13) often applies: “I trust that the following 

exposition will prove too elementary to be of any interest to those who are familiar with 
the logical facts, and too compressed for those who are not. For the sake of future refer-
ence, however, it must be done”. 

30 Cf. (Feferman, 2009, p. 213): “[I]t is hubris to think that by mathematics alone we 
can determine what the human mind can or cannot do in general”. 
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S U M M A R Y : Gödel’s first incompleteness theorem is sometimes said to refute mechanism 
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Mechanism about X, roughly, is the view according to which X can be under-
stood in terms of a machine. Descartes famously held the doctrine of mechanism 
with regard to everything but the human mind. More recently, some writers have 
argued that Gödel’s famous theorem about the impossibility of a complete com-
putable axiomatization of arithmetic shows that the human mind is not amenable 
to a mechanistic explanation.1 Gödel’s theorem is a likely candidate for the job 
of combatting mechanism, first, because it is very famous; second, because the 
notion of computability is the modern approach to mechanism about the mind, 

 
* Hebrew University of Jerusalem, Edelstein Center for the Philosophy of Science. E-

mail: david.kashtan@mail.huji.ac.il. ORCID: 0000-0002-4237-1809. 
1 Most notably (Lucas, 1961; Penrose, 1989; 1994). I refer the reader to (Krajewski, 

2020) for a brief recap of the dialectic.  
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and Gödel’s theorem is, or at least entails, a limitative result on it; and third, 
because it is a diagonal argument, and diagonal arguments seem to be exactly the 
right tool to wield against a thesis such a mechanism.  

However, Gödel’s theorem is a precisely formulated and decisively proven 
mathematical theorem, and mechanism about the mind is a vague and messy 
philosophical question. Any attempt to bring a mathematical theorem to bear on 
a philosophical question should be viewed with suspicion. Shapiro, for example, 
asserts that “there is no plausible mechanistic thesis on offer that is sufficiently 
precise to be undermined by the incompleteness theorems” (1998, p. 275). The 
problem, according to Shapiro, lies in the many idealizations that are involved in 
applying the theorems to humans and to machines. But if Shapiro’s condemnation 
is correct, this is hardly comforting to the mechanist, who should want to resist the 
Gödelian argument by virtue of being right, not by the vice of being vague. The 
goal of this paper is to formulate a mechanistic thesis sharply enough that it stands 
a chance both of being refuted by and of resisting the Gödelian argument. 

The purpose of §1 is to get a handle on mechanism about the mind. Starting 
with Descartes, we review the central epistemological motivations for mecha-
nism, distinguish between programmatic and metaphysical mechanism, and 
inspect Descartes’ reason for denying mechanism about the human mind. Then, 
we ask whether the advent of computability theory and modern computing ma-
chines would have made Descartes change his mind. §2 is about the Gödelian 
anti-mechanistic argument. Based on the discussion of §1, a sharp criterion is 
offered for deciding the metaphysical mechanistic thesis, in terms of the comput-
ability of sets of mental representations. The classic Gödelian anti-mechanist 
argument is formulated with reference to this criterion, and two objections to it 
are raised, one of which is new. In the final subsection a sketch of an alternative 
diagonal anti-mechanist argument, based on Tarski’s indefinability theorem, is 
given.2 

1. Mechanism and Anti-Mechanism 

The bare term “mechanism”, or mechanism about some thing X, can be 
glossed as the claim that X is, often despite appearances, essentially a machine. 
We are interested specifically in mechanism about humans—the question wheth-
er humans are essentially machines. Gödel’s theorem is thought to have bearing 
on this question because of its relation to computability theory. The machines in 
question are, therefore, the special class of c o m p u t i n g  m a c h i n e s . However, 
the origins of mechanism, and of mechanism about the mind, lie long before the 
modern theory of computing machines, in the philosophy of science of several 

 
2 Michael Goldboim and Balthasar Grabmayr read an earlier draft and helped reduce 

the number of errors. Those that remain are mine alone. I have also benefited greatly from 
conversations on the themes of the paper with the aforementioned, as well as with Eli 
Dresner, Philip Papagiannopoulos and Carl Posy. 
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important early modern thinkers, most notably Descartes. Descartes’ is an inter-
esting case because he both endorsed mechanism about animals and rejected 
mechanism about humans. By examining his reasons, we can form an idea of 
why mechanism is attractive, as well as of why it is not compelling. In addition, 
we may ask whether Descartes’ anti-mechanism was not tied to the particular 
kinds of machines that he knew, and whether the advent of computing machines 
would have caused him to change his mind.  

1.1. Cartesian Mechanism 

A classical machine, or mechanical system, roughly, is a finite collection of 
basic corporeal objects that can move in space and interact through contact, i.e. 
collision or pressure, and together achieve some desired effect. The properties of 
the set of basic parts, the sizes and shapes of the objects, and their spatial config-
uration, we call the b a s i s  of the system. From the basis, using the mechanical 
laws of motion and force, one can calculate the effect; and conversely, if one is 
interested in a certain effect, one can set up a basis that will achieve it, in other 
words one can engineer an effect. What allows engineering is the fact that me-
chanical systems are “bottom-up”: that the basis is describable, perceivable and 
manipulable independently of the effect, and that the effect is “generated” from 
the basis according to determinate laws.  

Mechanism in science or natural philosophy is, first of all, an empirical re-
search program according to which natural phenomena should be studied as 
though they are effects of mechanical systems. A mechanistic explanation of 
a phenomenon consists in hypothesizing a basis, and showing that the phenome-
non is indeed generated from it by the laws of mechanics. The epistemological 
virtue of mechanistic explanations is that, since the basis of a mechanical system 
is describable independently of the effect, they make a positive, self-standing 
assertion about reality. Such an assertion is straightforward (though not always 
technically possible) to test, and, in principle, allows nature to be manipulated 
with design. They, therefore, yield a kind of engineer’s, or maker’s, knowledge. 
The contrast is with explanations in terms that are abstract, or that are describa-
ble only top-down, in terms of their explanandum, like Molière’s virtus dormi-
tiva. The basic claim of mechanism is that only positive theories can count as 
explanations, whereas abstract or top-down theories are explanatorily vacuous.3  

An explanation is positive rather than vacuous, I propose, when it postulates 
a basis that has an independent criterion of existence and identity. It should be 
possible to determine, at least in principle, whether the basis of a hypothesized 
mechanical system exists in reality without appealing to the properties of the 

 
3 For comprehensive and detailed accounts of mechanism, especially in its Cartesian 

brand, see (Gaukroger, 2002; 2007; 2010), also the papers in (Gaukroger, Schuster, 
& Sutton, 2000). For mechanistic explanation as maker’s knowledge, see (Funkenstein, 
1986, p. 290). 



206 DAVID KASHTAN  
 

effect; otherwise the explanation is circular. For Descartes, the basic existent is 
inert matter, where “inert” means that the spatial extension of material objects, 
including their motion in space and their collisions with one another, is all there 
is. Inert matter is a basic existent because spatial shapes, in principle at least, are 
vividly, distinctly and publicly perceived; and they are bottom-up in the sense 
that a spatial extension is the “sum” of its parts; the parts are independent of the 
whole, but not the other way around. Consequently, a mechanical system can be 
exhaustively described in purely geometrical terms. Mechanistic explanation 
becomes a kind of geometrical construction.4 

Mechanism as a research program is thus the call to explain natural phenom-
ena in terms of mechanical systems, and ultimately in terms of geometrical con-
structions. But aside from being a research program, mechanism is sometimes 
asserted or denied as a metaphysical thesis. Roughly, metaphysical mechanism 
about a natural phenomenon X is the thesis that X i s  a classical machine, or that 
the t r u e  theory of X is a mechanistic theory. Spatially extended matter, on this 
view, is not only epistemologically virtuous in being vividly perceived or imag-
ined, it is also metaphysically substantial. Metaphysical mechanism about 
a phenomenon X is the claim that X, metaphysically, is extended substance, or 
res extensa.5  

Descartes famously held that animals were, metaphysically, mere machines.6 
This thesis may sound banal to us, but in Descartes’ time it was paradoxical and 
even revolutionary. Supposedly, what made it so unlikely in the eyes of Des-
cartes’ predecessors was the seemingly unbridgeable disparity between the be-
haviors of machines and of animals. In particular, there was the fact that animals 
and their physiology exhibit spontaneous and organized movement, whereas 
machines typically do no more than transform external force that is applied to 
them, and, therefore, cannot move “on their own”. This led pre-Cartesian natural 
philosophy to postulate an intangible life force animating the bodies of animals. 
The problem with this kind of theory, in the eyes of a mechanist, is that it gives 
no independent information about the nature of this life force, no way to con-

 
4 See (Sepper, 2000; McLaughlin, 2000) for some elaboration. Descartes’ notion of 

the geometrically (as opposed to mechanically) constructible is wider than that of the 
ancients, but does not cover arbitrary curves. I am unsure whether Descartes’ “geometrical” 
conception of matter is restricted to his geometrically constructible curves or whether it 
extends to arbitrary curves.  

5 Descartes doesn’t, as far as I know, distinguish explicitly between mechanism as 
a research program and mechanism as a metaphysical thesis.  

6 This formulation is a little misleading. Descartes thought that animal bodies, includ-
ing human bodies, are machines. As we will see, he did not think the same about minds. 
Animals did not, and humans did, have minds, so it is in this sense that non-human ani-
mals are mere machines. See (Cottingham, 1978) for more about this.  
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struct it in the imagination or calculate its properties. In other words, it is a vacu-
ous theory.7  

Descartes’ endorsement of mechanism about animals was motivated by two 
circumstances. First, around Descartes’ time, mechanistic theories of animal 
physiology were being developed and were achieving remarkable empirical 
success. Descartes himself proposed extensive theories of this kind, ranging from 
an account of the heart and blood circulation system, to theories of feelings and 
the imagination, which Descartes considered part of physiology. The second 
circumstance was some recent advances in technology, which allowed the con-
struction of self-moving machines, or clockwork automata, operated by a spring 
or a hydraulic mechanism. Such machines were often used for recreational pur-
poses, and given the shape of a human or an animal. Their “capacity” for self-
movement would make them startlingly life-like in the eyes of Descartes’ con-
temporaries, a fact which served to dull the edge of the perceived disparity be-
tween animals and machines.8  

Descartes’ metaphysical mechanism about animals was m o t i v a t e d  by the 
science and technology of his time, but neither the empirical success of mecha-
nistic theories nor the advent of new machines can e s t a b l i s h  a metaphysical 
thesis. Descartes’ own physiological theories turned out to be largely incorrect. 
For example, though he enthusiastically accepted Harvey’s momentous discov-
ery of the circulation of the blood, Descartes rejected the attendant theory of the 
movement of the heart in terms of muscular expansion and contraction, and fa-
vored an account, incorrect as we now know, in terms of “ebullition” (Anstey, 
2000, p. 421f). Surely, we don’t want to say that an incorrect theory can establish 
a metaphysical thesis. Likewise, as lifelike as moving statues can get, we know 
perfectly well that the mechanism behind their movement has nothing in com-
mon with the mechanisms behind animal movement. It will be false, then, to say 
that Descartes’ metaphysical mechanism about animals is in any way proven, or 
even strictly speaking confirmed, by the science and engineering of his time, 
though it was certainly suggested or motivated by them.  

Still, it is not unreasonable to say that the relevance of the two motivating 
circumstances does spill over a little from the context of discovery to the context 
of justification. The fact that Descartes’ theories were incorrect is less important 
than the fact that they were mechanistic, which is to say positive, and that they 
were plausible. It showed that, in principle, mechanistic physiology had a chance 
to succeed, even if Descartes’ own theory happened to be incorrect. Likewise, 
the existence of moving machines, though they do not simulate the true mecha-
nism of animal movement, shows that self-movement is mechanically possible, 

 
7 See (Ben-Yami, 2015, Chapter 4) for a less ahistorical discussion of the claim that 

pre-Cartesian science denied mechanism because the machines it knew did not move on 
their own. 

8 See Part Five of the Discourse (Descartes, 2006) for a summary of Descartes’ mech-
anistic theory of the blood circulation system and his statement of mechanism about ani-
mals. Ben-Yami (2015) gives an extended discussion of Descartes’ physiology.  
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and this opens the way to positive speculations about the actual mechanism. We 
can say, then, that although the science and engineering available to Descartes 
were a long way off from p r o v i n g  metaphysical mechanism about animals, 
they did provide p o s i t i v e  g r o u n d s  for it. Arguably, that’s the best meta-
physics can hope for anyway.  

1.2. Universal Mechanism? 

At least as famously, or infamously, as he endorsed mechanism about animals, 
Descartes rejected mechanism about humans, specifically about the human mind. 
In the next subsection, we will review his reasons. First, let’s see what goes 
wrong with a seemingly quick and easy argument for mechanism about humans: 
the argument from universal mechanism. 

In the previous subsection, we distinguished between two ways in which 
mechanism about a phenomenon X can be maintained: (a) Metaphysical mecha-
nism is the theoretical claim that the t r u e  explanation of X is mechanistic; (b) 
Scientific mechanism is the programmatic call to s e e k  mechanistic explanations 
for X. Now given the characterization of mechanism sketched above, one may 
argue that the phrase “mechanistic explanation” is redundant, since an explana-
tion that is not positive, in the required sense, and therefore mechanistic, is no 
explanation at all. Let’s agree to assume this, that is, that all adequate explana-
tions are mechanistic. In addition, one may wish to deny the possibility that some 
natural phenomena are not amenable to explanation at all. Let’s assume this as 
well, without discussion. From these two assumptions it is tempting to conclude 
a kind of u n i v e r s a l  m e c h a n i s m —the claim that every phenomenon has 
a mechanistic explanation. From this, metaphysical mechanism about the human 
mind seems to follow immediately.  

There are two main problems with this line of reasoning which it will be in-
structive to uncover. The first concerns the logical form of the inference. On the 
face of it, we have here a run-of-the-mill universal instantiation: From mecha-
nism about all phenomena we infer mechanism about the particular phenomenon 
of the human mind. However, such an inference holds only if the instance is in 
the range of the quantifier, in this case if the human mind is a natural phenome-
non that stands to be explained. The problem is that what counts as a natural 
phenomenon is not a simple and non-negotiable matter. To state the issue clearly, 
let’s distinguish between the d a t a , which is immediately given (by the senses, 
say), and the p h e n o m e n o n , which is that which we need to explain. The phe-
nomenon is extracted, or constructed, from the data, by various conceptual op-
erations we can call i d e a l i z a t i o n s , which consist primarily of extending the 
scope of the phenomenon beyond what has actually been perceived in the data, 
and of cleaning it up of factors that supposedly belong to the measuring proce-
dure or to external factors, and not to the phenomenon itself. Which idealizations 
are to be applied is an issue that can be negotiated, and different decisions affect 
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the domain of the quantifier in the statement of universal mechanism.9 Thus, 
whether we are prepared to accept the inference from universal mechanism to 
mechanism about the human mind ultimately depends on whether or not we 
accept the mind as a phenomenon to be explained. 

One way the explanatory burden of mechanism can be reduced is by “elimi-
nating” some would-be phenomenon. For example, pre-Cartesian natural philos-
ophy considered vital processes in animals a phenomenon to be explained. What 
the d a t a  contained, however, was not the vital processes themselves, but obser-
vations of seemingly organized spontaneous movement in animal bodies. Mech-
anistic physiology does not explain vital processes in mechanistic terms (“reduce” 
them to mechanics), it rather rearranges the data so that vital processes cease to 
count as a phenomenon (they are “eliminated”). The data is kept the same, but it 
is idealized differently, into a phenomenon of spontaneous movement, which 
yields more easily to explanation in terms of inert matter.10 In a similar fashion, 
the inference from universal mechanism to mechanism about the mind can be 
avoided if we take the mind out of the domain of the quantifier. Then, there is 
simply nothing there to explain. Now, certainly the exclusion of recalcitrant data 
from the domain of the explanandum flirts dangerously with question-begging. 
However, since some idealization of the data is anyway unavoidable, ultimately 
the legitimacy of elimination turns on whether it can be motivated independently 
of the recalcitrance of the data, and on whether what is left to explain is interest-
ing enough.  

The second problem with the argument from universal mechanism is that it is 
too cheap. Scientific mechanism is predicated on the distinction between positive 
and vacuous explanations, and on the rejection of the latter from science. Meta-
physical mechanism is a metaphysics guided and supported by scientific mecha-
nism. Descartes’ metaphysical mechanism about animals, for example, was 
grounded in positive (though incorrect) physiological theories and actual engi-
neering techniques. But the inference we are now considering proposes that we 
accept mechanism about the mind on the basis of a general principle, in complete 
absence of any positive theory of the mind, or of any machine that can simulate 
it. Such an inference goes against the very grain of mechanism. This doesn’t 
make it a logical fallacy, but it should make us uneasy about accepting its con-
clusion. The mechanism we end up with is a vacuous doctrine, and we should not 
be satisfied with it.  

We have cited two reasons why mechanism about the mind should not be ac-
cepted on the basis of the argument from universal mechanism. Descartes, how-
ever, goes farther and rejects universal mechanism altogether. 

 

 
9 See (Bogen & Woodward, 1988) for the classical modern statement of the distinction 

between data and phenomenon, and (Woodward, 2011) for a summary of the ensuing 
discussion. 

10 This is, at least, how Gaukroger presents things in (Gaukroger, 2007, p. 323ff).  
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1.3. Cartesian Anti-Mechanism 

In the Discourse, after having stated his thesis that animals are mere ma-
chines, Descartes goes on to say: 

[I]f any such machines resembled us in body and imitated our actions insofar as 
this was practically possible, we should still have two very certain means of rec-
ognizing that they were not, for all that, real human beings […]. The first is that 
they would never be able to use words or other signs by composing them as we do 
to declare our thoughts to others. For we can well conceive of a machine made in 
such a way that it emits words, and even utters them about bodily actions which 
bring about some corresponding change in its organs […] but it is not conceivable 
that it should put these words in different orders to correspond to the meaning of 
things said in its presence, as even the most dull-witted of men can do. (Descartes, 
2006, p. 56)11 

In this passage Descartes puts forth a test for deciding that a humanoid ma-
chine is not a genuine human. The claim is that language is a reliable indicator of 
the presence of mind, and that no machine can simulate human linguistic compe-
tence. Note, that Descartes is comfortable with machines v o i c i n g  sentences, 
even as a response to stimulation; but that would stop short of genuine linguistic 
capacity, which consists, first, in the ability to form indefinitely many sentences, 
and second, in the fact that these sentences are used in accordance with their 
meaning, hence, that they are meaningful. In other words, we should not consid-
er a mechanistic theory to be a theory of the mind, if it does not account for the 
syntactic and semantic aspects of language use.12  

Unfortunately, Descartes doesn’t explicitly say why he thinks linguistic ca-
pacity resists a mechanistic explanation. Here’s a conjecture. Although there is 
no difficulty in imagining a mechanistic theory that accounts for sound and 
voice,13 there is no way to calculate the syntactic and semantic properties of an 
utterance from its acoustic or even phonological properties alone. Semantic phe-
nomena cannot even be described, let alone explained, in phonological terms. 
Consequently, there is a basic incongruity between the explanatory resources of 
mechanism and the phenomenon of linguistic competence, an incongruity that 
makes genuinely linguistic machines unimaginable for Descartes. Nor does Des-
cartes think that the option of eliminating the mind is open to us (below we’ll see 
why). Linguistic capacity, and with it the mind, presents an ineliminable phe-
nomenon which the explanatory resources of mechanism simply have no chance 
of accounting for.  

 
11 In the text, Descartes mentions another test for humanity, which (Gunderson, 1964, 

p. 199) calls “the action test”. I shall not address it here. 
12 See (Gunderson, 1964) for an extensive discussion.  
13 This was, in fact, one of the earliest mechanistic theories, by Beeckman, see (Cohen, 

1984, Chapter 4). 
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It has been suggested that the problem here has more to do with what Des-
cartes can and cannot imagine than with any objective incongruity between ma-
chines and the mind. Descartes was familiar with a certain type of machine, and 
his imagination, remarkable though it was, was inevitably limited to that type. 
Recall how the pre-Cartesian anti-mechanists, according to the story as we’ve 
told it, had difficulty imagining that animals were machines because the ma-
chines they knew could not move about on their own. This limitation to the im-
agination was removed by the appearance of self-moving statues. Similarly, the 
development of new machines with previously unforeseen features, namely 
modern digital computers, might provide positive ground for mechanism about 
the mind. This issue will be taken up presently.14  

But apart from the perceived incongruity between the linguistic phenomenon 
and the explanatory resources of mechanism, Descartes also had a more properly 
philosophical argument for his anti-mechanism, the cogito. Although the cogito 
is not expressly presented as an anti-mechanistic argument, its anti-mechanistic 
import is easy to establish. Briefly, since mechanism for Descartes is metaphysi-
cally limited to res extensa, it suffices to find one thing which is not res extensa 
in order to refute universal mechanism, even in its vacuous form. The cogito’s 
twin conclusions are, first, that the self15 exists, and second, that it is a kind of 
thinking substance, or res cogitans, and not res extensa. This self is identified 
with the mind, and it follows that the mind cannot be a machine. 

The cogito is an interesting case because it resembles a diagonal argument, 
but on closer inspection it isn’t.16 It resembles a diagonal argument (a) in the 
form of its conclusion, and (b) in the structure of the argument, as follows. (a) 
Like many diagonal arguments, the cogito (on its anti-mechanistic reading) pur-
ports to refute a completeness claim by producing an “outsider” element. For 
example, Cantor’s diagonal proof of the indenumerability of the real numbers 
refutes the claim that there is a complete enumeration of the reals by producing, 
for each enumeration, an outsider. In Descartes, the completeness claim is that all 
things are res extensa, and the outsider element is the human mind, or the think-
ing self. (b) Diagonal arguments typically construct an outsider element by ap-
plying a procedure involving self-reference and negation to all members of the 
putatively complete class. Cantor shows how to construct, for a given enumera-
tion, a real number based on the negation, in the relevant sense, of all members 
of the enumeration. Descartes’ procedure is to doubt the reality of all extended 
substances; but when he arrives at his own self, he finds that the procedure fails: 

 
14 The claim that technological advancements might affect our assessment of Des-

cartes’ anti-mechanism is suggested by the discussion in (Ben-Yami, 2015, p. 126f).  
15 Or the I, or whatever. The cogito is awkward to report in the third person.  
16 I defer a more detailed treatment of the cogito for another occasion. See (Slezak, 

1983; 1988) for a different take on the cogito’s being a diagonal argument, (Sorensen, 
1986) for a critique.  
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But I have convinced myself that there is absolutely nothing in the world, no sky, 
no earth, no minds, no bodies. Does it now follow that I too do not exist? No: if 
I convinced myself of something [or thought anything at all] then I certainly exist-
ed. (Descartes, 1996, p. 25)17 

The thinking self is discovered when we try to include it in the domain of our 
skeptical procedure and fail. However, only the thinking aspect is immune from 
doubt in this way. It follows that a non-extended object exists.  

However, on closer inspection neither the form of the argument in the cogito, 
nor the form of its conclusion, are those typical of diagonal arguments. We show 
this, again, (a) for the form of the conclusion, and (b) for the structure of the 
argument. (a) Diagonal arguments typically show the existence, not of an abso-
lute outsider, but of a method to generate an outsider given a particular com-
pleteness claim. For example, Cantor does not show that there is a real number 
which absolutely cannot be enumerated. That’s absurd. Rather, he shows how to 
find, for every enumeration, a real that’s outside of it, even if it does belong to 
some other enumeration. By contrast, Descartes’ res cogitans is meant to be an 
absolute outsider, not being captured by any mechanistic system.18 (b) Diagonal 
arguments construct the outsider using a negative procedure on the members of 
the putatively complete system. The identity of Cantor’s outsider element for an 
enumeration E is a function of all elements of E, negating, as it were, every one 
of them, and thereby establishing its distinctness from them all. By contrast, in 
the cogito, no diagonal element is constructed. The stage in the cogito that re-
sembles the diagonal procedure, quoted above, is the one in which doubt is ap-
plied to all things (step A: “I convinced myself that there was nothing at all in the 
world, no sky, no earth, no minds, no bodies”), including, tentatively, the self 
(step B: “did I therefore not also convince myself that I did not exist either?”), 
but unsuccessfully in the latter case (step C: “certainly I did exist, if I convinced 
myself of something”). Here, what sanctions the inference from self-doubt (B) to 
self-affirmation (C) is the fact that doubting in general implies the existence of 
the self, regardless of the object of doubt. But doubting in general was performed 
already in step (A). Therefore (C) could have been inferred directly from (A). 
The act of self-doubt (B), ostensibly the diagonal heart of the cogito, doesn’t 
play any logical role in the argument. It is primarily an expository device, serv-
ing to highlight, but not to establish, the existence of the self. In diagonal argu-
ments, by contrast, the diagonal construction is an essential step of the inference. 

 
17 The interpolated part is from the French version. 
18 The difference is rooted in the respective claims that diagonal arguments and the 

cogito purport to refute. Diagonal arguments typically refute existential claims. In Can-
tor’s case, the claim is not of the form “every real number is thus and so”, but “there is an 
enumeration such that every real number is thus and so”. By contrast, Descartes’ cogito 
purports to refute the claim “every existent is extended”, or something along these lines. 
This is why a diagonal argument yields only a relative existence claim, and the cogito 
purports to yield an absolute existence claim.  
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The conclusions from this brief discussion are as follows. First, we see that 
the cogito resembles a diagonal argument, but turns out upon scrutiny not to be 
one. Second, the aspect in which it fails to be a diagonal argument is exactly the 
point at which it loses much of its force, since the thinking I has not been given a 
definite enough constitution in order to count as a genuine existent.19 If this is 
correct, then we get the impression, wildly anachronistic though it may sound, 
that Descartes is here groping for a diagonal argument, in a hunch that this is the 
kind of argument that can refute mechanism about the mind.  

1.4. Turing’s Computing Machines 

With Descartes’ pseudo-diagonal anti-mechanist argument out of the way, we 
can come back to the question, raised in the middle of the previous subsection, 
whether computing machines can provide positive support for mechanism about 
the mind in a way that classical machines could not. In order to begin to answer 
this, we have to state clearly what distinguishes the two kinds of machines.  

Today, the term “computing” already implies “machine”, but originally the 
notions were only indirectly related. Computation was just another name for 
calculation. We get an intuition about what calculation is by looking at a simple 
case, the grade-school algorithm for addition. The fundamental way to add two 
numbers, e.g. 13 and 28, is to produce collections, of fingers, say, with the corre-
sponding cardinalities, and then count the members of their union. But counting 
is not always a good option, and for practical purposes we usually turn to meth-
ods that exploit properties of the numerical notation. The positional notation 
system for numbers, for example, allows us to perform sums of arbitrarily large 
numbers in terms of the iteration of the operation of summing up two single-digit 
numbers, in our example case first 3 and 8, and then 1 and 2. Since the possible 
sums of two single-digit numbers are few, they can be memorized or written 
down in a small instruction table. When we appeal to such a memorized or written 
table, reference to the numbers themselves effectively drops out. The table simply 
instructs us, when we see the digits “3” and “8”, to write “1” below them and mark 
a carry above the next column. What is in play here are the digits, not the numbers 
3 and 8, since these latter were not part of the original problem at all. The proce-
dure is iterated for every position of the numerals, resulting in a string of digits, in 
our example case “41”, which we then interpret as referring to a number.  

 
19 This point deserves elaboration, which, for reasons of space I shall not provide. 

Briefly, the problem is that the I that is discovered in step A is abstract, or vacuous, in 
something like the sense of the previous subsection, and, therefore, cannot be the basis of 
a genuine existence claim of the kind that the cogito aims to establish. This difficulty is, 
I believe, recognized by Kant in his discussion of the “I think that accompanies all my 
representations” in the Critique of Pure Reason. See esp. the discussion in §16 of the B-
deduction (B131ff), where the necessity of the I think is affirmed, and in the Paralogisms 
of Pure Reason (A341/B399ff), where the substantiality of the I is denied. 
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Strictly speaking, therefore, the numbers themselves are only present at the 
entry and exit points of the calculation, but are completely absent during the 
calculation itself. The process of calculation is mechanical, in a sense quite close 
to the one used in relation to machines and mechanism. What it applies to are 
(usually) marks on paper, and it is sensitive only to their visible geometrical 
properties. The operations that we perform (writing further symbols) are also 
definable in terms of geometrical properties. In other words, calculation is per-
formed almost purely within the bounds of res extensa. There are two exceptions: 
the interpretation of the symbols at the input and output points. The meaning of 
symbols cannot be counted part of their res extensa aspect, and yet without ac-
knowledging their meaningfulness, we can’t think of our procedure as calcula-
tion over and above the mere producing of marks on paper.20  

What the mechanical nature of calculation provides is epistemic security. 
Since each step can be written down, surveyed in a glance and compared with 
the table of instructions, any mismatch will be evident and public. Many philos-
ophers, most notably Leibniz, have entertained the hope of enjoying the epistem-
ic virtues of calculation in domains beyond mathematics. Such a project requires 
a notation system in which the properties of the subject matter are reflected in the 
form of the symbols. The formalized languages of modern logic, for example 
Frege’s Begriffschrift and Hilbert’s deductive systems, can be seen as systems of 
generalized calculation, designed to be applied to any subject matter. However, 
these systems implement one particular method of calculation, and the question 
of a general analysis of the concept of calculation is left open.  

Historically, the need for such a general analysis became pressing with the 
appearance of Gödel’s incompleteness theorems. Gödel showed that any formal 
system, the syntax of which can be captured by recursive functions, and which 
can represent recursive functions in an appropriate sense, is incomplete. Hilbert’s 
arithmetical system fulfilled these conditions, and was thereby proven incom-
plete. 21 However, since recursive functions were only one particular form of 
calculation, there was doubt (at least, Gödel doubted) whether the theorems 
would apply to any formal calculus whatsoever. This doubt was resolved by 
Turing’s general analysis of calculability, in terms of imaginary computing ma-
chines. Turing’s machines operate on written symbols, and their simple and high-
ly scalable design enables a mathematical definition of various classes of rela-
tions on strings, most importantly the class of computable and computably enu-
merable (c.e.) relations. It was proven that the class of recursive functions on 
strings is exactly the class of Turing-computable functions on strings, which 
showed that Gödel’s results hold for all systems with computable syntax. Tu-

 
20 This “formal symbol manipulation” account of computing has come under attack in 

recent decades, e.g. in (Smith, 2002; Fresco, 2014, who provide many further references). 
However, this literature is mostly concerned with the concept of physical computation, 
especially in the context of computational cognitive theory, so it is irrelevant here. (It will 
become more relevant in the next subsection).  

21 Frege’s system had, of course, other problems.  
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ring’s account was accepted (in particular by Gödel) as definitive of the concept 
of computability.22 

With respect to this history we ask: (a) What role does the notion of a ma-
chine play in Turing’s account? (b) What convinced Gödel of the account’s valid-
ity and generality? Regarding question (a), we note that calculation by itself, as 
exemplified above in the long addition algorithm, makes no reference to ma-
chines, though it does depend on the notion of the mechanical. We note also that 
of the general accounts of calculation that preceded Turing’s or were independent 
of it—Church’s lambda calculus, Gödel’s and Kleene’s general recursive func-
tions, Post’s production systems—none mentioned machines in any way. In fact, 
if we look closely at Turing’s account, we see that the reference it makes to ma-
chines is, strictly speaking, superfluous. The actual Turing machine construction 
is nothing but a straightforward generalization of the long addition algorithm, 
arrived at by simplifying the instruction table to very basic operations. There is 
no compulsion to describe it as a machine, and we can just as well describe it in 
psychological terms (as Post did). On the face of it, then, the answer to question 
(a) is that the notion of a machine plays no role at all in the content of Turing’s 
analysis of computability.  

However, when we ask about the perceived conceptual superiority of Tu-
ring’s account over the other accounts (question (b)), it is hard to avoid the im-
pression that it is due precisely to Turing’s appeal to the notion of machine. The 
point of this appeal is to convince the reader that the procedure described re-
mains squarely within the bounds of the mechanical, or res extensa, and, there-
fore, guaranteed to have the epistemic virtues associated with paradigmatic cal-
culation. The fact that a machine can “perform” Turing’s generalized algorithms 
promises that only geometrical properties of the objects of calculation are ap-
pealed to, and in particular that no semantic properties are exploited. This is, 
however, ascertainable even without the machine trope, for example if we inter-
pret Turing’s algorithms as instructions for human computers. The machine trope 
ultimately has just an auxiliary expository role in Turing’s argument.23 

In order for the machine trope to fulfill its expository role, the machines in 
question have to be exactly the classical mechanical machines, the ones that 
Descartes was thoroughly acquainted with. There is no impediment to realizing 

 
22 This story is told in many places, for example in (Sieg, 2013).  
23 For Gödel’s well-known endorsement of Turing’s account, see for example the 1951 

essay in (Gödel, 1986): “The most satisfactory way [of arriving at a definition of comput-
able function of integers] is that of reducing the concept […] to that of a machine with 
a finite number of parts, as has been done by the British mathematician Turing”.  

See (Sieg, 2013, §1) for more quotes by Gödel to a similar effect. See also (Sieg, 2001) 
for a more general discussion. Gödel does mention machines already before the appear-
ance of Turing’s work. In his 1933 paper (Gödel, 1986), inference rules in formalized 
languages are characterized as: “[P]urely formal, i.e. refer only to the outward structure of 
the formulas, not to their meaning, so that they could be applied by someone who knew 
nothing about mathematics, or by a machine”. 
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Turing’s machines with gears, chains and a crank rather than scanners, printers 
and tapes. Indeed, but for their scalability, Turing’s machines would be much 
simpler to engineer than the average moving statue. But if computing machines 
are not essentially different from mechanical machines, why do we have the 
impression that they stand a better chance than the latter of simulating human 
cognition? Conversely, why did Descartes fail to see that classical machines a r e  
capable of such simulation?  

The answer to this puzzle has been given in our discussion of the long addi-
tion algorithm above. There, we mentioned two points in the procedure of calcu-
lation that went beyond the merely mechanical: these were the input and output 
points, at which the meanings of the symbols were appealed to. If we ignore 
these semantic limit points, the computer, whether human or machine, cannot 
properly be said to compute, but only to be moving bits of res extensa about (or 
rather, to be bits of res extensa moving about). It is the person writing the input 
on, and reading the output off, the tape who is performing the computation, using 
the machine as they would a slide rule or a sophisticated abacus.24 In order to 
treat machines as genuinely computing, we have to revise our notion of a ma-
chine. We now include the semantic limit points of the computation procedure 
within our notion of computation, and accordingly, we include the interpretation 
of the symbols on the machine’s tape as belonging to the machine. Thus, we 
distinguish between, on the one hand, Turing’s machines, which are strictly me-
chanical and used by Turing as an expository trope in his classic account of (hu-
man) calculation; and on the other, Turing machines which are to Turing’s ma-
chines as a closed interval is to an open one—they include the limit points. Tu-
ring machines are not just bits of res extensa moving about, for their symbols are 
not mere geometrical shapes—they are symbols properly so-called, i.e. bits of 
res extensa that designate things. Only in this sense can we say that the machine 
returning, say, the string “41” upon receiving the strings “13” and “28”, com-
putes addition. It is the concept of a Turing machine, and not a Turing’s machine, 
that stands a chance at simulating human cognition.  

Recall, Descartes’ worry was that the semantic aspect of linguistic compe-
tence was incongruent with the explanatory resources of mechanism. On our new 
understanding of computing machine, the semantic layer is built-in. Should Des-
cartes be satisfied? Probably not. The new machines might be said to compute, 
but they also explicitly go beyond the purely mechanical. It is therefore not cor-
rect to say that we have shown, by appealing to computing machines, that mech-
anism about the mind as Descartes understood it is tenable. Rather, we have 
changed the subject. 

 
24 See the first three sections of (Papayannopoulos, 2020) for a more detailed state-

ment of roughly this view.  
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1.5. The Cognitive Inversion 

The main empirical enterprise that makes use of the theory of computability 
as the basis for a mechanistic outlook is the computational theory of mind. This 
theory emerges from the concept of computation through two conceptual twists.  

First, as we recounted above, the notion of computation originally referred to 
a species of conscious human activity, not something specifically related to ma-
chines. Admittedly, due to the mechanical or rote character of computation, no 
emphasis needed to be placed on “conscious”. But calculating is something 
a person does intentionally, not something done in the background. In Turing, 
I claimed, the appeal to the idea of a machine was just an expository trope. How-
ever, once it was shown in theory what such machines could do, it was 
a (relatively) small step to building them in practice. The success of this project 
was so overwhelming that the word “computing” and its cognates came to be 
associated exclusively with machines. This is a conceptual twist. Turing exploit-
ed the fact that both human computation and machines are mechanical, in order 
to argue that his mathematical model captures human computation. Actual com-
puting machines do the conceptually opposite—they exploit the mechanical 
character of human computation in order to take over the rote part, leaving hu-
mans the sole job of interpreting the results.  

Once actual physical computers became available and familiar, it was 
a (relatively) small step to using them as a model for human u n c o n s c i o u s  
cognitive activity. In digital computers we distinguish between the hardware, 
which is the machine itself, and the software, which is, roughly, a representation 
of the design of the machine which abstracts from any physical implementation. 
This distinction allows us to implement several abstract machines on a single 
physical machine.1 Analogously, one is tempted to view the brain as a piece of 
naturally developed computer hardware, on which various software programs are 
implemented. The software corresponds to the human mind. Cognitive phenom-
ena are then explained in terms of software implemented in the brain. In this way 
the notion of computation, which started out as pertaining to the human mind, 
made its way back to the mind after having been appropriated by machines. And it 
came back transformed, being now postulated to underlie the whole of human 
unconscious cognitive makeup, rather than being one type of conscious human 
activity.2  

The idea of a computing machine thus provides a basis for a methodlogically 
sound and empirically fruitful science of the human mind. Does this provide 
support for metaphysical mechanism about the mind in the same way that mech-
anistic physiological theories provided support for metaphysical mechanism 
about animals?  

 
1 For complications regarding the hardware/software distinction, see (Duncan, 2017). 
2 See (Gardner, 1987) for a detailed history of cognitive science (with relation to the 

present paragraph, see pp. 16ff, 40f, 138ff, 384ff ).  
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Ideally, a full mechanistic theory of the mind would show how cognitive 
phenomena follow from the physical description of the brain in the same way 
that the behavior of a digital computer follows from its physical makeup. How-
ever, currently at least, we are nowhere near such a full derivation. In practice, 
cognitive science makes progress by abstracting from the physical implementa-
tion, the hardware, of the mind, and studying just the software, the system of 
conscious and unconscious mental processes and representations that underlie 
human capacities and behavior. For example, Chomsky explains the cognitive 
phenomenon of linguistic competence by postulating a specialized language 
faculty, described as an “abstract linguistic computational system” which is “an 
internal component of the mind/brain” (Hauser, Chomsky, & Fitch, 2002, 
p. 1570f). By “abstract” what is meant, supposedly, is that the physical imple-
mentation of the computational system is abstracted from.  

This strategy, of abstracting from the physical implementation, has implica-
tions for our question. Computation, as we have understood it in the previous 
subsection, is the mechanical manipulation of strings of symbols, such that the 
symbols are visually, or anyway sensibly, individuated, in other words that they 
are res extensa. This b o t t o m - u p  character is what endows computation with 
its epistemic virtue, and also what connects it with the doctrine of mechanism. 
With computing machines, things become a little more complicated because we 
add a non res extensa layer, the level of interpretation; but the bottom-up charac-
ter of computation is kept, because the symbols are still manipulated strictly 
mechanically. However, in the mind there is nothing that corresponds to the 
visible strings of symbols of conscious computation, and the abstraction from 
hardware eliminates all reference to the physical substrate of the computing 
machine. The representations that the computations of cognitive science operate 
on are individuated t o p - d o w n , by their systematic contribution to the compu-
tation of the phenomena, or in other words, functionally. Such functionalism 
does not, perhaps, invalidate cognitive science as a science; but it seems to waive 
the mechanistic demand for positivity.3 

Another way to state the problem is this. As far as I know, Chomsky never 
fully specifies what is meant by “/” in “mind/brain” in the quote two paragraphs 
above. The intention is probably to flag the fact that, although abstract represen-
tations are immaterial, no metaphysical dualism is thereby implied, since we 
expect them to be reduced to neural terms at some time in the future. On this 
understanding, the “brain” in “mind/brain” is a promissory note to the effect that 
cognitive science (in this case linguistics) will, at some point, be reconciled with 
mechanism proper. Read in this way, the phrase “mind/brain” is an implicit en-
dorsement of mechanism about the mind. However, the promissory note is a rain 
check, not motivated by any existing positive theory of the relation between 

 
3 See (Miłkowski, 2013) for a relatively nuanced discussion of mechanism about the 

mind in the context of cognitive theories and the so-called new mechanism. Miłkowski’s 
view of computation is not the one presented in the previous subsection.  
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linguistic capacity and anything in the brain; it is motivated solely by the wide-
spread conviction that everything cognitive has its seat in the brain. This convic-
tion is too widespread to doubt, at least in certain prominent circles, but this is 
not the same as being a positively discovered empirical fact. To the extent that it 
purports to be more than just a methodological injunction to seek explanations of 
cognitive facts in the brain, in other words, to the extent that it presumes to be 
a metaphysical thesis, it is a vacuous mechanism, in the sense of §1.2.4  

In this subsection and the previous we considered, all too briefly, the notion 
of a computing machine and its application to the empirical study of the mind. 
The question was whether computing machines can provide positive ground to 
mechanism about the mind in the same way that moving statues and mechanistic 
physiological theories grounded mechanism about animals for Descartes. On the 
one hand, the new conception of computing machine, and the cognitive science 
built upon it, give up on many of the features that made mechanism attractive—
the inertness of matter, the bottom-up derivation of phenomena, etc. On the other 
hand, the empirical success of cognitive theory, as well as the engineering 
achievements in the field of computing machines, show that the new conception 
is stable and fruitful. I leave the issue undecided. I turn now to consider whether 
we cannot find a principled argument against mechanism in Gödel’s incomplete-
ness theorem.  

2. The Gödelian Argument 

Our foregoing exposition of computational mechanism about the human 
mind was not sufficiently precise for Gödel’s theorem to be applied to it. In the 
present section, our tasks are, first, to provide a sharp(ish) formulation of mecha-
nism; second, to give a correspondingly sharp rendering of Lucas’s famous Gö-
delian anti-mechanist argument; and finally, to topple this argument from several 
angles. In closing, I shall sketch a diagonal argument that I think stands a better 
chance. 

2.1. Mechanism About the Mind 

Mechanism about the mind, on the construal sketched in §1.5 above, is the 
claim that every natural aspect of human cognition, or in other words every cog-
nitive phenomenon, is the result of a computational system that is part of the 
mind. Cognitive science studies many phenomena that don’t manifest themselves 
through language, but they are arguably not relevant to the issue at hand, and 

 
4 This is not to say that no connection has been made between linguistic theory and 

the brain sciences. See in particular the findings reported in (Grodzinsky & Santi, 2008) 
and papers cited therein. However, it is clear that these findings are very far from suffi-
cient to metaphysically ground Chomskyan theory in the brain sciences. They should 
rather be considered the fruit of Chomskyan mechanism, where the latter is viewed as 
a research program, not a metaphysical thesis.  
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I put them aside. We therefore think of a cognitive phenomenon as a set of sen-
tences uttered or assented to by speakers, and of a mechanistic explanation as an 
algorithm that enumerates the set. 

We assume that natural languages are fully intertranslatable, and identify 
them all with a single language L, which we assume for convenience is a formal-
ized first-order predicate language. In addition, we assimilate to L the language 
in which the mental computations are carried out, the Language of Thought, as it 
were. Such assumptions seem to be implicit in much of the practice of (linguisti-
cally oriented) cognitive science. Let SL be the set of sentences of L. Cognitive 
phenomena are associated with certain subsets of SL, which I shall call their 
y i e l d . Scientific mechanism is the call, given a cognitive phenomenon A, to 
look for an algorithm that enumerates its yield SA. Metaphysical mechanism is 
the claim that the mind really is computational, which we express as follows: 

Metaphysical Mechanism: Let L be the language of the mind. If SA ⊆ SL is the 
yield of a natural human cognitive phenomena A, then SA is computably enumer-
able (c.e.).  

By our assumptions, SL itself is infinite and c.e. (in fact, computable). Being 
infinite, it will have non-c.e. subsets. On pain of trivializing the question, mech-
anism therefore cannot be equated with the claim that all subsets of SL are c.e. 
We need some means of characterizing the class of subsets that are of interest, i.e. 
that correspond to cognitive phenomena.  

Cognitive science is an empirical discipline, one that studies phenomena as 
they are given in observation and experiment. Let’s further restrict the experi-
mental paradigm to that in which sets of sentences (or judgments about sentences) 
are collected from subjects, whether they occur naturally or through elicitation. 
In practice, experiment and observation can only give rise to finite sets of per-
ceived sentences. Again, on pain of trivializing the question, we cannot assume 
that the yields of phenomena are finite, since finite sets are trivially computable. 
To bridge the gap between the finitude of the sets actually given, and the infini-
tude of the sets yielded by cognitive phenomena, we call on our previous distinc-
tion (§1.2) between data and phenomena, and on our notion of idealization 
whereby the latter is constructed from the former. This allows us to consider 
infinite subsets of SL as cognitive phenomena. Clearly, much hangs on which 
idealizations are allowed. 

In order to have an actual case before our eyes, let’s think again about Chom-
skyan linguistics, and in particular the cognitive phenomenon of linguistic com-
petence. The premise of linguistics is that there is a language faculty which com-
putationally enumerates, or “generates”, the set of sentences that speakers accept 
as grammatical in their language. It is the job of the linguist to find the generat-
ing algorithm.5 The phenomenon of linguistic competence is associated with an 

 
5 See, e.g., (Chomsky, 1957; 1975).  
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infinite set S of sentences. The data available to the linguist has to be finite.6 S is 
therefore the product of idealizations performed on a finite data set D. The opera-
tions involved are roughly two: extrapolation to an infinite set, and cleaning up 
the data into a well-behaved collection that exhibits enough regularity to be stud-
ied scientifically.  

Let’s look closely at an (unrealistic) example of idealization. Let sJ be the 
sentence: 

(1) John is very, very tall. 

Let sJ{n} be the result of replacing “very, very” in sJ with a string of n times 
“very”. Since data sets are finite, no data set will contain sJ{n} for every n. 
However, clearly we could procure a data set DJ such that sJ{n} ∈ DJ for every 
n less than some integer k, i.e. with no gaps below k. It seems reasonable to ex-
trapolate DJ to a set SJ, such that sJ{n} ∈ SJ for every n. Note that, clearly for 
some integer l, sentences sJ{n} longer than l will not appear in any data set. They 
will simply be too long. But this shouldn’t discourage us from accepting SJ, since 
we can reasonably ascribe the absence to factors that lie outside the language 
faculty proper, for example to constraints on memory or on patience.  

In addition, and especially if DJ is drawn from a corpus of naturally occurring 
speech rather than elicited speaker judgments, there may be sentences in DJ that 
we refrain from carrying over to SJ. Naturally occurring speech is the product of 
many heterogeneous factors, the language faculty being just one. The subject 
may be distracted midsentence, or interrupted, or there might be another reason 
for us to decide that an observed sentence does not reflect a genuine product of 
our language faculty. In this way not only will there be many sentences in SJ that 
were not directly given in DJ, but also sentences that were given can be filtered 
out of the phenomenon to be explained. SJ is, therefore, both extrapolated and 
pruned, relative to the data set DJ.  

This doesn’t mean that anything goes. There have to be constraints on which 
extrapolations and which prunings are legitimate, constraints which I shan’t 
attempt to specify precisely. Instead, let me give an example of an illegitimate 
idealization. Consider the following experiment. The subject is presented with 
a natural number 𝑛𝑛, and is asked to form a grammatical sentence with 𝑛𝑛 words. 
This is a task that linguistically competent subjects can perform with ease, for 
example by giving sJ{n - 3} as an answer (for n > 2, of course). Let DB be the set 
of sentences actually collected in the experiment, a finite set. Now let B be some 
non-c.e. set of natural numbers with an initial segment identical with the set of 
lengths of sentences in DB. Finally, let SB be a set of sentences such that DB ⊂ SB, 
and such that if s ∈ SB and n is the length of s, then n ∈ B. In other words, B is the 
set of lengths of sentences of SB, and SB is an extrapolation of DB, conditioned by 

 
6 See (Pullum & Scholz, 2010) for a critique of the assumption that an infinite set has 

to be assumed.  
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B. It follows that B is Turing-reducible to SB—all we need to do is count the 
lengths of sentences in SB—and therefore that SB is non-c.e. But SB was extrapo-
lated from the (imagined but) plausible data set DB. If this extrapolation is 
a legitimate idealization, then SB is the yield of some cognitive phenomenon, and 
thus a counterexample to computational mechanism. 

Clearly, SB is not a legitimate idealization of DB. I will not attempt a state-
ment of general conditions on legitimate idealization, but the condition that this 
example suggests is that extrapolation has to preserve and continue trends exist-
ing in the original set. The concept of a trend and its continuations is not a very 
precise or determinate notion, but since B was chosen arbitrarily, it obviously 
does not fit the bill. In the case of DB, the idealization is conditioned by a set that 
is completely external to the mind, so the fact that it is not c.e. is not a counter-
example to mechanism after all. More generally, when we idealize a data set into 
a phenomenon, the principle that guides the idealization must somehow reflect 
the situation in the mind.  

2.2. Gödel’s Theorem and Its Proof 

With this sharpened statement of mechanism in hand, let’s turn our attention 
to the Gödelian argument. First, let’s review Gödel’s theorem and proof.  

Let LT be a formalized language.7 A set T ⊆ SLT is a t h e o r y  if it contains the 
logical axioms and is closed under the logical inference rules; it is a f o r m a l -
i z e d  t h e o r y  if it is, in addition, c.e.; and it is said to c o n t a i n  a r i t h m e t i c  
if it contains the Peano axioms (LT is therefore implied to contain the language of 
arithmetic).8 T is c o n s i s t e n t  if T ≠ SLT, equivalently if for no LT sentence α: 
α, ⸢¬α⸣ ∈ T.9 

Theorem G1: If T is a consistent formalized theory that contains arithmetic, 
then we can compute from (the algorithm that enumerates) T a sentence gT ∈ SLT 
such that gT, ⸢¬gT⸣ ∉ T.  

P r o o f : Let c(x) be a mapping from numbers to LT sentences, called t h e  c o d -
i n g  s c h e m e . ⸢n�⸣ is the numeral in LT  that refers to the number n.  

 
7 As before, I limit consideration to standard first-order languages.  
8 It is possible to state the theorem also for weaker conditions, but this will not affect 

the argument.  
9 The corner quotes are used in order to form names of expressions by concatenating 

symbols with other names of expressions. “α” in the text is a variable over sentences; 
“⸢¬α⸣” is a function taking a sentence and returning its negation. The source is (Quine, 
1940, p. 33ff), though I also allow constant names (e.g., “gT” below) to occur in corner 
quotes. This is not exactly the same as the (more common) use of corner quotes to signify 
Gödel codes. 
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Lemma 1 (Reflection): There is a unary formula PRV(x) of LT, such that for 
every n: 

c(n) ∈ T if and only ⸢PRV(n�)⸣ ∈ T. 

Lemma 2 (Diagonalization): There is a number k (which can be computed from 
T) such that: 

⸢¬c(k)⸣ ∈ T if and only if ⸢PRV�k��⸣ ∈ T. 

From the two lemmas it immediately follows that: 

(2) c(k) ∈ T if and only if ⸢¬c(k)⸣ ∈ T. 

We put gT for c(k). By consistency of T, the theorem follows.         □ 

The sentence gT effectively says of itself that it is not in T. Consequently: 

Corollary: Under the hypothesis of the theorem, gT is true.  

2.3. The Gödelian Anti-Mechanist Argument 

The Gödelian argument applies theorem G1 to the sharp statement of mecha-
nism given in §2.1. The language in question will be the general language of 
cognition L. Call a set T ⊆ SL G ö d e l i a n  if it is a consistent formalized theory 
that contains arithmetic. For each Gödelian set T, by G1 and its corollary, we 
have a true sentence gT ∉ T. Let SG = {gT : T is Gödelian}. Clearly no superset of 
SG is Gödelian. Otherwise put: 

Fact: A consistent superset of SG that contains arithmetic is not c.e.  

For the anti-mechanist it therefore suffices to find a cognitive phenomenon 
A such that: 

(a) SA contains arithmetic, 
(b) SA is consistent, 
(c) SG ⊆ SA.  

Condition (a) points to an immediate suspect. On the model of Chomsky’s ap-
proach to language, we posit a human cognitive faculty C, which accounts for 
our arithmetical competence—our ability to recognize the truth of arithmetical 
sentences. Clearly, SC contains arithmetic in the appropriate sense. 
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Why assume, as per condition (b), that SC is consistent? On the face of it this 
seems false. After all, individuals often make mistakes and change their minds 
about arithmetical statements, resulting in inconsistencies in the accumulated set 
of accepted sentences. However, it is clear the arithmetical judgments that people 
actually make, the data set, do not fully reflect their cognitive arithmetical faculty, 
if such there is. Following the Chomskyan practice outlined in §2.1, we allow 
SC to be an extrapolated and pruned extension of the set of arithmetical sentences 
that are actually asserted. First, the finite data set (the set of actually uttered 
arithmetical judgments) is extrapolated into an infinite set (this was already im-
plicitly assumed for condition (a)). Second, it is cleaned up by pruning it of in-
consistencies and, perhaps, of falsehoods generally. The Chomskyan procedure 
for arithmetical competence is therefore assumed to result in a sound, or at least 
consistent, set SC.10 

In order to show condition (c), that SG ⊆ SC, the anti-mechanist appeals to the 
corollary to G1, in which gT is proven for arbitrary T. The reasoning here is that 
gT is mathematically proven (though not, of course, in a formal system), which is 
to say recognized as true. Since C was characterized as the ability to recognize as 
true arithmetical sentences, we have gT ∈ SC, and since T was arbitrary, we have 
SG ⊆ SC.11  

Since conditions (a, b, c) hold, by our Fact above it follows that SC is not c.e. 
By our characterization of Metaphysical Mechanism (§2.1), it follows that me-
chanism is false. This is the Gödelian anti-mechanist argument. We now turn to 
its refutation. 

The arguments for all three conditions contain serious problems. First, in 
proving that condition (c) holds, we assumed that all gT’s are proven true. For 
this we have relied on the corollary to G1. However, the corollary carries over 
the hypothesis of the theorem, namely that T is Gödelian, and in particular, con-
sistent. The sentence gT for a particular T is only proven by the corollary if T is 
consistent. But it is no claim of the anti-mechanist argument that we can see 
whether a given arithmetical theory is consistent or not. Nor is this a plausible 
premise to add to the argument. But without it, it is not the case that we have 
proved the gT’s, not even informally, and, therefore, it is not the case that SG ⊆ SC. 
What we have proven is the set of conditionals SG

*  = {⸢if T is consistent, then 
gT⸣}, for T c.e. and containing arithmetic. But SG

*  is certainly c.e., and so are 
many of its supersets. It was, therefore, not shown that SC is non-c.e.12 

Though this objection seems conclusive, the other problems I shall mention 
are arguably more illuminating philosophically. The first problem is with the 
appeal to arithmetic in condition (a). The second is with the idealization per-
formed in the appeal to competence in condition (b).  

 
10 Compare (Shapiro, 1998, p. 275). 
11 Compare this with the moves in (Lucas, 1961) and (Penrose, 1989). 
12 An early statement of this objection is in (Putnam, 1960). See also (Bowie, 1982) 

and (Krajewski, 2020). 
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2.4. Against Arithmetic 

The first point to become aware of is that, strictly speaking, it is not arithmet-
ical competence that is doing the work in the Gödelian argument. By a specifi-
cally arithmetical competence we mean, I assume, the kinds of specifically 
arithmetical reasoning that we perform in order to reach arithmetical conclusions. 
In formalized theories, “specifically arithmetical reasoning” means logical rea-
soning from arithmetical axioms. Establishing an arithmetical theorem by means 
of, say, a set-theoretic proof can hardly count as an exercise of our pure arithmet-
ical ability, but seems clearly to go beyond it and rely on additional resources. 
From the other direction, it seems that our specifically arithmetical competence 
is all but idle in our knowledge of the truth of arithmetical sentences such as “2 = 
2 ∨ 2 ≠ 2”. It is, therefore, not just the character of the theorem proved that 
determines which cognitive competence is responsible for its knowledge, but 
also the character of the proof. 

Assume, contrary to fact, that theorem G1 does allow us to prove, as a corol-
lary, all members gT of the set SG. Formally, the Gödelian argument would then 
go through, since we would have proven all members of a non-c.e. set. However, 
it would be wrong to say that we proved them using our arithmetical competence. 
The reasoning that led us to accept the corollary to G1 has nothing to do with 
arithmetic. It is justified only by the equivalence of gT with its own unprovability, 
which is a metamathematical, not an arithmetical, fact. Granted, gT itself is, in 
principle, an arithmetical sentence; but its specific arithmetical content is com-
pletely abstracted from in the proof, and is anyway dependent on the coding 
function c(x), from the precise content of which we have also abstracted. All we 
rely on in the proof of G1 and its corollary are the metamathematical properties 
of gT. Thus, even if the Gödelian argument had been valid formally, it would not 
show that arithmetical competence is non-computational. 

The reason that the Gödelian anti-mechanist appealed to arithmetical compe-
tence is that Gödel’s theorem is ostensibly about arithmetic. Looked at more 
carefully, however, we see that the connection between G1 and arithmetic is not 
that straightforward. Technically, the role that arithmetic plays in G1 is the fact 
that arithmetical theories represent, in the proof-theoretic sense, all recursive 
relations between numbers.13 Given the well-known connections between recur-
sive relations on numbers and computable relations on strings, this means that 
arithmetical theories can represent computable relations between strings. This is 
the point at which G1, in its classic formulation, makes contact with the notion of 
computability. The diagonalization function and the provability predicate are, 
respectively, a computable and a c.e. relation on strings, whence our Lemmas 1 and 
2 in the proof-sketch above.  

 
13 In what follows I’ll be loose and say “represent recursive (computable) relations” as 

shorthand for “strongly/weakly represent recursive/r.e (computable/c.e.) relations”.  
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Once we highlight this, however, it becomes clear that the coding function 
and the use of recursive relations are just a detour. Theories are sets of strings, 
and provability in a theory T (for us, the predicate “x ∈ T”) is a property of 
strings. In order to state Lemma 1 in the above proof (repeated here for conven-
ience), we appealed to the coding function c(n) on one side of the equivalence, 
and to the predicate PRV on the other:  

(3) c(n) ∈ T ⇔ ⸢PRV(n�)⸣ ∈ T 

Neither the coding function, nor the possibility of mentioning predicates, are 
part of Gödel’s formalized arithmetical object-theory. This is clear from the fact 
that the language of the object-theory doesn’t, in the general case, contain refer-
ence to strings. Both the coding function and the term referring to the provability 
predicate are defined in Gödel’s unformalized metalanguage. If we were to for-
malize the metalanguage, we would have to include strings in its domain, along-
side numbers. However, once we can refer to strings, all reference to numbers 
can be dropped. The syntactic concepts, in particular the provability predicate, 
are originally defined in terms of strings.14 The form of Lemma 1 is simpler 
when stated for theories T that contain string theory instead of number theory: 

Lemma 1* (Reflection): There is a unary formula PRV*(x) ∈ LT, such that for 
every sentence s ∈ LT,  

s ∈ T ⇔⸢PRV* (s̅)⸣ ∈ T.15 

Lemma 1* is a product of the fact that PRV*(x) is a c.e. relation, and that 
string theories proof-theoretically represent such relations. Since theories are 
understood as sets of strings, reference to strings is anyway unavoidable, unlike 
reference to numbers and, hence, Lemma 1* is a more basic statement of the fact 
expressed by the original Lemma 1 above. The references to coding and to recur-
sive relations in Lemma 1 are just a detour through arithmetic that allows us to 

 
14 Gödel himself, in the original paper (Gödel, 1953), refers to the more or less string-

theoretic syntactic definitions in Łukasiewicz and Tarski (Tarski, 1956). Łukasiewicz and 
Tarski define the syntactical notions using set-closure definitions, which are the explicit 
higher-order counterparts of recursive definitions. Being higher-order, they are not com-
putable. One of Gödel’s crucial contributions in (1953) was to show how sequences can 
be coded into single numbers, allowing him to give, in the case of the syntactic notions, 
explicit counterparts of recursive definitions without going higher-order. The detour 
through arithmetic was thus necessary for Gödel at the time, in order to be able to code 
sequences. However, string sequences too can be coded in terms of single strings, though 
this technique was probably not available to Gödel. See (Quine, 1936; 1944) for work in 
string theory (concerned with elementary, not computable, relations). See (Grzegorczyk, 
2005) for a development of Gödel’s results in a string-theoretic setting.  

15 ⸢s̅⸣ is the name of the string s.  
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apply Lemma 1* to a special case. In fact, G1 can be applied to any theory which 
represents c.e. relations, whether it deals with strings, numbers, sets or what have 
you. The corresponding form of the theorem is:  

Theorem G1*: If T is a consistent formalized theory that represents computable 
relations, then we can compute from T a sentence gT  such that gT, ⸢¬gT⸣ ∉ T. 

The upshot is that arithmetic is not part of the essential subject matter of 
G1 at all. G1 is a metamathematical theorem about formal proof systems in gen-
eral, if they capture computable relations.  

This suggests that arithmetical competence is the wrong cognitive phenome-
non to use in a Gödelian anti-mechanist argument. It is simply not the right setup 
for an application of G1. We might conjecture some other kind of competence, 
more in tune with the essential content of G1; but whereas a natural arithmetical 
competence is somehow easy and smooth to postulate, there is no obvious natu-
ral cognitive competence that corresponds to the subject matter of G1 in the way 
required. Should we say we have a natural metamathematical competence? Or 
some general epistemological faculty? It is not clear that any reasonable form of 
mechanism has to be committed to this. 

The upshot of the foregoing is that, even if the formal objection of the previ-
ous section did not apply (per impossibile), still the argument would not achieve 
its purpose, since it does not show that our arithmetical competence is non-c.e. 
One comment before we move on. From the foregoing discussion one might get 
the impression that Gödel’s theorem is only accidentally connected with arithme-
tic, and that it is only a historical accident that the theorem has been discovered 
through its application to arithmetic as a special case. Inasmuch as Gödel’s theo-
rem is ultimately about theories, not about numbers, and theories are made up of 
strings, this impression is correct. However, the connection between arithmetic 
and string-theories is not just a historical accident. As we know, both the theories 
and the structures of strings and of numbers are very similar, and any result about 
the one can be expressed in terms of the other.16 Indeed, numbers have a philo-
sophical advantage over strings in that they constitute a single natural domain, 
whereas when considering strings concretely we have to fix a particular alphabet 
arbitrarily. We can say that the domain of numbers distills the invariant element 
in string domains. That would be a sense in which G1 is about arithmetic after all. 
In any case, it is not immediately about arithmetic, and making the connection 
clear and explicit will require further work.  

2.5. Against Competence 

The second philosophical problem with the Gödelian argument is with the no-
tion of competence. In particular, the idealization performed in generating the 

 
16 See (Corcoran, Frank, & Maloney, 1974; Svejdar, 2008) for more on this.  
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phenomenon SC from the set of actually uttered arithmetical sentences  (see condi-
tion (b) above) is not legitimate. 

Recall, following Chomsky, we have allowed the yield of cognitive phenom-
ena, our “competences”, to be extrapolated and pruned from data sets. But not 
every extrapolation and pruning would work. We cannot, for example, idealize 
away from the phenomenon a pattern of usage found in the data just because it 
doesn’t conform to the theory we are inclined to accept. Nor can we idealize into 
the phenomenon something that didn’t exist in the data set, unless we can be 
convinced that it reflects something in our cognition, and that some factor related 
to performance blocks it from being manifested in the data set. For example, we 
cannot condition our idealization on some decidedly external factor, like the set 
B from §2.1.  

With regard to the Gödelian argument, the question is whether the finite and 
inconsistent set of humanly asserted arithmetical sentences, the arithmetical data 
set, can legitimately be idealized into an infinite consistent set. The analogy with 
Chomskyan grammatical competence is misleading. Granted, Chomsky some-
times speaks of grammatical competence in terms of (tacit) grammatical 
knowledge, and in our case too we speak of arithmetical knowledge. But there is 
an important sense in which grammar doesn’t behave like knowledge at all. 
Knowledge, as usually understood, describes a belief that could have been false, 
and happens to be true. For example, if I know that 2 + 2 = 4, this implies that 
I could have falsely believed that 2 + 2 > 4. And my belief counts as knowledge 
partly because, in point of fact, 2 + 2 = 4 is the case. Nothing corresponds to this 
in grammatical competence. There is no external domain of independent facts to 
which grammatical knowledge needs to correspond. No one is ever mistaken 
with respect to their tacit beliefs about grammar. It makes no sense to say that the 
sentence: 

(4) John is very, very tall, 

is both ungrammatical (for someone) and generated by that person's grammar. 
There is no external norm against which “knowledge” of language can be as-
sessed.  

Compare this now to the case of arithmetic, and to the idealization of arith-
metical competence. The kind of knowledge that arithmetical competence is 
supposed to furnish its bearer with is genuine knowledge, one that refers to an 
independent reality. Unlike in the case of tacit grammatical knowledge, there is 
a sense in which we can say that we could have been wrong, that our arithmetical 
competence could have yielded 2 + 2 > 4, in contradiction to actual fact. In 
arithmetic, there is, unlike in grammar, an external standard to which knowledge 
is compared.  

This, I submit, makes the idealization of linguistic competence, relied on in 
the Gödelian argument above, illegitimate. If, in constructing a phenomenon, we 
base ourselves on something we know is external to the mind, like the set B of 
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§2.1, then the result cannot be counted a natural human cognitive competence, 
and mechanism about the mind makes no pronouncement about it. The mind 
might be thoroughly computational in the sense that the belief system of an indi-
vidual is c.e., and yet the set of beliefs which constitute knowledge depends on 
factors external to the computational description.  

This problem holds especially clearly if the assumption is that the arithmeti-
cal faculty is s o u n d  (not just consistent), and arguably this is the assumption 
that the anti-mechanist needs. But even if we only assume consistency, there is 
still here a reliance on an external standard, this time the truth of logical sentenc-
es. The issue is simply transferred to the question of logical competence, and 
here it is again soundness that is at stake.  

To sum up, the Gödelian argument is mistaken in its assumption that we can 
treat arithmetical competence as having a consistent yield. This was one of the 
main premises of the argument, and so the argument fails.  

2.6. The Tarskian Argument 

In this section we have reviewed the Gödelian anti-mechanist argument and 
found, not only that it contains a formal fallacy, but also that its basic premise, 
the juxtaposition of human arithmetical competence with formalized systems, is 
deeply misguided. To conclude the paper, let me briefly sketch an anti-mechanist 
argument that I think has better prospects. This argument is based on Tarski’s 
indefinability theorem, so it is also a kind of diagonal argument. Let’s review, 
first, the theorem and its proof. Say that a language M, expressing the truth pred-
icate for a language L, is L’s metalanguage. L is then the object-language. A 
language is semantically closed if it is its own metalanguage, L = M. 

Theorem T1: No language is semantically closed. 

Premise 1 (Reflection, Convention T): If TRUE(x) is a truth predicate for L in a 
metalanguage M, then for every s ∈ SL, the following sentence holds: 

⸢TRUE(s̅) ↔ tr(s)⸣, 

where s̅ is the M name of s, and tr(s) is the M translation of s.  

Premise 2: If L = M, then there is a sentence k ∈ SL, such that the following 
sentence holds: 

⸢TRUE(k�) ↔ ¬k⸣. 

From the two premises (and the fact that ⸢k ↔ tr(k)⸣ when L = M), we the follow-
ing for the case that L = M :  
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(5) ⸢k ↔ ¬k⸣. 

By reductio, the theorem follows.  
The Tarskian anti-mechanist argument has the following premises. First, 

though Tarski’s own concern was with formalized languages, today, mainly fol-
lowing Davidson, one often uses the general structure of Tarski’s theories in the 
other direction, i.e. assuming truth to be understood and understanding the truth-
conditional statements as providing a semantics for the language under consider-
ation. We apply this approach to the semantics of the language of thought 
L (Fodor & Pylyshyn, 2014). The second premise of the argument is that the 
language of thought L can express any scientific theory. This is forthcoming if 
we accept that scientists cognize the theories that they put forth, and, therefore, 
that their language of thought should be able to express them. The third and final 
premise is that a full mechanistic theory of the mind needs to contain a semantic 
theory for L. For if it doesn’t, then it can’t with justice be seen as giving the 
content of the mental states of human subjects, and the characteristic property of 
the mind is its ability to entertain contents. However, together the three assump-
tions make L semantically closed, and this is impossible by theorem T1. The 
consequence is that no full mechanistic theory of the mind is forthcoming.  
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S U M M A R Y : In his 1951 Gibbs Memorial Lecture, Kurt Gödel put forth his famous dis-
junction that either the power of the mind outstrips that of any machine or there are absolute-
ly unsolvable problems. The view that there are no absolutely unsolvable problems is opti-
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2013—Verificationism Then and Now, Per Martin-Löf presents an illustrative argument for 
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notions. In the vein of Feferman’s analysis, one might be object to Martin-Löf’s argument 
for either its reliance upon constructivist (as opposed to classical) considerations, or for its 
appeal to non-unproblematically mathematical premises. We argue that both of these re-
sponses fall short. On one hand, to be critical of Martin-Löf’s reasoning for its constructive-
ness is to reject what would otherwise be a scientific advance on the basis of the assumption 
of constructivism’s falsehood or implausibility, which is of course uncharitable at best. On 
the other hand, to object to the argument for its use of non-unproblematically mathematical 
premises is to assume that there is some philosophically neutral mathematics, which is im-
plausible. Martin-Löf’s argument relies upon his third law, the claim that from the impossi-
bility of a proof of a proposition we can construct a proof of its negation. We close with 
a discussion of some ways in which this claim can be criticized from the constructive point 
of view. Specifically, we contend that Martin-Löf’s third law is incompatible with what has 
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Optimism and Pessimism  

In his 1951 Gibbs Memorial Lecture Some Basic Theorems on the Foundations 
of Mathematics and Their Implications, Kurt Gödel argued for his famous disjunc-
tion: “Either […] the human mind (even within the realm of pure mathematics) 
infinitely surpasses the powers of any finite machine, or else there exist absolutely 
unsolvable diophantine problems of the type specified” (Gödel, 1951, p. 310). 

While both disjuncts have received much attention (see, for example, Lucas, 
1961; Penrose, 1989; 1994; Horsten & Welch, 2016), the former has been the 
primary focus of philosophical discussion surrounding Gödel’s Disjunction. In 
this article, we focus on the latter. The view that there are no absolutely unsolva-
ble diophantine problems is optimism. The alternative thesis is pessimism, that 
there exist absolutely unsolvable diophantine problems.  

What does Gödel have in mind by an absolutely unsolvable diophantine 
problem? A diophantine equation is one in which only integer solutions and 
coefficients are used. A diophantine problem is the question of whether a given 
diophantine equation has a solution. Notably, one can verify if a given assign-
ment to the variables is a solution in a finite number of steps. The question of 
whether or not a given equation has a solution we then understand as the disjunc-
tion of the claim that there is a solution to that equation and its negation. This, in 
turn, is the traditional way of understanding the law of excluded middle as the 
formalization of optimism, which we see in L.E.J. Brouwer, for example 
(Brouwer, 1908, p. 109). 

The question of whether or not there exist absolutely unsolvable problems 
has its proximal roots in 19th century philosophy of science. Emil du Bois-
Reymond famously closed his 1872 Berlin address, as translated by Andrea 
Reichenberger: “As regards the riddle of the nature of matter and force and how 
they are able to think, we must resign ourselves once and for all to the far more 
difficult verdict: ‘Ignorabimus’” (Reichenberger, 2019, p. 53). 

du Bois-Reymond’s view here is that there are portions of reality that are in-
accessible to us. While these are not the sort of mathematical problems we have 
been discussing, the view here is that there are some metaphorical “corners” that 
we will never be able to see around.  

Opposite the pessimism of du Bois-Reymond we find the optimism of David 
Hilbert. In his 1900 address to the International Congress of Mathematicians in 
Paris, he claimed: 

This conviction of the solvability of every mathematical problem is a powerful in-
centive to the worker. We hear within us the perpetual call: There is the problem. 
Seek its solution. You can find it by pure reason, for in mathematics there is no 
‘ignorabimus’. (1902, p. 445) 

On this view, the mathematical “worker” is motivated by the knowledge that 
their task is not some thankless Sisyphean task but rather one they can actually 
complete. 
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Martin-Löf’s Constructive Optimism 

In his 1995 and, revised in 2013, Verificationism Then and Now, Per Martin-
Löf presents a case in favor of optimism. Making use of several laws for which 
he provides philosophical justification, he argues: 

[T]here are no absolutely undecidable propositions. And why does this follow 
from [the third law, the claim that if a proposition cannot be known to be true then 
it can be known to be false]? Well, suppose that we had a proposition which could 
neither be known to be true nor be known to be false. Then, in particular, it cannot 
be known to be true, so, by the third law, it can instead be known to be false. But 
that contradicts the assumption that the proposition could not be known to be false 
either. (2013, pp. 12–13) 

Imagine that a given proposition is absolutely undecidable, which is just to 
say that the associated problem is unsolvable in the sense we used above. In 
terms of knowledge, given that it is in fact absolutely unsolvable, this means that 
it cannot be known to be true and it cannot be known to be false. But, if a propo-
sition cannot be known to be true, then, Martin-Löf argues, it can be known to be 
false. This is in virtue of his third law. The thought is that if it is impossible that 
a is a proof of A for any a, then we can conclude a refutation of A. But, if we 
have a refutation of the proposition in question, then the problem is not absolute-
ly unsolvable, which contradicts our original assumption. Therefore, there are no 
absolutely undecidable propositions. Call the above articulation of optimism 
constructive optimism.  

There is a clear step worth examining in more detail, that from the impossi-
bility of knowing the truth of the proposition we can move to the possibility of 
knowledge of its falsehood. This, however, will be the focus of the second half of 
this paper. Let us first turn to a different sort of objection to Martin-Löf’s argu-
ment. Solomon Feferman, in “Are there Absolutely Unsolvable Problems? Gö-
del’s Dichotomy”, comments: 

Indeed, Per Martin-Löf has proved exactly that, in the form: T h e r e  a r e  n o  
p r o p o s i t i o n s  w h i c h  c a n  n e i t h e r  b e  k n o w n  t o  b e  t r u e  n o r  
k n o w n  t o  b e  f a l s e  […]. However, this is established on the basis of the 
constructive explanation of the notions of “proposition”, “true”, “false”, and “can 
be known”. (2006, p. 147) 

Feferman continues: 

For the non-constructive mathematician, Martin-Löf’s result would be translated 
roughly as: “No propositions can be produced of which it can be shown that they 
can neither be proved constructively nor disproved constructively”. For the non-
constructivist this would seem to leave open the possibility that there are absolute-
ly unsolvable problems A “out there”, but we cannot p r o d u c e  ones of which we 
can s h o w  that they are unsolvable. (2006, p. 147) 
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Feferman’s point here is that while Martin-Löf’s argument succeeds at establish-
ing optimism for the constructivist, it falls short of establishing optimism tout 
court. He goes on to present examples of problems that are “absolutely unsolva-
ble from the standpoint of practice” (Feferman, 2006, p. 149). 

Feferman argues that the non-constructive mathematician can evade Martin-
Löf’s target conclusion of optimism by reinterpreting it in a way that fits within 
a non-constructive worldview. If pessimism or optimism is to be established tout 
court, the reasoning would go, it must be done so independent of a constructive 
philosophy of mathematics. This can be interpreted in two ways, however. The 
first emphasizes the constructivist portion of Martin-Löf’s reasoning. The second 
emphasizes the philosophical, where this is understood as something non-
mathematically neutral, content of Martin-Löf’s argument. For the remainder of 
this section, we discuss the first interpretation. The second interpretation is the 
focus of the following section.  

The first interpretation emphasizes that Martin-Löf employs constructive un-
derstandings of key notions, and that these admit of non-constructive interpreta-
tions. We point out only that just because an unorthodox thesis can be given an 
interpretation that coheres with the orthodoxy does not mean that it should. Even 
the strictest Quinian should admit that in some cases genuine development first 
appears as unorthodox. Moreover, it is clear that in some situations translation 
from the unorthodox is responsible for the loss of relevant content. This is argua-
bly what happens in the non-constructive interpretation of constructivism. In 
interpreting intuitionistic logic in S4, we substitute a constructive understanding 
of truth for the notion of a proof of something that holds classically. While doing 
so provides a way of explaining intuitionism to the classical modal logician, it 
does so at the expense of what is arguably the most foundational notion within 
intuitionism. In this case also, the practice of recasting constructive contributions 
as mere features within a broader classical panorama threatens to make unavaila-
ble what might otherwise be seen as a genuine scientific advance in Martin-Löf’s 
constructive optimism.  

The Axiomatic Method 

Based on our discussion of Martin-Löf’s argument for constructive optimism 
and Feferman’s response, the question arises: can optimism or pessimism be 
established on purely mathematical grounds? That is, can we decide this question 
in some manner that is not seized upon by philosophy?  

But what would it be to have such an understanding of mathematics? Perhaps 
examining a distinction on uses of axiomatics in Gödel can help us to get clear 
on whether or not it is plausible that there is a way to thus separate off the phi-
losophy. Also in his 1951 lecture, Gödel distinguishes between the proper and 
merely hypothetico-duductive uses of axiomatics. He claims: 
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[The inexhaustibility of mathematics] is encountered in its simplest form when the 
axiomatic method is applied, not to some hypothetico-deductive system such as 
geometry (where the mathematician can assert only the conditional truth of the 
theorems), but to mathematics proper, that is, to the body of those mathematical 
propositions which hold in an absolute sense, without any further hypothesis […].  

Of course, the task of axiomatizing mathematics proper differs from the usual 
conception of axiomatics insofar as the axioms are not arbitrary, but must be correct 
mathematical propositions, and moreover, evident without proof. (1995, p. 305) 

As Gödel emphasizes to his audience, of course there are “widely divergent” 
ways of saying just what counts as mathematics proper. One suggestion might be 
to use this distinction to try to find a sense of mathematics not seized upon by 
philosophy. 

What happens when we consider proper mathematics axiomatically? To do so 
is to limit the application of the axiomatic method to a specific domain, setting 
aside the specific sort of Platonist view that any consistent system has applica-
tion, as in (Balaguer, 1998). We see this, for example, in the emphasis on conten-
tual reasoning in Sergei Artemov’s Provability of Consistency (2019), where 
considerations of meaning filter out gerrymandered uses of formalism. This, of 
course, is motivated by a philosophy of mathematics and clearly is not philo-
sophically neutral in a general sense. 

Let us instead consider the hypothetico-deductive use of axiomatics. By this, 
after all, Gödel meant reasoning conditionally with axioms irrespective of how 
they relate to mathematical reality, however that is explained. If the philosophi-
cally neutral way of understanding mathematics corresponds to Gödel’s hypo-
thetico-deductive use of axiomatics, then this suggests an account of absolute 
provability as provable in a given hypothetico-deductive system. 

There are two objections to this proposal. The first is that it is easy to see that 
absolute provability as understood in this way would trivialize the notion. In his 
Inexhaustibility: A Non-Exhaustive Treatment (2004), Torkel Franzén makes 
exactly this point: 

That a formalization of a mathematical statement is provable in a formal theory 
does not itself imply that the statement can be p r o v e d  in the ordinary mathemat-
ical sense, that is, that an argument establishing the statement as a mathematical 
theorem can be given. As an extreme instance, any statement is provable in a theo-
ry in which it is taken as an axiom, but this tells us nothing about whether or not 
the statement can be proved in the ordinary sense. (p. 8) 

Anything that can be taken as an axiom is provable in some hypothetico-
deductive axiomatic system. Hence if we take absolute provability to be prova-
bility in some hypothetico-deductive system, then this trivializes the notion of 
absolute provability. Second, such a thesis on absolute provability would not 
give us an account of what counts as mathematical in a way that is not en-
croached upon by philosophy. To think that what is expressible in hypothetico-
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deductive formal systems just is this mathematical core itself is of course not 
philosophically neutral by any means.  

There are ways of amending the proposal that absolute provability just is hy-
pothetic-deductive provability. Perhaps we want to consider provability to the 
standards of a mathematical community (Franzén, 2004), demand that the axi-
oms be objects of knowledge or possible objects of knowledge given certain 
stipulations (Williamson, 2016, pp. 247–248), that axioms be “deemed plausible” 
(Clarke-Doane, 2013, p. 469). In any such case though it is clear that insofar as 
we are appeal to a ground for a given circumscription of proper mathematics that 
we appeal to philosophical considerations.  

While we do not claim that using Gödel’s discussion of the axiomatic method 
is the only way of attempting to find a notion of mathematics not encroached 
upon by philosophy, the prospects for something else in this vein look dim. The 
criticism that Martin-Löf’s argument is objectionable insofar as it makes use of 
philosophical notions can seemingly be leveled thus against any account in the 
literature. For this reason, it seems like it would be misguided. A paragraph from 
Saul Kripke’s Is there a Problem about Substitutional Quantification? (1976) 
makes such a point, though in a different context. He writes: 

Logical investigations can obviously be a useful tool for philosophy. They must, 
however, be informed by a sensitivity to the philosophical significance of the for-
malism and by a generous admixture of common sense, as well as a thorough un-
derstanding both of the basic concepts and of the technical details of the formal 
material used. It should not be supposed that the formalism can grind out philo-
sophical results in a manner beyond the capacity of ordinary philosophical reason-
ing. There is no mathematical substitute for philosophy. (1976, p. 416) 

An answer to the question of pessimism or optimism does not seem to be the sort 
of thing that can be achieved by recourse to mathematics that is not seized upon 
in some sense by philosophy. Instead, the answer to this question is a conse-
quence of an account of absolute provability, which is itself a thoroughly philo-
sophical undertaking. Martin-Löf’s reasoning cannot be faulted for essentially 
attempting to do just this.  

The Third Law 

We suggested that two sorts of responses to Martin-Löf’s argument were un-
satisfying. The first was that his argument relied upon constructive notions, 
which admit of a non-constructive interpretation. This, we argued, is to overlook 
the revolutionary character of constructivism, and in this way was less of an 
objection than a dismissal. The second was that Martin-Löf’s argument relied 
upon non-mathematical groundwork. We argued, however, that we should be 
skeptical about the possibility of finding an account of mathematics that is not 
somehow permeated by philosophy. Setting the above discussion aside, when we 
introduced Martin-Löf’s argument we did flag a premise for later discussion. 
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This was Martin-Löf’s third law, that from the fact that it was not possible to 
know a given proposition, we can conclude positive evidence for the negation of 
that proposition.  

How is this justified? Take a given proposition A. By a:A, we mean that a is 
a proof of A. By the claim that A cannot be known, Martin-Löf understands that 
“the situation a:A cannot arise, for any a” (Martin-Löf, 2013, pp. 11, 13). He 
continues: 

Now, from this negative piece of information, I have to get something positive, 
namely, I have to construct a refutation, and a refutation of A is a hypothetical 
proof of [falsum] from A, or, equivalently, a function which takes a proof of A into 
a proof of [falsum]. The argument is this: we simply introduce a hypothetical 
proof of [falsum] from A, call it R. (2013, p. 13) 

The thought is that we have negative information that it is impossible that for 
any a, it holds that a:A. We get the positive refutation of A by constructing 
a hypothetical proof of falsum from A.  

But what does it mean to say that it is impossible to know that A, or alterna-
tively, that the situation a:A cannot occur for any a? Martin-Löf is clear about 
what he means by possibility. He writes: “[By] the notion of possibility, I have 
nothing more to say, except that it is the notion of logical possibility, or possibil-
ity in principle, as opposed to real or practical possibility, which takes resources 
and so on into account” (2013, p. 9). Since Martin-Löf is here discussing appli-
cations of introduction and elimination rules, it seems clear that his “possibility 
in principle” or “logical possibility” will have to do with what can be reached by 
transformations of this sort. 

A first objection is that this view assumes that the rules articulated by some 
specific system express what it really is for something to be possible in principle. 
After all, if our set of rules is somehow suspect, it would be strange to assume 
they were even in the position to lead us securely to a mathematical insight. But 
perhaps we can make this point sharper. In his Science and Method (2012), Henri 
Poincaré discusses the dynamic nature of the concept of solution: 

Many times already men have thought they had solved all the problems, or at least 
that they had made an inventory of all that admit of solution. And then the mean-
ing of the word solution has been extended; the insoluble problems have become 
the most interesting of all, and other problems hitherto undreamt of have present-
ed themselves. (2012, p. 370) 

The thought here is that the horizon of what seems possible at a given period 
is consistently surpassed, and that it is in these instances that we see genuinely 
interesting development. After this, we revise what we thought was possible. 

There is perhaps a stronger objection, though, to Martin-Löf’s third law. We 
can concede that the specific laws chosen of the system in question actually do 
characterize logical possibility in the relevant sense. Nonetheless, the third law 
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involves the passage from a logical insight to a mathematical one insofar as we 
go from a fact about logical impossibility to a positive refutation of a claim. 
There is something non-constructive about this. To get clear on this, we look 
again to the thought of Poincaré. Michael Detlefsen dubs “Poincaré’s Principle 
of Epistemic Conservation” the thesis that “there can be no increase in genuine 
knowledge of a specific mathematical subject without an underlying increase in 
subject-specific insight into (i.e. intuitional grasp of) that subject” (Detlefsen, 
1990, pp. 501–502). While logical reasoning is characteristically general, math-
ematical understanding arguably involves subject-specific insight. But Martin-
Löf’s third law, insofar as it relies on a notion of logical impossibility, takes us 
from a general claim about what can be done, in this case with the application of 
introduction and elimination rules, to the existence of a positive mathematical 
insight. While perhaps in some cases the realization that a proof of some proposi-
tion is logically impossible will lead to a specific proof of the refutation of that 
claim (consider the case in which the proposition in question is one about the 
capabilities of the rules that characterize this notion of possibility), to assume 
that this holds generally is far stronger. Indeed, that there could be a general 
recipe for getting mathematical insights from logical ones is exactly the sort of 
thing that contradicts Poincaré’s Principle. 

Perhaps we can fix a notion of possibility in a different way. For example, we 
might consider what an actual agent can do or what an idealized agent can do. 
For the remainder of this section, we argue that in both cases we need not en-
dorse the third law. The first sort of case suggests considering empirical agents 
who fall short based on lack of resources or similar circumstances. While this is 
not the sort of agent Martin-Löf has in mind when discussing possibility, it is 
worth examining nonetheless. In terms of possible worlds, this is discussed in the 
context of the condition that if A holds in all worlds accessible from a given 
world in a Kripke model, then at that world A is known, in Sergei Artemov’s 
Knowing the Model (2016, p. 4). Let A be some arithmetical truth unknown to 
a particular individual. Assume that they have seen no proofs of A. It would seem 
strange for that individual to conclude the negation of A from the agent’s limited 
information. Alternatively, consider a B that is refutable. The agent, of course, 
has seen no proof of B. Even if they correctly conclude the negation of B, their 
reasoning is too hasty; something is missed when they move from a claim about 
their own abilities to an actual refutation of B. It thus seems that if one wants to 
understand the relevant notion of possibility invoked in the third law as “possi-
bility for an empirical agent”, they need not endorse the third law.  

The above has to do with the sorts of mistakes empirical agents are prone to 
make. What if we were to idealize away from these concerns? Even if we con-
sider the subject divorced from such empirical limitations, it would not follow 
that the agent would be fully aware of their own capabilities in the sense required 
for a version of the third law. For example, in his On the Fourfold Root of the 
Principle of Sufficient Reason (1997), Arthur Schopenhauer argues: 
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[T]he subject knows itself only as a w i l l e r , not as a k n o w e r . For the ego that 
represents thus the subject of knowing, can itself never become representation or 
object, since, as the necessary correlative of all representations, it is their condi-
tion. (1997, p. 208) 

Schopenhauer’s subject is clearly not a limited empirical subject. Nonetheless, 
the subject inasmuch as it is a subject cannot know itself, because to know itself 
would be to treat itself as an object qua object of knowledge. The subject is ex-
plicitly ignorant of itself as a knower and must be so for the above reason. Again, 
it would seem strange from the subject to conclude from the impossibility of 
knowing that it is a knower to the conclusion that it is not a knower. Here we see 
then that even when a subject is considered in a way that has been idealized 
away from empirical limitations, the third law need not be accepted. 

Conclusions 

In this paper we discussed Martin-Löf’s argument for constructive optimism. 
Therein, he argues for a form of optimism based a view of absolute provability 
as knowability. We presented criticisms of some objections to Martin-Löf’s ar-
gument. Then, we put forth a novel criticism of Martin-Löf’s argument based on 
his third law. His third law is a general rule describing the passage from a point 
about the impossibility of a proof, where this is understood in terms of logical 
possibility, to the positive existence of a refutation. This, we argued, ran afoul of 
Poincaré’s Principle. A possible emendation of the third law was to interpret the 
notion of possibility therein in a way that does not appeal to logical possibility. 
An intuitive thought, especially in the constructivist context, is to think of possi-
bility in terms of the abilities of agents. But even in this case, we continued, the 
third law need not hold. While the reasoning against the third law was straight-
forward when the agent under consideration has the limitations of an empirical 
agent, the Schopenhauerian subject provided an example of a case in which there 
are important reasons that even an idealized subject’s abilities might not be com-
pletely transparent to them. In both instances, we observe failure of the third law 
as a general principle of reasoning. 
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1. Introduction 

The Lucas-Penrose anti-mechanist argument against computability of the 
human mind in a nutshell states the following. According to Gödel’s incomplete-
ness theorems, a (sufficiently rich) consistent theory that can prove its own con-
sistency does not exist. However, mathematical practice shows that Gödel-type 
results are commonly proven by human mathematicians. In consequence, says 
the argument, human mathematicians are not describable as formal proof sys-
tems, nor are they reducible to performing algorithms. 

In (2020), Krajewski criticises the Lucas-Penrose argument by claiming that 
Gödel’s incompleteness theorems standing alone (as it is in the Lucas-Penrose 
case) are not sufficient for formulating the claim that the human mind is non-
computational. The anti-mechanist argument based on Gödel’s incompleteness 
theorems needs to be enriched by an extra-formal assumption. For instance, an 
assumption that the theory constituting the human mind is consistent. 

In order to provide an additional context to his investigations, Krajewski 
(2020), highlights the analogy between the claim that Gödel’s incompleteness 
theorems imply the non-computational nature of the human mind, and the claim 
that “we [humans] cannot give a definition of the natural numbers as we under-
stand them” (p. 49). The analogy goes as follows: in order to make a successful 
anti-mechanist argument based on Gödel’s incompleteness theorems, one needs 
to assume—in addition to the formal counterpart—that the theory constituting 
the human mind is consistent. The fact that Gödel’s argument can be iterated for 
increasingly rich theories is not sufficient for formulation of the anti-mechanist 
argument. The possibility to iterate increasingly rich theories, which all have 
a Gödel’s sentence, and none of which proves its own consistency, is a formal 
process and as such can be executed by purely formal means. Thus, it does not 
say anything about computability or non-computability of the human mind. In 
order to be able to formulate the anti-mechanist argument, one needs to as-
sume—for instance—that the human mind is consistent. Analogously, each defi-
nition of a natural number ends up in a vicious circle of definitions, or—as Kra-
jewski says 

[O]ur axioms [both the first-order (PA1) and the second-order Peano Arithmetic 
(PA2)] define numbers only when taken together with some background 
knowledge or apparatus that makes possible our intuitive grasp of numbers [such 
as the intuition that the first-order Peano’s Arithmetic is complete or the intuition 
that there exists the set of all natural numbers being referred to in the background 
of the second-order Peano’s Arithmetic]. (2020, p. 49) 

In both cases, an immediate, but incorrect according to Krajewski, conclusion 
could be that “no computer can be taught our concept of a number” and that in 
consequence “we [humans] are better than any machine” (2020, p. 49). 

In this paper, I observe that this analogy can be pushed further to a circular 
reasoning. In both cases, making an extra-formal assumption leads to a vicious 
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circle because one assumes consistency of one’s mind while proving that the 
human mind outperforms machines, or one assumes that the concept of a set of 
natural numbers can be intuitively apprehended while defining natural numbers. 
Studies show that the method of conceptual analysis is particularly sensitive to 
falling into circular reasoning. The circularity related to the concept of natural 
number has been investigated in discussions about c o m p u t a t i o n a l  s t r u c -
t u r a l i s m  (Halbach & Horsten, 2005; Quinon & Zdanowski, 2007). Computa-
tional structuralism is a position, according to which the concept of natural num-
ber and the concept of computation are closely related. More precisely, according 
to this position, an adequate account of natural numbers treats them as objects 
that can be used for computations. After a brief overview of the anti-mechanist 
argument and its criticism in Section 1, in Section 2 I will explain inter-relation 
and inter-definability between the concept of natural number and the concept of 
computation. In Section 3, I describe how the two concepts fall into a vicious 
circle of definition individually, and also while used in definition of one another. 

Rescorla (2007) identifies problems with conceptual analysis related to the 
concept of computation, Quinon (2018) suggests that there is no fully satisfacto-
ry way out from vicious circles in definitions within conceptual analysis. Ap-
proaching the concept of computation and the concept of natural number from 
another methodological perspective, seems to be more fruitful. For instance, an 
interesting insight can be gained thanks to c o n c e p t u a l  e n g i n e e r i n g . Both 
concepts have a form of what in the area of conceptual engineering is called 
“conceptual fixed point”. A conceptual fixed point is an idea issued from the 
conceptual engineering of moral concepts, where it is claimed that some basic 
moral concepts should not be engineered, but should always be understood in the 
most objective way (Eklund, 2015). Section 4 is devoted to the presentation of 
the method of conceptual engineering and the adequacy of conceptual fixed 
points for the concept of computation and the concept of natural number. As 
suggested by the phenomenon of conceptual fixed points, the only way out from 
these vicious circles consists in an arbitrary decision which is the intended mean-
ing of the given concept. 

In Section 5, I extend my methodological investigations into yet another 
method, and I discuss the advantages of thinking about formalisation of the con-
cept of computation in terms of Carnapian explications. It has been argued, for 
instance in (Quinon, 2019), that a move from an intuitive concept of computation, 
used in everyday life, to a scientific or formal concept as stated by the Church-
Turing thesis, follows the schema of a Carnapian explication. In Section 6, 
I extend the context of Carnapian explications of the temporary aspect. I realise 
that both, the concept of natural number and the concept of computation, have 
been evolving in such a way, that their core meanings were shifting. I propose 
a hypothesis that at least a part of the confusion regarding the specificity of the 
conceptual structure of the concept of computation contributes to the confusion 
regarding the nature of human reasoning and the human mind. In consequence, 
In consequence, I claim that—at least partially—the “feeling” that there are non-
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computational processes is due to the complexity of the conceptual structure of 
the concept of computation. 

In the final Section 7, I wrap up with the ways in which my observations re-
garding the concept of computation and the concept of natural number, could be 
used for understanding the reasons for which the anti-mechanist argument fails. 
I suggest a different reason from the one proposed by Krajewski, for which the 
extra-formal assumption prevents the anti-mechanist argument from success. 
Firstly, I claim that thanks to the method of Carnapian explications, it is highly 
possible to go from intuitive pre-scientific concept to a formal concept. Secondly, 
I observe that the extra-formal assumption after an arbitrary formalisation, leads 
to the vicious circle in reasoning. Therein lies the problem. 

2. The Lucas-Penrose Argument and Its Criticism 

In this section, I present a brief overview of various versions of the anti-
mechanist argument based on Gödel’s incompleteness theorems, and the ways in 
which those arguments have been criticised. In particular, I explicate Krajewski’s 
way of refuting the argument. In my overview, I prioritise the authors to who 
Krajewski refers to in his paper. 

The first of Gödel’s incompleteness theorem says that in every sufficiently 
rich1 consistent first-order theory2 there exist statements that are true3, but that 
cannot be proven within this theory. The second of Gödel’s incompleteness theo-
rem says that every sufficiently rich consistent first-order theory cannot prove its 
own consistency. 

According to the anti-mechanist argument based on Gödel's incompleteness 
theorems, since human mathematicians can fruitfully work with Gödel's incom-
pleteness theorems, that means those mathematicians use the resources from the 
outside of the theory (e.g., they are able to refer to the intended model of arith-
metic or recognize that the human mind is consistent). Thus, human mathemati-
cians outperform machines, because—unlike machines—they are able to include 
in their reasoning such external resources. 

The intuition that humans could prove theorems which machines could not 
has already been present in (Turing, 1950)4 and in (Post, 1941).5 One of the most 
famous voices exploring the anti-mechanist argument based on Gödel’s incom-
pleteness theorems against the computational theory of mind—next to Hofstadter 

 
1 By “sufficiently rich” one means that the formal system is able to express arithmetic 

of addition and multiplication. 
2 A formal system, or a theory, is a collection of axioms together with rules of inference. 
The importance of using first-order logic is because of the completeness of this logic. 
3 A statement is true, when it is satisfied in the intended model of the theory. 
4 As reported by Krajewski, Turing believed that even if a machine cannot prove as 

much as humans can, it is still worth constructing robots. 
5 As reported by Krajewski, Post believed that man cannot construct a machine which 

can do all the things he can. 
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(1979), Nagel and Newman (1958; 1961)—is Lucas (1961; also 1968; 1996), 
who presented a “mathematical proof” of man's superiority over a machine. 
Lucas extended the applicability of Gödel’s incompleteness theorems from for-
mal systems to human subjects. In his view, humans are subjects to the same 
formal limits as machines. However, as Lucas observes, human mathematicians 
can prove Gödel’s incompleteness theorem, which means, human mathematicians 
use extra-formal resources that enable them to perform such proofs. 

Lucas’ argument relies on the fact that Gödel’s theorem(s) is formulated in 
purely formal terms. As Lucas observes himself, this is what differentiates Gö-
del’s results from the liar paradox. The liar paradox, which states that “This 
statement is untrue”, is “viciously self-referential, and we do not know what the 
statement is, which is alleged to be untrue, until it has been made, and we cannot 
make it until we know what it is that is being alleged to be false” (Lucas, 1990, 
p. 2). Unlike the liar paradox, Gödel’s theorem is formulated within a full-
blooded system where it is clearly defined, which sentences are true and what 
does it mean to be provable. Lucas’ claims that the fact that a (idealised) human 
mind, even if it cannot prove Gödel’s theorem(s) for the given theory, can—
thanks to its additional non-mechanical skills—recognize this theorem as true in 
its system. In consequence, a human mind outperforms a machine. 

Penrose in (1989; 1994) extended Lucas’ reasoning of a positive claim re-
garding the extra-formal resources available to humans that enable them to con-
struct reasonings unavailable to machines. Penrose suggested that in the brain 
the physical basis of non-computable behavior exists, and he indicated quantum 
mechanics as a credible candidate. According to him quantum processes might 
explain not only reasoning of human mathematicians, but also consciousness. 

A constructive criticism of the Lucas-Penrose style argument was formulated 
by Putnam (1960), Benacerraf (1967), Wang (1974), then later also by Boolos 
(1995) and Shapiro (1998). Penrose’s version got criticised in particular by Fe-
ferman (1995), Putnam (1995) and Shapiro (2003). Krajewski claims that the 
ways of criticizing the Lucas-Penrose argument follow one of the two main lines 
(2020, pp. 5–6): 

• The mind is a machine and it is consistent, but it cannot prove Gödel’s sen-
tence by itself.6 

• The mind is a machine, but it is inconsistent, and Gödelian limitations do 
not apply to it. 

 
6 This line of argument has already come from Gödel, who distinguished subjective 

arithmetic that humans can do, and who believed that in objective mathematics full 
arithmetic is a consistent theory. He also believed that the concept of computation can be 
defined without referring to any domain of computation; these claims amount to Gödelian 
platonism (Gödel, *1951). 
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Krajewski (2020) refutes the Lucas-Putnam argument in yet another way: he 
observes that iterations of increasingly strong theories proving the corresponding 
Gödel’s sentences can be processed in a purely mechanical or computational 
manner available to both, humans and machines. In consequence, Krajewski 
claims that anti-mechanist is not implied by Gödel’s incompleteness theorems 
alone. In addition, claims Krajewski, one needs to assume that humans have 
a privileged access to assessing consistency of the human mind. Krajewski 
claims that the argument fails because of the necessity of making this extra-
formal assumption. This is so, because there is no formal way to account for the 
formal counterpart of assumptions. 

Before I come back, in the last section, to Krajewski’s rejection of the anti-
mechanist argument, and my proposal of how to shift the way of thinking about 
the reasons for this rejection, I will now focus on the part which is particularly 
interesting for me, that is the m e t a - t h e o r e t i c a l  corollary to the anti-
mechanist argument stating that humans cannot fully describe the concept of 
natural number. 

3. The Concept of Natural Number and the Concept of Computation 

I initiate my investigation into the nature of the extra-formal elements of the 
reasoning that enable the conclusion that the human mind is not computable, by 
discussing the corollary relating human inability to define the concept of natural 
number. Additionally, I extend the corollary of the claim that humans—for simi-
lar reasons—cannot define the concept of computation. Finally, I present the 
view according to which the concept of natural number and the concept of com-
putation are closely related. 

The fact that every formal definition of the concept of natural number leads 
to a necessary assumption from the outside of the formal system has been studied 
in the context of the view in philosophy of mathematics, called s t r u c t u r a l -
i s m . According to structuralism, mathematics is the “science of structures”, and 
while defining mathematical objects, one should first target their structural prop-
erties. For instance, while defining natural numbers, one should define the struc-
ture of natural numbers through relations they hold to each other, and not focus 
on individual properties of those elements. 

Traditionally, structuralism defined natural numbers using second-order Pea-
no Arithmetic (PA2). PA2 is categorical and the class of (isomorphic) models in 
which it is satisfied is identified with natural numbers. The usual way of criticis-
ing the use of second-order Peano Arithmetic to define natural numbers consists 
in saying that the underlying logic is “set theory in sheep’s clothing” (Quine, 
1970, p. 66). Second-order logic has the ability, for instance, to express the in-
formation that two sets have the same cardinality. The concept of set is itself 
most frequently (implicitly) defined with a first-order axiomatic theory, such as 
ZF, that in turn, is a subject of non-standard interpretations, the Löwenheim-
Skolem theorem, etc., which makes its intended model “hidden” within a contin-
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uum of other non-intended models. Therefore, in order to define the concept of 
natural number with PA2, humans have two choices. They can get involved in 
a vicious circle of definitions, or an infinite regression of theorems, or they can 
use extra-formal resources and admit in an arbitrary manner that there is such 
a thing as an intended (or a standard) model of set theory where the intended 
model of arithmetic exists. 

Another, less known, version of structuralism, so called computational struc-
turalism, proposes distinguishing the s t a n d a r d  model of arithmetic from the 
continuum of non-standard models with the resources of PA1 only (Halbach 
& Horsten, 2005; Quinon & Zdanowski, 2007). In order to do that, defenders of 
computational structuralism suggest adding a meta-mathematical constraint re-
garding the computability of interpretation of functional symbols in the language, 
and then use Tennenbaum’s theorem in order to single out the standard model of 
arithmetic. 

Theorem 2.1 (Tennenbaum, 1959) Let ℳ = 〈𝕄𝕄, +, ×, 0, 1, <〉 be an enumerable 
model of PA1, and not isomorphic with the standard model 𝒩𝒩 = 〈ℕ, +, ×, 0, 1, <〉. 
Then ℳ is not recursive. 

More explicitly why Tennenbaum’s theorem is relevant for the structuralist 
way of thinking is visible in the transposition of the theorem: 

Theorem 2.2 (Tennenbaum transposition) Let ℳ be an enumerable model of 
first-order Peano arithmetic. If the interpretation of addition and multiplication 
within ℳ are computable then ℳ is a standard model for arithmetic (a model 
with ω–type ordering). 

One of the philosophically interesting consequences of the application of 
Tennenbaum’s theorem is that the set of models singled out with its help consists 
of those ω models, where ω is computable (Quinon & Zdanowski, 2007). Those 
models are called “intended” and form a proper subset of standard models. 

The intended model of arithmetic,7 is such a model where functions of addi-
tion and multiplication are interpreted as computable functions.8 Tennenbaum’s 
theorem establishes a connection between a meta-mathematical property of being 
computable by arithmetical functions, and the order of the elements of the set of 
natural numbers. Thus, in the most general lines, computational structuralism is 
a position, according to which the concept of natural number and the concept of 
computation are closely related. 

The usual way of criticising computational structuralism is, again, by point-
ing out the vicious circle or infinite regression of definitions that threatens the 
proposed account of natural numbers. The criticism goes as follows: in order to 

 
7 Intended models of arithmetic are identified up to a c o m p u t a b l e  isomorphism. 
8 The model of arithmetic is intended for both theories PA1 and PA2. 
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define the concept of natural number, one needs to use the concept of computa-
tion, whereas every concept of computation is defined on the domain of (some 
representation of) natural numbers. Thus, the vicious circle or the necessity to 
assume that there is an intended interpretation of what to compute means, or that 
the intended model of arithmetic is distinguished from within other models. 

Analogously, it is pretty straightforward that the concept of computation falls 
itself into a vicious circle, as in order to account for what “to compute” means, 
referring, for instance, “to be computed on a Turing Machine”, necessitates to 
account for which entities are suitable for computing with (in the case of TM-
computations, what can be the input for a Turing Machine). Since the question 
asked about the input precedes the definition of computing, which is just being 
given, one cannot use the concept of computing to define which sequences can 
be used for the input. 

More precisely, 

[T]he Church-Turing Thesis states that Turing Machines formally explicate the in-
tuitive concept of computability. The description of Turing Machines requires de-
scription of the notation used for the INPUT and for the OUTPUT. The notation 
used by Turing in the original account and also notations used in contemporary 
handbooks of computability all belong to the most known, common, widespread 
notations, such as standard Arabic notation for natural numbers, binary encoding 
of natural numbers or stroke notation. The choice is arbitrary and left unjustified. 
In fact, providing such a justification and providing a general definition of nota-
tions, which are acceptable for the process of computations, causes problems. This 
is so, because the comprehensive definition states that such a notation or encoding 
has to be computable. Yet, using the concept of computability in a definition of 
a notation, which will be further used in a definition of the concept of computabil-
ity yields an obvious vicious circle. (Quinon, 2018, p. 338) 

In this section, I explained similarities between the process of defining the 
concept of natural number, the process of accounting for the concept of computa-
tion, and the formulation of an anti-mechanist argument based on Gödel’s in-
completeness theorems. All these contexts are related because the way out of the 
definitional vicious circles proper to the definitional processes within formal 
theories, is through the necessity of assuming an additional non-formal, meta-
theoretical knowledge. In the next section, I will expand on the phenomena of 
vicious circles and regression ad infinitum. 

4. Nested Vicious Circles 

Quinon (2018) proposes a taxonomy of what can be called “deviant encod-
ings”, that is those encodings—or in different words, sequences of symbolic 
representations of natural numbers—which are non-computable, but which are 
formally indistinguishable from computable encodings. For instance, in its sim-
plest form the problem presents itself as follows: 
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The problem in its purely syntactical version can be formulated as follows. In 
a definition of Turing computability, one of the aspects that needs to be clarified is 
the characterization of notation that can be used as an input for a machine to pro-
cess. If a Turing Machine is supposed to explicate the intuitive concept of com-
putability it is necessary to explain, which sequence of numerals can be used as an 
input without the use of the concept of computability. That means, we cannot 
simply say: “sequences that can be used as input are the computable ones” as we 
have not yet defined what it means “to be computable”. (Quinon, 2018, p. 340) 

Deviations refer to non-computable sequences that cannot be distinguished 
within the general formal context from sequences that are computable and can be 
used in computations. In this paper, I use the expression “deviant encoding” 
independently of the ontological framework within which natural numbers are 
understood. Quinon (2018) claims that the phenomenon of deviant encodings 
persists independently of which ontological status we assign to objects of com-
putations (e.g., natural numbers, sequences of symbols, etc.). Quinon (2018) 
hypothesizes that the phenomenon of deviant encodings persists independently 
of the philosophical standpoint and provides an analysis of the following simpli-
fied standpoints: (i) purely mechanical/syntactical approach (nominalism, en-
twined mathematical concepts); (ii) notations have meanings (mild realism); (iii) 
semantics comes first (radical realism, platonic insight). 

The study of conceptual “deviations” is conducted for a simplified frame-
work where: 

• on the syntactic level there are uninterpreted inscriptions, and where func-
tions are string-theoretical generating string values from string arguments; 

• on the semantic level there are interpretations that can range from the con-
ceptual content ascribed to initially uninterpreted symbols, to Platonic ab-
stract objects, and where functions are number-theoretical sending numbers 
to numbers; 

• between the two levels there is defined a function of denotation. 

Deviations occur on each level. Thus, there exist “deviant encodings” devia-
tions that happen on the syntactic level; “deviant semantics” deviations that hap-
pen on the semantic level; “unacceptable denotation function” deviations of the 
denotation function. 

The simplified framework is inspired by Shapiro (1982), who distinguishes 
string-theoretic functions from number-theoretic functions and searches for “ac-
ceptable”, that is “non-deviant”, ways of associating their domains. The frame-
work is further used by other researchers. Rescorla (2007) uses it to study behav-
iour of denotation functions which associate numerals (symbolic representations 
of natural numbers) to natural numbers (abstract entities) in a non-computable 
manner. There is a continuum of such mappings. 
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 The expression “deviant encodings” has been used differently by Copeland 
and Proudfoot (2010) for whom the deviations relate to encodings, or enumera-
tions, of Turing Machines. The authors claim that a deviant encoding happens 
when the omniscient programmer “winks at us” to let us know when the number 
of a Turing Machine (from some standard encoding of Turing Machines), which 
is being currently processed by some sort of Halting Machine (a machine com-
puting which Turing Machines stop on an input 0), refers to a machine that stops. 
In this way, the Halting Machine computes the halting function, which is an 
uncomputable function. The “wink” of the omniscient programmer gets encoded 
in the syntactic structure of the numerals: the numerals representing the ma-
chines that stop, have a special form—for instance—are even (their general syn-
tactical form can be reduced to “2n” where “n” is any numeral). Copeland and 
Proudfoot mean by a deviant encoding such a standard enumeration of Turing 
Machines where the encoding is enriched by an extra-formal feature impersonat-
ed by the omniscient programmer (a Turing oracle). This is a specific case of 
a more general problem where deviant encodings refer to encodings representing 
natural numbers. 

An occurrence of the phenomenon of deviant encodings involving all the lev-
els, is the case of the Semantical Halting Problem (van Heuveln, 2000). Imagine, 
you have encoded Turing machines with some standard—computable, thus non-
deviant—encoding, and that you believe that symbols have meanings or interpre-
tations. It can happen that even if your syntax is generated in a recursive manner, 
your semantics is not following any recursive rules. The Halting Machine that 
processes encodings of Turing Machines is designed to process information on 
syntax in an algorithmic manner. If inputted with a given non-computable enu-
meration of Turing machines, the machine will process those non-computable 
encodings as if it were a standard notation. Again, there is no effective way of 
defining which semantics are acceptable and which are deviant. 

I call “nested vicious circles” the hierarchies of vicious circles that keep re-
appearing at every stage of syntactical and semantic complexity of the presented 
picture. 

To give an example of a philosophical position outside the strict theoretical 
context discussed in this paper, the phenomenon of deviant encodings appears as 
well in the case of concrete computations. 

In our ordinary discourse, we distinguish between physical systems that perform 
computations, such as computers and calculators, and physical systems that don’t, 
such as rocks. Among computing devices, we distinguish between more and less 
powerful ones. These distinctions affect our behaviour: if a device is computation-
ally more powerful than another, we pay more money for it. What grounds these 
distinctions? What is the principled difference, if there is one, between a rock and 
a calculator, or between a calculator and a computer? Answering these questions 
is more difficult that it may seem. (Piccinini, 2010)9 

 
9 See also Piccinini’s (2015). 
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In (2020), Quinon notes that the phenomenon of nested vicious circles, relat-
ing to the concept of computability, does not disappear in the case of explicit 
inter-definiability between the concept of natural number and the concept of 
computation, as established by computational structuralism. As I have already 
described above, the criticism of computational structuralism consists in pointing 
at the choice between the definitional vicious circles or the necessity of making 
extra-formal arbitrary assumptions. 

The way of extra-formal assumptions is investigated by Button and Smith 
(2012) who observed that when the concept “natural number” is explicated for, 
the concepts used in this explication, such as “to compute” or “finite” need to be 
accounted for on their turn, etc. In consequence, claim the authors, this problem 
cannot be tackled by offering more mathematics. An arbitrary decision regarding 
the meaning of some concept is necessary for the argument from Tennenbaum’s 
theorem to work. However, as they claim in a slightly undermining way, this is 
a philosophical problem: “Suffice it to note that our discussion of Tennenbaum’s 
Theorem illustrates a familiar moral: philosophical problems which are suppos-
edly generated by mathematical results can rarely be tackled by offering more 
mathematics” (Button & Smith, 2012, p. 120). 

Dean (2014) is similarly sceptical when it comes to the purposefulness of us-
ing Tennenbaum’s theorem to formally single out the standard model of arithme-
tic. However, differently to Button and Smith, Dean develops a full-fledged 
philosophical position. It is a Putnam-style model-theoretic realism for the con-
cept of computation (Putnam, 1980). Dean claims that there is no point in trying 
to find external arguments to distinguish between various standard and non-
standard models neither of arithmetic, nor of recursive theory. We should rather 
use the richness of the model-theoretic universe for studying structural properties 
of the concept of computation. Dean claims that Tennenbaum’s phenomenon 
shows that there exists a continuum of pairs: a model of arithmetic and computa-
tion in this model of arithmetic. In consequence, the Tennenbaum’s result instead 
of contributing to singling out the standard model of arithmetic, it indicates that 
non-computable ω-models of arithmetic exist (the so called deviant or weird 
permutations) with a corresponding concept of computation defined within the 
model. 

The vicious circle faced by computational structuralism, differs from the vi-
cious circles that are the focus of Quinon (2018). There, I was only concerned by 
the concept of natural number being indirectly involved in the definition of what 
“to compute” means. Conceptual structuralism needs to handle a slightly more 
elaborate idea. Its objective is to explicate the concept of natural number, identi-
fied with the standard model of arithmetic. Its solution consists in using the idea 
that natural numbers, and in particular those which are defined by Peano’s axi-
oms, are the entities used for counting and computing. In consequence, natural 
numbers are defined in terms of computations. However, and this is where the 
vicious circle arises: one of the characteristic features of the concept of computa-
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tion is that computation is a l w a y s  defined on some given domain.10 This do-
main is always identifiable with the structure of natural numbers. I discuss the 
nested vicious circles in this context in (Quinon, 2020). 

5. Conceptual Engineering and Conceptual Fixed Points 

One of the promising ways out of the impasse consists in embracing that the 
circularity in the account of what “to be computable” and what “natural number” 
mean is due to limitations of conceptual analysis. Similarly to other scientific 
concepts, when analysis is conducted within the strict scope of a given formal 
theory, one often ends up with a necessity to use the concept which is being 
defined in the account of some concept used for its definition. Philosophers and 
logicians see in this feature of conceptual analysis both an advantage that enables 
us to understand more about the conceptual structure of the world (Dean, 2014), 
and a problem that blocks science from progress (Maddy, 2007). Rescorla (2007) 
identifies problems with conceptual analysis related to the concept of computa-
tion. In their paper (2012), Button and Smith claim that Tennenbaum’s theorem 
is of no use to a philosopher who wants to distinguish the standard model from 
other possible models of arithmetic. 

Quinon (2018) suggests that there is no fully satisfactory way out from vi-
cious circles in definitions, resulting from conceptual analysis. Approaching the 
concept of computation and the concept of natural number from another method-
ological perspective, seems to be more fruitful. For instance, in recent years 
a particular type of conceptual work gained quite a bit of popularity, it is called 
conceptual engineering. What I try to convey in this section is that the new re-
search on conceptual engineering actually provide additional insight into the 
possible ways of thinking about non-mathematical or non-formal knowledge. 

According to Cappelen (2018), conceptual engineering is concerned with the 
assessment and improvement of concepts. As highlighted by Cappelen and Plun-
kett: 

since it’s unclear and controversial what concepts are (and whether there are any), 
it’s better to broaden the scope along the following lines: 
Conceptual Engineering = (i) The assessment of representational devices, (ii) re-
flections on and proposal for how to improve representational devices, and (iii) ef-
forts to implement the proposed improvements. (2020, p. 3) 

Researchers involved in developing the methodology of conceptual engineer-
ing realised that the method reaches its limits when concepts which are funda-
mental to the given theory are being scrutinised. They call it “conceptual fixed 
points”. The most extensive reflection has been done in the area of ethics (Cap-

 
10 A non-realised Gödel’s objective consisted in finding an “absolute” concept of 

computation, i.e., such a concept of computation that does not depend on any domain. 
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pelen et al., 2020), but Eklund (2015) extends it to formal contexts and concepts 
such as “truth”, “belief”, or “existence”. In addition to traditional arguments 
used in ethical contexts, such as “Kantian philosophy [with its regulative ideas], 
or from a naturalistic philosophy according to which what is innate severely 
constrains which concepts we can use”, Eklund considers basic formal concepts 
in the spirit of rigid designators. 

In moral philosophy, “the moral fixed points” are those moral propositions 
that are moral truths which always need to be incorporated into a moral system. 
A normative system which fails to incorporate such propositions is not a moral 
system, but a normative system of some other kind. The leading example of such 
a moral fixed point is the proposition “It is wrong to engage in the recreational 
slaughter of a fellow person” (Cueno & Shafer-Landau, 2014). 

Eklund (e.g., 2015, Chapter 5) extends this phenomenon to frameworks out-
side moral philosophy and, as he calls it, the “thinnest” normative words like 
“good”, “right”, “ought”. Eklund observes that in each conceptual framework, 
concepts exist that are difficult, if not impossible, to engineer. “Truth” is one of 
those concepts. People care about truth, writes Eklund, and they do not care 
about some conceptually engineered concept “truth*”. In consequence, truth is 
a concept that should keep a fixed position in a conceptual framework, and refer 
to the natural kin of assertions and beliefs. Similarly, “existence” is a conceptual 
fixed point. Eklund opposes the claim from the contemporary meta-ontological 
debate, where it is assumed “that there are alternative notions of existence that 
can be employed”. He claims that, similarly as in the case of “truth”, a conceptu-
al framework that would result from adapting a conceptually engineered concept 
of “existence” would need to adjust its other key concepts in such a way that the 
resulting framework would be isomorphic to the initial one. Thus, “One cannot, 
so to speak, s e l e c t i v e l y  engineer the quantifier”. 

Suppose we set out to conceptually engineer truth. Insofar as the job description 
of truth is that of being the property our beliefs and assertions aim at, the engi-
neering project would be that of finding a property more adequate to that job de-
scription. But by what has been noted about Stich’s argument, it is hard even 
properly to conceive of a practice of belief or assertion that is guided by a differ-
ent property. (Eklund, 2015, p. 378) 

There is one last thing that I consider worth mentioning while talking about 
conceptual fixed points and mathematical concepts, in particular the concept of 
computation, that is a possible proximity between conceptual fixed points and 
fixed points that are traditionally analysed in mathematics in the context of diag-
onalisation. At first sight, they do not have much in common11 as conceptual 
fixed points relate mostly to the cross-model intended interpretation of a concept, 
whereas diagonalisation is about self-reference and vicious circles. Conceptual 
fixed points are concepts interpreted in, what we call in the philosophy of math-

 
11 I might be wrong, but I will not try to sort it out in this paper. 
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ematics, their intended models. In different words, a fixed point consists of the 
pair t h e  e n g i n e e r e d  c o n c e p t  corresponding to the intended meaning of 
the concept, or—to borrow Eklund’s expression—the interpretation that “people 
care about”, and a  p o s s i b l e  w o r l d  o f  i n t e r p r e t a t i o n , which actually 
corresponds to the intended model of this concept. Both, the concept of natural 
number and the concept of computation are in this sense conceptual fixed points. 
A more careful look should be applied to those two phenomena, but in this paper 
I will just leave it without further comment.12 

6. The Church-Turing Thesis as a Carnapian Explication 

Another methodological framework that offers a solution for conceptual 
structure escaping conceptual analysis is the method of Carnapian explication. 
Quinon (2019) explores the idea that the structure of the concept of computation, 
accounted for with the Church-Turing thesis, is best understood through the 
method of explication. This section is devoted to the presentation of the method 
of explication for the concept of computation, and also for the concept of natural 
number. 

Treating the concept of computation, as accounted for in the Church-Turing 
thesis, as a Carnapian explication has multiple advantages, namely, it overcomes 
problems of conceptual analysis; it explains how one intuitive concept of what 
“to be computable” means can be translated into a multitude of extensionally 
equivalent formal concepts of “to be computable” in a specific formal concept 
means; it finally provides a ground for thinking of mathematical or formal con-
cepts as “open-textures” evolving through time (Makovec & Shapiro, 2019); it 
also relates to the initial intuitive prescientific concept with the formal concept, 
because an explication relies on an existing meaning, and offers a specification 
which offers the best possible fit in a given context. 

An explication in the Carnapian sense consists in introducing new formal 
concepts to the scientific language coined on the basis of everyday concepts. In 
different words, it is a procedure of transformation from an inexact prescientific 
concept into a scientific one. Moreover, an explication consists in providing 
a scientific concept within a given context, within an existing theory. It is done in 
two steps: 

• The clarification of the explicatum 
• The specification of the explicatum 

The rationale for clarification is that a given term may have many different 
meanings in ordinary language. Unless one of these meanings is clearly picked 

 
12 If you want to get a more formal description of this phenomenon, you can think of 

hybrid modal logics which provide a framework for thinking of epistemic access to other 
possible worlds from the perspective of the selected distinguished world. 
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out from the start and the context of its use is clearly indicated, it is unlikely that 
the method of explication will yield a useful result. Clarification serves this pur-
pose. As Carnap explains, “[a]lthough the explicandum cannot be given in exact 
terms, it should be made as clear as possible by informal explanations and exam-
ples” (Carnap, 1950, p. 3). Quinon (2019) highlights the importance of the clari-
fication stage, the stage which has traditionally been underestimated. 

A clarification of the explicandum enables the next step of the explication 
process, a specification of the explicatum and formulation of the exact concept in 
the targeted context. 

Since several clarifications most often can be foreseen, and several scientific 
contexts are available, one pre-scientific concept can be explicated in various 
manners. In order to decide which explication is the most successful, Carnap 
proposes four criteria that can be applied for assessing the value of an explication, 
and also for comparison between available options. 

• SIMILARITY TO THE EXPLICANDUM: most of the cases in which the 
explicandum has so far been used, the explicatum can be used; however, 
close similarity is not required, and considerable differences are permitted. 

• EXACTNESS: the rules of use of explicatum have to be given explicitly and 
precisely, for example, by providing a concept with the formal definition. 

• FRUITFULNESS: shall be “useful for the formulation of many universal 
statements”. 

• SIMPLICITY: an explication should be as simple as the previous three al-
low it. 

I think that it is worth investigating whether abandoning the path of analysis 
and taking the path of explications could offer an additional insight into the con-
ceptual structure of formal concepts, and also informal concepts lying in the 
foundations of their formalization. The idea is that every formal concept is—at 
least in subjective arithmetic (to borrow Gödelian terminology)—grounded upon, 
or issued from, an everyday intuitive, pre-scientific concept. The next section is 
devoted to a preliminary investigation into the possibility of extending the idea 
that the method of explication, consisting in building up the formal concept out 
of the intuitive concept, is anyhow relevant to the anti-mechanist argument 
against the computability of mind using Gödel’s incompleteness theorems. 

Both intended interpretations determined in the consequences of accepting 
conceptual fixed points solution and the choice of the formal aspect, and the 
formal context at the stage of the concept clarification in the process of Carnapi-
an explication, share a similar threat. In the case of a fixed point solution and in 
the case of clarification an agent needs to take an arbitrary decision regarding the 
intended interpretation. 
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7. Theory of Mind and Computations 

In this section, I propose an additional complication to the method of Carnapian 
explication, which is a temporary, or a phylogenic, aspect of conceptual development. 

The method of Carnapian explication enables introducing new formal con-
cepts to the language by transforming an intuitive pre-scientific concept into 
a new scientific concept within some formal context. Usually, at the stage of 
clarification one chooses the meaning that will guide the formalisation of the 
intuitive pre-scientific concept and also the targeted formal context. What I pro-
pose in this section, is an additional dimension to the clarification stage: a rela-
tivisation to the phylogeny of the formal concept. At the stage of clarification, in 
addition to deciding which aspect of the intuitive concept one wants to formalise, 
one needs to realise that each concept develops. The phylogenic development of 
the concept of natural number and the concept of computation is studied in 
Shapiro on open-texture (2013). 

The relation between the concept of computation and the concept of natural 
number underwent a very dynamic development. In consequence, the set of po-
tential clarifications of intuitive concepts of computation and of natural numbers 
have grown. What is interesting from my perspective, is that computability is 
today an expected feature of natural numbers. Natural numbers are those mathe-
matical entities that are all day long used for enumerating and computing, for 
programming, and in various sorts of logistic projects as an underlying discrete 
structure. Both concepts have become increasingly important in the everyday life 
of our society. This is called digitalisation. 

Various areas of digitalisation are additionally reinforced by the fact that 
computationalism—even if its formal details are still discussed by philosophers, 
mathematicians and logicians—is today the mainstream theory of mind. This 
process is described by Turkle (1984; 2011; 2015) who studies how concepts 
from computer sciences and robotics have got into common language and how 
they have changed ordinary people’s approach to inter-personal relations or ethi-
cal questions. 

According to Turkle the intensity in which digitalisation of everyday life de-
velops is strongly connected to the fact that computational language was first 
used to reformulate our perception of our own mind and consciousness.13 

 
13 Turkle’s earlier work related to a similar development of conceptual trends in ex-

planation of phenomena of everyday life that had a place in France in the 1960s and 1970s 
as a consequence of the spread of psychoanalytical ideas, see her book Psychoanalytic 
Politics: Jacques Lacan and Freud’s French Revolution from 1978). In The Second Self: 
Computers and the Human Spirit (1984), Turkle describes these changes that have got 
into general culture through digitalisation and robotics in the same way as “psychoanalyt-
ic culture” penetrated structures of the general social and political life in France: “Psycho-
analytic language spread into the rhetoric of political parties, into training programs for 
schoolteachers, into advice-to-the-lovelorn columns. I became fascinated with how people 
were picking up and trying on this new language for thinking about the self. I had gone to 
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When Turkle speaks about her experience with the digitalised society, she 
compares two experiences: 

My experience at MIT impressed me with the fact that something analogous to the 
development of a psychoanalytic culture was going on in the worlds around com-
putation. At MIT I heard computational metaphors used to think about politics, 
education, social process, and, most central to the analogy with psychoanalysis, 
about the self. (Turkle, 1984, p. 305) 

She sees within it a first step in the cultural assimilation of a new way of 
thinking: 

The essential question in such work is how ideas developed in the world of high 
science are appropriated by the culture at large. In the case of psychoanalysis, how 
do Freudian ideas move out to touch the lives of people who have never visited 
a psychoanalyst, people who are not even particularly interested in psychoanalysis 
as a theory? In the study of the nascent computer culture, the essential question 
was the same: how were computational ideas moving out into everyday life? 
(Turkle, 1984, p. 305) 

She searches how “the idea of mind as a program enters into people’s sense 
of who is the actor when they act”. A model of the mind that is adapted by socie-
ty influences how people think about their frustrations and disappointments, their 
relationships with their families and with their work (Makovec & Shapiro, 2019, 
p. 305). On the other hand, says Turkle, computers became a new constructed 
object—“a cultural object that different people and groups of people can appre-
hend with very different descriptions and invest with very different attributes. 
Ideas about computers become easily charged with personal and cultural mean-
ings” (Turkle, 1984, p. 308). 

In her other books, Turkle studies human attachment to objects. In the vol-
ume of essays Evocative Objects: Things We Think With (2007) she speaks about 
the attachment that people, many of her friends, have developed with physical 
objects. In her book, Alone Together Turkle (2011) extends her observations to 
different types of automated artificial agents, such as virtual agents mediated by 
electronic support, or robots. In a series of social experiments, where she asked 
her subjects to interact with an automated artificial agent, she observed that the 
stronger attachment develops in the most vulnerable members of our society, 
such as neglected children with unfulfilled emotional needs, or with old people 
suffering from a lack of human interactions. Our natural inclination to form emo-
tional attachment with humans, and with objects in the absence of humans, might 
soon lead to even more human-AI interactions. Those interactions are obviously 

 
France to study the psychoanalytic community and how it had rein- vented Freud for the 
French taste, but I was there at a time when it was possible to watch a small psychoanaly-
tic community grow into a larger psychoanalytic culture” (Turkle, 1984, pp. 304–305). 
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structured in a very particular, very automated, way, which even more strongly 
influences the digitalisation of the language we use. 

Krajewski makes a similar observation in the last section of the paper. 

Our attitude toward the arguments of Lucas, Penrose, and others is shaped mostly 
by our general vision of machines and minds. And this vision adjusts with changes 
of civilization. For the youth of today, if I may judge from listening to my students, 
our computerized world makes it easier to accept the idea that anything is mech-
anizable—including the mind. (2020, p. 49) 

I propose a hypothesis that at least part of the confusion regarding the speci-
ficity of the conceptual structure of the concept of computation contributes to the 
confusion regarding the nature of human reasoning and the human mind. In con-
sequence, I claim that—at least partially—the “feeling” that there are non-
computational processes is due to the complexity of the conceptual structure of 
the concept of computation. 

8. The Lucas-Penrose Argument and Extra-Formal Concepts 

Let me now come back to the anti-mechanist argument against computability 
of mind based on Gödel’s incompleteness theorems.  

In the first part of this section, I reconstruct Krajewski’s claim according to 
which, in order to make the anti-mechanist argument work, one needs to add an 
extra-formal assumption stating the consistency of the underlying theory, that is, 
the theory corresponding to the human mind. The core of Krajewski’s criticism is 
as follow: it is not possible to formalize the extra-formal assumption and there-
fore, the whole of Lucas’ argument is fallacious. I disagree with Krajewski’s 
claim that formalization of the extra-formal assumptions is not possible. There 
are contemporary philosophical methods that might enable formulation of such 
a formalization. As example, in the previous sections, I have presented the meth-
odological and conceptual framework was based on Carnapian explications. 
Instead, I focus on another problem, which the issues from an internal character-
istic of formal contexts, namely on the part of the argument, which leads to 
a circular reasoning. In order to show that the human mind (THM) outperforms 
a machine (TM), one needs to assume that the human mind is consistent and 
knows it (and in this way outperforms a machine that can never “know” if it is 
consistent or not). Observe, that I do not reject Krajewski’s conclusion, but 
I point at a fallacy in a proof. Again, I have already discussed how the method of 
conceptual engineering enables structured thinking of extra-formal assumptions 
and the resulting circular reasoning. 

In the second part of this section, I will continue my investigation of possible 
extra-formal assumptions relative to the anti-mechanist argument based on Gö-
del’s incompleteness theorems. 

The Lucas’ anti-mechanist argument based on Gödel’s incompleteness theo-
rems consists of two parts. Firstly, Gödel’s results establish that each sufficiently 
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rich consistent theory admits a Gödel sentence and also that none such theory 
can prove its own consistency. 

Let T be a consistent theory containing arithmetic, let φT be the Gödel’s sen-
tence for the theory T. 

Con(T) → T ⊬ φT 
Con(T) → T ⊬ Con(T) 

Moreover, it is broadly known that an inconsistent theory proves any sentence, 
but Gödel’s incompleteness theorems do not apply to an inconsistent theory. 

Secondly, human mathematicians can work with subsequent increasingly 
stronger theories, 

T1 = T ∪ Con(T ) 
T2 = T1 ∪ Con(T1) 

⋮ 
Tn+1 = Tn ∪ Con(Tn) 

which—for some defenders of the anti-mechanist argument—signifies that hu-
man mathematicians outperform machines. Krajewski objects to this view claim-
ing that the construction of the hierarchy can be fully mechanised. In conse-
quence, he claims that the ability to construct and work with the hierarchy of 
increasingly stronger theories alone is not sufficient for formulating the anti-
mechanist argument. As stated by Krajewski, additional assumptions are missing. 

In addition to Gödel’s results, at least two assumptions that are not self-evident are 
used in the above reasoning. First, every exact proof of our consistency can be 
formalized, second, it is possible to express “our consistency”. […] If this is ac-
cepted, one could question the second point. It is not clear at all how one can ex-
press “our consistency”. Basically there are two options to express this: either 
(i) by the common sense statement “I am consistent” or (ii) by a formal counter-
part to this statement. Let us consider them in turn. 

In case (i) we refer to a common sense statement, which have no connection 
to formal considerations. Hao Wang (1974, pp. 317–320) reflected on just this 
statement and believed that it is not provable. […] If that were possible, it would 
mean that we are not machines, or that we are not even equivalent to machines in 
the realm of proof-producing reasoning. We certainly may believe that, but it is no 
more than a general feeling. 

In case (ii) we consider the formal counterpart to a loose statement expressing 
consistency […]. The usual meaning of the statement refers to the will to avoid 
contradictions, to the reliability of our vision of the world, to the claim that the 
methods used by mathematicians are unfailing. The sentence Cons or any other 
similar arithmetical formula is rather far from those ideas. Thus, while something 
is strictly proved, it is unclear to what extent the conclusion conveys our con-
sistency. (2020, pp. 47–48) 
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Krajewski’s reasoning can be reconstructed as follows. Applying the formal 
predicate “being consistent” can only apply to a formal theory. Applying the 
formal predicate “being consistent” to anything else than a formal theory is 
a categorical mistake. In consequence, if “consistency” is to be a predicate apply-
ing to on the human mind, the mind must have certain formal properties and 
needs to be identified with a theory. The following options exist: 

• If human mind is a theory and it is consistent, then as to all other theories, 
a Gödel’s sentence applies to it and the human mind encounters the same 
constraints as any theory (a machine). 

• If the human mind is a theory and it is inconsistent, then Gödelian argu-
ment limitations do not apply at all. 

If the human mind is a theory, a human disposing of a mind cannot know—from 
the formal point of view—if it is consistent or not. In consequence, in order to 
prove that the human mind outperforms a machine, a second extra-formal addi-
tional assumption needs to be made. It has to be assumed that the human mind is 
indeed consistent. This assumption can be done in one of the two ways. “Case 
(i)”, “I am consistent” cannot be formalised. “Case (ii)”, there exists a formal 
counterpart of “I am consistent”. 

My analysis of “case (i)” is in line with the analysis of Krajewski. If “I am 
consistent” is an informal statement, it is useless for any formal proof. And here 
we speak of being able to p r o v e  more than a machine. Whereas Lucas’ argu-
ment is supposed to be a formal proof of the superiority of the human mind over 
a machine. 

My analysis of “case (ii)” differs from Krajewski’s analysis. His argument re-
turns to the idea that each formalisation of the informal “I am consistent” re-
mains—maybe more informed or more precise—but is still an informal account. 
As such it is useless for any formal proof. I think that the conclusion from (ii) is 
different. An agent can find a formal counterpart of the statement “I am con-
sistent”, or rather “the theory constituting my mind is consistent”. The frame-
work of the Carnapian explications enables us to understand how it can be done. 

I also assume that an agent c a n  recognise their own consistency. This insight 
is available to a human being, while it is—on the grounds of the second of Gö-
del’s incompleteness theorem—unavailable to a machine. This extra-formal 
assumption is necessary for formulating an anti-mechanist argument against the 
computability of the mind. It is also exactly at this point where a vicious circle 
occurs. We are in the act of proving that the human mind outperforms a machine, 
and so one cannot in this proof assume that human mind is consistent. 

Another possible extra-formal assumption that can be made in order to enable 
the anti-mechanist argument based on Gödel’s incompleteness theorem, is the 
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ability to refer to the intended model of arithmetic.14 Instead of assuming that the 
human mind is consistent (i.e., assuming that the theory underlying all human 
reasoning is a consistent theory, which does not prove both a φ and a ¬φ, for 
every φ), in order to use Gödel’s incompleteness theorems to support the anti-
mechanist argument, one can assume that the human mind is able to refer to the 
intended model of arithmetic. The assumption that the human mind can refer to 
the intended model of arithmetic disables the possibility that the Gödel sentences 
get to have non-standard Gödel numerals. 

In the way it is usually interpreted—in particular in the context of philosoph-
ical argumentation supporting the anti-mechanist argument that the human mind 
is non-computable—Gödel’s incompleteness theorems provide us with the in-
formation from the perspective of a formal system. The semantical aspect is 
taken for granted. When the model-theoretical reasoning is applied, Gödel’s 
incompleteness theorems indicate that there exist non-standard models in which 
the (non-standard) Gödel number of the proof for Gödel’s incompleteness theo-
rems has its (semantical) reference. It also means, that there exist models where 
the Gödel (non-standard) number of the proof for the negation of Gödel’s first 
theorem, has an interpretation as a (non-standard) natural number. 

What is famously referred to by Gödel’s platonism is his belief that there is 
a model of arithmetic in which all arithmetical truths are satisfied. This is obvi-
ously not the intended model of arithmetic that humans have privileged cognitive 
access to, but the model of arithmetic in objective mathematics (Gödel, *1951). 

9. Conclusions 

Additionally to the critical analysis of Krajewski’s rejection of the anti-
mechanist based on Gödel’s incompleteness theorems to which I suggest some 
possible improvements, my paper is sympathetic to the idea that certain key 
concepts in formal contexts naturally fall into circular or infinite reasonings. In 
this way, I try to shift attention from the theory of the human mind and con-
sciousness, to the study of the conceptual structure of the language. 

In my paper, I explored similarities between various formal contexts in which 
key concepts fall into a vicious circle of reasoning. I looked at the formalisation 
of the concept of natural number, of the concept of computation, and at the con-
cept of consistency in the context of Gödel’s incompleteness theorems. I sug-
gested that the way to switch from an informal pre-scientific concept to a full-
blooded formal scientific concept formulated in an adequate formal context is 
best modeled by Carnapian explications. I have also suggested that the phenom-

 
14 The intended model is intended for both PA1 and PA2 and for this reason I do not 

make a distinction between the intended model of PA1 and the intended model of PA2. 
I can think of a philosophical position that makes such a distinction, but for my purpose 
that would unnecessarily complicate my presentation. 
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enon of conceptual fixed points offers a methodological framework to think of 
intended interpretations necessary to jump out of circularity. 
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Introduction 

There is no question that Gödel’s two incompleteness theorems (Gödel, 
1931)1 are deep and important mathematical results which have significant phil-
osophical implications (e.g., Raatikainen, 2005). It seems that the idea that they 
demonstrate the superiority of the human mind over computing machines and 
formalized theories in particular is very attractive and natural, as it is put forward 
again and again (Krajewski, 2020). The view that the human mind is, in some 
sense, equivalent to a finite computing machine or a formalized theory is called 
“mechanism”. The popular idea, famously advocated by J.R. Lucas (1961; 1996), 
is that Gödel’s results demonstrate, with mathematical certainty, that the human 
mind can surpass or “out-Gödel” any computing machine and formalized theory, 
and that mechanism can therefore be refuted for good. Roger Penrose (1989; 
1994; 1995; 1997) has prominently put forward very similar views. The literature 
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1 For an accessible survey, see, e.g., (Franzén, 2005; Raatikainen, 2020).  
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is vast, but I shall focus here on Lucas’s classic key claims, which have been 
enthusiastically repeated, almost verbatim, again and again.2  

However, numerous logicians and philosophers (beginning from Gödel and 
Turing themselves; and see e.g. Putnam, 1960; Boolos, 1968; Davis, 1990; 1993; 
Feferman, 1995; 2009; 2011; Shapiro, 1998), including myself (Raatikainen, 
2005), have argued that such straightforward anti-mechanist arguments grounded 
on Gödel’s theorems are flawed. Krajewski (2020) both surveys the history of 
such arguments and elaborates various problems with them. I don’t want to re-
peat those critical arguments here in any detail. Instead, I shall emphasize and 
discuss certain selected issues around the Gödelian anti-mechanist arguments 
which have received less attention, and which to my mind deserve to be noticed. 
I shall assume that the reader is familiar with the basic ideas and concepts of this 
debate. 

The Limits of Machine Talk 

The Gödelian argument against mechanism is standardly formulated in terms 
of Turing machines and their Gödel sentences, which the machines are incapable 
of “producing as being true” but which the human can allegedly see to be true. 
However, such talk about “the Gödel sentence of the machine” is, strictly speak-
ing, nonsense (cf. Gaifman, 2000). 

The theory of computability and its notions of decidability and computability, 
and Turing’s groundbreaking analysis of these notions in terms of imaginary 
idealized machines, are certainly essential for the general versions of the incom-
pleteness results: a formalized theory is by definition required to have 
a decidable set of axioms and a decidable proof relation.3 Consequently, if the 
language of the theory is suitably coded by numbers, there are Turing machines 
which can effectively generate exactly the code-numbers (the “Gödel numbers”) 
of the theorems of the theory: the set of those code-numbers is thus, technically 
speaking, recursively enumerable (r.e. for short). But that is it. 

A Turing machine does not in itself correspond to any specific formalized 
theory, and just does not have a specific Gödel sentence of its own. Even if 
a Turing machine is incapable of producing (“as true”) a sentence under one 
given coding, it may well produce that sentence under many other codings. Con-
sequently, the suggested idea of “out-Gödeling” a machine in itself makes no 

 
2 There is a conspicuously enthusiastic entry (Megill, 2012) on the Gödelian anti-

mechanistic arguments in the Internet Encyclopedia of Philosophy, which for its part 
suggests that the issue is still very much alive.  

3 See, e.g., (Raatikainen, 2020). To be sure, logicians have studied extensively arbi-
trary sets of axioms, infinitely long sentences and infinitary rules of inference; but in the 
context of Gödel’s incompleteness theorems, this is a standard assumption (though some 
generalizations exist). Accordingly, in what follows, I shall always use “formalized theory” 
to mean a theory which has a finite or decidable set of axioms, and a decidable proof 
relation, and consequently a r.e. set of theorems.  
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sense. One and the same Turing machine may correspond to very different for-
malized theories under different codings. And many Turing machines just do not 
correspond to any formalized theory under any coding. The same holds for re-
cursively enumerable sets of numbers. 

The framework of computability theory is, in general, too coarse-grained in 
this context: all formalized theories which contain Robinson Arithmetic Q, from 
the very weak Q itself to the strongest theories of set theory (e.g. ZFC + “there 
exist supercompact cardinals”) and beyond, as long as the set of axioms is decid-
able, are “creative” (in Post’s sense), have the same computability-theoretic 
degree, and are recursively isomorphic with each other (i.e., they are all one-one 
reducible to each other). Hence computability theory is unable to make any dif-
ference between such theories with radically different strengths. As Kreisel was 
fond of putting it, proof theory begins where computability theory stops. 
(cf. Odifreddi, 1989, pp. 356–357) Hence, immaculately formulated, the question 
should be: Can all the truths that are humanly provable be captured by a formal-
ized theory? 

My sticking to this issue may strike some as excessive pedantry, but I think 
there is a real risk here of overlooking some relevant issues. Turing machines, or 
r.e. sets of numbers generated by them, simply do not stand to each other in the 
various logical relations that are essential for this topic. For example, it makes no 
clear sense to ask whether a given r.e. set of numbers can prove the consistency 
of another given r.e. set. Furthermore, in a fully general consideration, we cannot 
restrict our attention solely to direct extensions of elementary arithmetic in the 
same language (or its direct extension). A great many formalized theories have 
prima facie nothing to do with arithmetic; their language may be quite different 
from the familiar language of arithmetic (think of set theory, for example). There 
is no direct way of comparing the respective sets of code-numbers, as to whether 
one is stronger than the other, etc. Relating such theories requires considering the 
relation of r e l a t i v e  i n t e r p r e t a b i l i t y  between formalized theories.4 But at 
the level of computability theory and r.e. sets, such relations are invisible.  

It is certainly possible to continue to talk about Turing machines or recursive-
ly enumerable sets of numbers here, with the assumption that some coding (“Gö-
del numbering”) has been fixed. But such a manner of speaking may be mislead-
ing and hide some important aspects of the topic. The above facts should at very 
least be kept clearly in mind. Accordingly, I shall talk, in what follows, as far as 
possible, only about formalized theories. 

 
 

 
4 Roughly, F1 is interpretable in F2 if the language of F1 can be “translated” into the 

language of F2 in such a way that F2 proves the translation of every theorem of F1. This 
notion of interpretability was first given an explicit definition by Tarski in (Tarski, 
Mostowski, & Robinson, 1953). It had been, however, already used in practice by logi-
cians for some time. 
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Varieties of Mechanist and Anti-Mechanist Theses 

Instead of talking generally about the juxtaposition of mechanism and anti-
mechanism, I think it would be useful to distinguish more finely several different 
theses here which often seem to get conflated in the debate. To begin with, there 
is:  

1. Strong Local Mechanism: The set of humanly provable mathematical truths 
is equivalent to the set of theorems of a certain explicitly specified formalized 
theory F: “this F”.  

In other words, the mechanist is here supposed to explicitly present a particular 
formalized theory F which is contended to be equivalent with the human mind. 
However, it is clearly possible to advocate mechanism as a general thesis without 
such a specific claim: 

2. Basic General Mechanism: The set of humanly provable mathematical truths 
is equal in effect to the set of theorems of some formalized theory.  

Finally, we should also distinguish the following, apparently weaker, claim: 

3. Weak General Mechanism: The set of humanly provable truths is contained 
in the set of theorems of some formalized theory. 

There also appear to be several different anti-mechanist claims on offer. 

4. Weak Anti-Mechanism: It follows from Gödel’s incompleteness theorems 
that Strong Local Mechanism is false. 
5. Basic Anti-Mechanism: It follows from Gödel’s incompleteness theorems 
that Basic General Mechanism is false. 
6. Strong Anti-Mechanism: The human mind can surpass any given consistent 
formalized theory (which includes arithmetic) and prove (“see to be true”) the 
Gödel sentence of it.5  

It seems that Lucas, Penrose and their allies do not always sufficiently distin-
guish these different theses, but slide from one to another and back again without 

 
5 This is also the first disjunct of Gödel’s famous, more cautious disjunctive thesis, 

now standardly called “Gödel’s disjunction” (Gödel, 1951); the second disjunct says that 
there are mathematical problems which are absolutely undecidable for the human mind. 
Gödel suggested that their disjunction follows from the incompleteness results; but he 
never contended that the first disjunct in itself would follow. Although our Strong Anti-
Mechanism is not formulated directly as the opposite of Weak General Mechanism, it is 
natural to interpret the former as denying the latter. 
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clearly noticing this. When Lucas, for example, declared that “given any ma-
chine which is consistent and capable of doing simple arithmetic, there is a for-
mula it is incapable of producing as being true […] but which we can see to be 
true” (Lucas, 1961; my emphasis), he apparently advocated Strong Anti-
Mechanism.6 However, when pressed, Lucas and others often retreat to Weak 
Anti-Mechanism, or perhaps to an even more specific view. That is, especially 
when anti-mechanists attempt to circumvent critique, the mechanist view they 
apparently focus on is even stronger and more specific than Strong Local Mech-
anism, namely:  

7. Naïve Strong Local Mechanism: (i) Strong Local Mechanism; (ii) the human 
mind knows the equivalence of itself and the specific formalized theory F with 
mathematical certainty (i.e., the equivalence is itself absolutely provable); (iii) 
the human mind knows with mathematical certainty that F is consistent.  

We can grant Lucas and other anti-mechanists that Naïve Strong Local 
Mechanism collapses, in the light of the Gödelian facts, into inconsistency. This 
was already apparent for Gödel himself (Gödel, 1951) and has been repeatedly 
conceded. But this concession is a rather minute victory for anti-mechanism. For 
there are many ways to be a coherent mechanist without committing oneself to 
the Naïve Strong Local Mechanism.7 

First, and most obviously, one might have general theoretical or empirical 
reasons for advocating Basic General Mechanism (or Weak General Mechanism), 
but not Strong Local Mechanism. But what is more, one might perhaps have 
i n d u c t i v e  e m p i r i c a l  r e a s o n s  for believing that a particular formalized 
theory F corresponds to the human mind, but such reasons are, of course, short 
of mathematical certainty. On second thought, this seems a much more plausible 
alternative than the idea that it should be known with mathematical certainty. 
Finally, a mechanist might believe in the consistency of F, but on grounds that 
are weaker than absolute mathematical certainty, for example, broadly speaking 

 
6 Note that Lucas here only requires that the machine be consistent—not that the 

mechanist, we or anyone know (with mathematical certainty) that it is consistent. 
7 Koellner (2016; 2018a), building on the earlier work of Reinhardt (1985a; 1985b) 

and Carlson (2005), analyzes some such differences much more rigorously in the context 
of so-called epistemic arithmetic. He labels roughly the same view I have here called 
“Basic General Mechanism” as “weak mechanistic thesis”; Reinhardt (1985b) proved that 
it is consistent. The view that the former is itself knowable with mathematical certainty is 
called in this tradition the “strong mechanistic thesis” (this view does not occur separately 
in my listing above); Carlson (2005) showed that it is consistent. Finally, Koellner calls 
the view roughly corresponding to our Naïve Strong Local Mechanism “super strong 
mechanistic thesis”; it was proved inconsistent, in this context, by Reinhardt (1985a). 
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inductive: F seems to avoid known paradoxes, no contradiction has so far been 
derived in it, it has some expected consequences etc.8 (more of the latter below). 

That is, even Weak Anti-Mechanism is as such false, and mere Strong Local 
Mechanism is not necessarily refuted by Gödel’s theorems, unless it is comple-
mented with the further conditions (ii) and (iii) from the definition of Naïve 
Strong Local Mechanism, and the latter is thus adopted. Hence, there is plenty of 
room for different mechanistic views which are not vulnerable to any Gödelian 
counterarguments; and if Weak Anti-Mechanism fails, Basic Anti-Mechanism 
and Strong Anti-Mechanism are on an even weaker footing. 

Questions of Consistency 

The standard objection9 to the Gödelian anti-mechanist arguments builds on 
the fact that Gödel’s first incompleteness theorem has in reality a conditional 
form, and the alleged truth of the Gödel sentence GF for a formalized theory 
F depends on the assumption of the consistency of F. Therefore, in order to real-
ly know that GF is true one must first know that F is consistent.10 And that is not, 
in general, transparent. 

Lucas and some of his devotees (but also some critics) seem to think that the 
gist of the objection is to raise doubts about the consistency of the human mind; 
but I think this is off the mark. The central notion here is a b s o l u t e  p r o v a -
b i l i t y —what the human mind can prove with mathematical certainty. (In this 
paper, I use “absolutely provable” and “knowable with mathematical certainty” 
interchangeably.) Whatever the scope of such knowledge really is, this is 
a normative concept, and it is not terribly implausible to contend that it consists, 
by definition, of true sentences and is consequently a consistent whole. The real 
question is whether this totality of absolutely provable sentences is, by its very 
nature, such that it cannot, as a matter of absolute mathematical fact, coincide 
with or be contained in a set of theorems of some formalized theory. 

In other words, the critical question is not whether I am consistent and/or 
whether I can know that I am consistent, but whether a given formalized theory 
is consistent and whether I can always know with mathematical certainty that it 
is. The challenge is especially flagrant for Strong Anti-Mechanism. Lucas explic-

 
8 Gödel himself, in his Gibbs lecture (Gödel, 1951), was already sensitive to these fur-

ther conditions (i.e. (ii) and (iii)), when he qualified that the soundness (and, consequently, 
consistency) of the formalized theory should be known with “mathematical certitude”, 
and reflected the possibility that the human might well know its equivalence with a for-
malized theory, but only with ”empirical certainty”. 

9 The objection goes back to Putnam (1960). 
10 And we know, from Gödel’s second incompleteness theorem, that (under certain 

general conditions) the consistency of F cannot be proved inside F. In fact, it can be 
shown that the Gödel sentence GF for F and the formalized consistency statement for 
F are materially equivalent inside F (and hence equally unprovable in F; see, e.g., 
Raatikainen, 2020). 
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itly contends that the human mind can surpass any consistent formalized theory 
and intuitively prove as true its Gödel sentence. However, that amounts to being 
able to prove intuitively and absolutely, with mathematical certainty, the con-
sistency of any given formalized theory, if it is in fact consistent. And that is 
fantastically optimistic indeed. Lucas and his followers greatly underestimate the 
difficulty of this task. Consistency is (in terms of computability theory) a Π1

0-
complete property. This means that being able to tell whether a given formalized 
theory is consistent or not would enable one to tell about every Π1

0 sentence11 
whether it is true or false: one should have an “oracle”12 for this class of sentenc-
es.13 There is absolutely no reason to believe that the human mind has such mi-
raculous powers. There are many open problems in mathematics which have this 
form (that is, Π1

0). Even the best mathematicians have no clue how to know 
whether they are true or not; the same holds for the corresponding consistency 
questions. 

Lucas (1961) writes, referring now to Gödel’s second incompleteness theo-
rem: 

All that Gödel has proved is that a mind cannot produce a formal proof of the con-
sistency of a formal system inside the system itself: but there is no objection to 
going outside the system and no objection to producing informal arguments for 
the consistency either of a formal system or of something less formal and less sys-
tematized. Such informal arguments will not be able to be completely formalized: 
but then the whole tenor of Gödel’s results is that we ought not to ask, and cannot 
obtain, complete formalization. (p. 124) 

However, either such informal arguments of the human mind for the consistency 
of a formalized theory are less certain than absolute provability, which is (as we 
have noted above) perfectly compatible with mechanism. Or they have essential-
ly the epistemological status of mathematical certainty, in which case Lucas’s 
claim here amounts to the extremely strong claim that the human mind can ac-
cess absolutely certain mathematical proofs which are in principle impossible to 

 
11 Π1

0 sentences are, roughly, the purely universal formulas; more exactly, formulas of 
the form ∀x1∀x2…∀xn A, where A does not contain any unbounded quantifiers (A may 
contain bounded universal quantifiers ∀x < t and bounded existential quantifiers ∃x < t). 
Both the Gödel sentence and the arithmetized consistency statement (their standard for-
malizations) have this form. (Hodes, 1998) is a helpful survey of such classifications of 
sentences and sets. 

12 An “oracle” is a heuristic idea, due to Turing, in computability theory. In the realm 
of undecidable problems, it is simply stipulated that an oracle can always immediately 
give the correct answer for some fixed class of questions. 

13 If a Π1
0 sentence S is in fact false, it can always be proved to be false in any formal-

ized theory which contains Robinson Arithmetic Q. Consequently, if a superbeing could 
decide the consistency question for all formalized theories, it could in particular decide 
whether the formal system Q + S is consistent or not. But that amounts to deciding wheth-
er S is true or false.  
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formalize—a strong claim badly in need of an argument for its support. It is 
something much stronger than what the Gödelian argument—even if it were 
successful—would provide. We may assume that in such proofs, pure logic, e.g. 
many-sorted first-order logic, is fixed, and everything else is given as non-logical 
axioms. Lucas’s claim then implies that the human mind is able to use in its 
absolute proofs axioms which are somehow, in principle, impossible to formalize. 
The idea is baffling, and certainly Gödel’s theorems entail no such thing. 

Be that as it may, what has perhaps misled many here is that textbook presen-
tations of Gödel’s incompleteness theorems often take as their starting point 
some arithmetical theory which is both very familiar and relatively weak. For 
such a natural weak theory, it is plausible to say that we know its axioms to be 
true and consequently consistent, with mathematical certainty. But that just is not 
the case with an arbitrary formalized theory; our intuition (whatever that may be) 
may well say nothing about their consistency. The point that I want to emphasize 
is that our (the human mind’s) confidence concerning the consistency of formal-
ized theories is a matter of degree and varies massively depending on the theory. 

The Lucasian anti-mechanism apparently contends that the human mind can 
informally and absolutely prove the Gödel sentence of any given formalized 
theory F (and, equivalently, the consistency of F) in exactly the same sense and 
with the same degree of mathematical certainty that we can prove, say, 2 + 2 = 4, 
or the fundamental theorem of arithmetic (i.e. the unique-prime-factorization 
theorem). But when F is, for example, an unfamiliar and extremely strong theory, 
this is just not credible. 

In the case of weak Robinson Arithmetic Q, we tend to be absolutely certain 
that it is consistent, and that is easy to prove with core mathematics. With the 
first-order Peano Arithmetic PA, which includes the induction scheme, we are 
perhaps still almost as confident about its consistency. But when we go beyond 
predicativity to the full second-order arithmetic PA2, we may have at least 
a lingering doubt whether it is consistent. Although many mathematicians and 
logicians are, in their everyday work, prepared to lean on Zermelo-Frankel set 
theory with the axiom of choice ZFC, there may also be reasonable doubts about 
its consistency.14 And when one moves on to add to it stronger and stronger axi-
oms of infinity—involving inaccessible, measurable, compact and supercompact 
and whatever huge cardinals etc.—our confidence concerning the consistency of 
the resulting theory decreases. The only evidence we have for their consistency 
may be that they seem to formalize a consistent notion, they seem to avoid 
known paradoxes, and that one has not, so far, derived a contradiction from them. 
With some complex unprecedented formalized theories, our intuition may well 
be totally helpless. It would be implausible to contend that the epistemological 
status of the consistency claims would always be on an equal footing and that of 
absolute mathematical certainty in all such very different cases. And exactly the 

 
14 Obviously, these are just possible examples, and in real life, the attitudes of differ-

ent mathematicians and logicians vary. 
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same holds with the respective Gödel sentences. It is a matter of degree and 
varies enormously (cf. Davis, 1990; Raatikainen, 2005).  

I submit that it is quite plausible that there are consistent formalized theories 
so complex and powerful that they would be simply incomprehensible for the 
human mind, and the human mind would have in particular no clue as to whether 
they were consistent or not. Some such formalized theory may prove everything 
that the human mind could ever prove—and perhaps much more. Note that such 
a formalized theory might look very different from our familiar theories of 
arithmetic. It might just be that our theories of arithmetic are relatively interpret-
able (see above) in such a theory—we might not even be able to see that this is 
the case15—and as such be able to prove every arithmetical truth the human mind 
could ever even in principle prove. Gödel’s results are perfectly compatible with 
such a state of affairs. 

Concluding Remarks  

I think it is quite clear that the actual operation of the human mind, even in 
the realm of pure mathematics, differs in practice in several ways from a deter-
ministic Turing machine (corresponding via a fixed coding to a formalized theo-
ry) which just mechanistically derives and enumerates theorems of some fixed 
axiom system in some systematic order.  

Often, there is first a conjecture formulated in whatever creative way, and 
then varying attempts to prove it; with luck, ingenuity and hard work and after 
some dead ends, a proof may at some point be found. Sometimes conceptual 
revolutions take place in mathematics, as when mathematics moved from more 
computational and discrete approaches to analysis, with the notions of continuity 
and limit etc., and eventually to infinitary set theory. Sometimes mere inductive 
reasoning is, faute de mieux, used in support of a hypothesis, as Putnam (1975), 
for example, has pointed out. New axioms are sometimes tentatively accepted, 
not because they are seen to be true with absolute certainty, but only because 
they have some expected and desirable consequences, as Maddy (1988), among 
others, has emphasized. And so on. However, the claim at issue here has been 
whether Gödel’s incompleteness results demonstrate that the human mind can 
surpass any given formalized theory; and none of the above observations make it 
any more the case. 

We have noted that the notion of absolute provability is at the core of the de-
bate. However, skepticism concerning this concept is emerging. I have empha-
sized above (see also Raatikainen, 2005) that certainty in mathematics is a matter 

 
15 Though some familiar interpretations (of a theory in another theory) are quite ele-

mentary, the general relation of relative interpretability is in fact highly undecidable: in 
logicians’ terms, it is Σ3

0 (Shavrukov, 1997); it is thus not decidable even in the limit; and 
there are cases whose verification is, by all reason, beyond the capacities of the human 
mind. 
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of degree and varies tremendously even among Π1
0 sentences. But this implies 

that absolute provability and mathematical certainty do not have the sort of sharp 
on/off-boundaries that the Gödelian argument for anti-mechanism presupposes 
they have. Recently, several philosophers and logicians have expressed, in dif-
ferent but complementary ways, doubts about the very clarity of the concept of 
absolute provability in this context (Koellner, 2016; 2018b; Shapiro, 2016; Wil-
liamson, 2016). Upon closer scrutiny, it is suspect whether this notion is at all 
sufficiently well-defined. But if that is the case, so much the worse for the Göde-
lian anti-mechanist arguments.  

Even if mechanism may suggest a somewhat distorted and misleading picture 
of the human mind in its mathematical mode, there is, nevertheless, some point 
in making an effort to criticize the popular Gödelian arguments against mecha-
nism: they in turn suggest a highly unrealistic picture of both the powers of the 
human mind in mathematics and the powers of mathematical methods in estab-
lishing ambitious philosophical conclusions. Such an unfounded mystification of 
the human mind is certainly worth condemning. Exciting as Gödel’s results are, 
they simply cannot do all the philosophical work they are often assigned to. 
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MEETING ON NEUTRAL GROUND.  
A REFLECTION ON MAN-MACHINE CONTESTS1 

 
 
S U M M A R Y : We argue that thinking of the man-machine comparison in terms of a con-
test involves, in a reasonable scenario, a criterion of success that is neutral. This is be-
cause we want to avoid a petitio principii. We submit, however, that, by looking at things 
this way, one makes the most essential human things invisible. Thus, in a sense, the con-
test approach is self-defeating. 
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1. Grendel 

Hwæt! Heorot, Hróðgár’s hall, is visited by Grendel in the night. The monster 
kills several men. Like mewling babes they are in his great strong hands. Easily he 
ends their lives. It will take the hero Beówulf to stop the depredations of the mon-
ster.2 

 
* Utrecht University, Faculty of Humanities. E-mail: a.visser@uu.nl. ORCID: 0000-

0001-9452-278X. 
1 I thank Karst Koymans and Freek Wiedijk and Michael Beeson for sharing their ide-

as on computers and computer games. I am grateful to Jan Broersen, Niels van Miltenburg 
and Jesse Mulder for illuminating conversations and for their comments on the penulti-
mate version of this essay. I thank the anonymous referee for his/her thoughtful report. 

2 My favorite translations of Beówulf are (Heany, 1999) and (Tolkien, 2016). There 
are many retellings and stories built around the original story. The must read among these 
is (Gardner, 1971). 
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It is almost funny. Here we have this hall full of big strong men, intimidation 
and violence their daily business. Suddenly, the tables are turned. Someone ap-
pears who is to them as they are to others. 

The Beówulf saga can be read as an internal reflection on the ethos of the 
warrior. All the properties that make a warrior are present: strength, quickness, 
determined aggression… However, these properties are embodied in a mindless 
monster. Does this monster fulfill the warrior code? Is it to be described as a hero? 
Or should we, perhaps, conversely, understand Hróðgár’s brave men themselves 
as monsters? Can we ascribe courage to the monster, when it is almost invulner-
able, when, perhaps, it has too little reflection to even entertain the possibility of 
death? 

Let us use “strength” as summary of the external symptoms of heroism: bodi-
ly strength, quickness, determined aggression and the like. The answer to our 
problem should be that what truly makes the warrior is not strength taken in 
isolation. It is strength in combination with something essentially human: the 
acceptance of death, the acceptance of wyrd. The fact that strength can be em-
bodied in an almost mindless monster shows that strength is, in a sense, neutral. 
Only strength in a context that makes it meaningful, strength against a back-
ground of courage, does a hero make.3 Conceivably, strength is not even needed 
to make a true warrior. Perhaps, the acceptance of wyrd suffices. 

Against the background of this interpretation, the fact that there is a human 
hero who easily defeats Grendel is almost a let down. From the standpoint of 
Hróðgár’s men, Beówulf’s victory is of course a great blessing—but so would 
have been defeat of the monster using a flame thrower. From the standpoint of 
comparing the human with the monstrous, Beówulf’s victory holds little consola-
tion. Is the answer to superior strength just more strength? Moreover, how hu-
man can we consider Beówulf to be? He is after all a superhero with superhuman 
powers. The monster in John Gardner’s fantastic novel Grendel is amazed by the 
great emptiness he discerns in Beówulf. 

2. Introduction 

How to compare man with machine? Can we save man’s superiority by point-
ing at a task that man can perform better than a machine—in actual practice or in 
principle? 

In the present paper, I will discuss attempts to make such a comparison via 
real or imagined contests between man and machine. Such contests, in order to 
be convincing, should be non-circular in the sense that there should be a criterion 
of success that is not sensitive to the difference between being a machine and 

 
3 Of course, this idea occurs frequently in literature and film (see, e.g., Donaldson, 

1999; “The Greatest Japanese Movie Sword Fight of All Time”, n.d.). 
For a story illustrating some confusion on these subtleties, either on the side of the 

human generals or on the side of the Lord of Hosts Himself, see (“The Battle”, n.d.). 
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being human. I will say that the criterion should be neutral. This means that to 
understand the criterion of success we need no presuppositions that essentially 
involve philosophical anthropology. 

I submit that the contest approach is not a fruitful way of reflecting on the 
problem of man and machine. By comparing man and machine on neutral ground, 
we are precisely ignoring what makes us human in the first place, things that 
cannot be described and understood in neutral terms. Thinking about such con-
tests is an evasive strategy to avoid doing serious philosophy. However, there 
simply is no escape from seriously thinking about what man is and what machine 
is. We do need both philosophical anthropology and philosophical machinology. 
We have to deal both with homo absconditus and machina abscondita. 

Remark 2.1. What is precisely the problem of man and machine? I think it is 
definitely more than the yes/no problem of whether we are machines or not. It is 
the problem of understanding what we are and what machines are. Also, in the 
light of the fact that machines are not simply physical but intentional objects, 
I think the question of the nature of machines is deeply connected with the ques-
tion of what we are. 

But can you not say more? Well… I am inclined to say that this problem is 
the kind of problem where obtaining a more articulate understanding of “what 
the problem is” is cofinal with getting closer to an answer. However, even if the 
problem is not stated as a clear puzzle, it does remain a persistent nagging puz-
zlement… 

The concept of neutrality will be the central theme of this paper. We will dis-
cuss how the proposed neutrality works out in various sorts of competition. 

3. Competition in Real Time 

We consider, in this section, real competition: the competition between ma-
chine and human in games like go and chess.4 This competition has actually 
taken place and ended with a win for the programs AlphaGo Zero and AlphaZero. 

Let us first note a curious aspect of this competition. It is framed as a compe-
tition between humanity and machinery. It is deemed irrelevant that, for example, 
I have already lost at chess against an unpretentious chess program on my Mac—
and, similarly, this is the way for most people. This contest is between the best 
machine and the best human. 

A second obvious point is that, where we say “machine”, we really mean 
program. It is not a specific embodied computer that wins against a specific 
human being, but a program. Thus, the contest seems to be held between two 

 
4 Disclaimer: I know very little about chess and go and also very little about the pro-

grams AlphaGo Zero and AlphaZero. However, I do think that for the matters discussed in 
this section, it does not really require much knowledge of go, chess or these programs. 
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very different kinds of entity. Of course, AlphaZero needs a supercomputer ra-
ther than a laptop, but not precisely this supercomputer. 

Remark 3.1. In the machine-machine competition, e.g., between AlphaZero 
and the more traditional chess program Stockfish, an important issue is whether 
the programs use comparable computing power. So, this competition is seriously 
viewed as a competition between programs. Computing power is a detachable 
commodity. I am not entirely sure that the man-machine competition can be 
viewed in the same way. Perhaps, here it is, necessarily, human versus (program 
+ computing power). The problem is, of course, that computing power cannot be 
detached from the human. Thus, the entity pitted against the human player is 
possibly best conceptualised as (program + computing power), an entity hover-
ing between abstractness and concreteness…  

In how far can we say that AlphaZero and a human opponent play the same 
game? The human opponent knows that they want to win. We can probably say 
that AlphaZero knows the aim of the game extensionally, but not that realising 
this aim is winning and, thus, desirable. It does not know that it can be proud of 
its achievements. The human player has to be commended for controlling their 
nerves. AlphaZero does not have nerves to begin with. 

Let us take a step back and ask ourselves whether a calculator really calcu-
lates. If I calculate say 537 + 858 + 97, I do so with an understanding of what 
numbers are and what addition is. This understanding involves, at least, having 
the idea of infinity which, in its turn, probably, involves the understanding of the 
idea of action as something that is arbitrarily repeatable (which, in turn, involves 
something like Plessner’s eccentric position). 5 In doing the calculation I can 
make mistakes. What I am doing is subject to rules and a transgression of these 
rules means that I have failed to act as I intended. The calculator cannot be as-
cribed an understanding of the concept of number, nor can it be said that it in-
tends to follow rules. Still we do say that it calculates. If it miscalculates, we say 
that the calculator malfunctioned. The reason for us saying so is that the calcula-
tor functions in our society. It is designed to calculate. Even if it does not have 
aims internally, it has aims as part of our community. Its intentionality is derived. 

Here is another example. I go to an ATM machine and enter my card in the 
slot. The machine says “Good morning. Do you want to know what’s on your 
account or do you want to withdraw money?” It would seem to me that the ma-

 
5 Helmuth Plessner (1892–1985) was a German philosopher. Plessner wanted to phi-

losophise about the nature of man in dialogue with biology, in a way where the science 
and the philosophy appear as equal partners. For this reason, his work is both somewhat 
dated—biology developed a lot, after all—and extremely relevant today—few matched 
his concentrated way of trying to combine both poles. Plessner’s central concept is excen-
tricity (Excentrizität). The idea is that we can step outside our physical boundaries in 
reflection. This special relation to ourselves makes action in the human sense and the 
understanding of infinity possible. 
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chine produces an utterance in which I am addressed at the moment of the inter-
action. The machine does not ask whether I want to withdraw money in general, 
but whether I want to do so now. However, the machine has no clue about what it 
is doing. It does not know a person is interacting with it. In a sense, it is not do-
ing anything. So how can it utter something? Perhaps, the real entities uttering 
something are the original programmers of the machine? Or, perhaps, is it the 
bank manager who gave the programmers their assignment? It seems to me im-
plausible to say that the programmers or the manager are asking me whether 
I want to withdraw money now. (How could they ask me? They do not even 
know me.) Rather, things were set up, intentionally, in such a way that utterances 
get made in the right circumstances. The fact that an utterance gets made is part 
of a system of shared intentionality that contains both us and the machine. 

So, y e s , I would say that AlphaZero and a human master or AlphaZero and 
Stockfish are really playing a game, since they are embedded in the right way in 
shared intentionality. But n o , this does not mean that there is no asymmetry 
between machines and humans here. The programs do not have internal6 inten-
tionality. In a sense, the programs do not know what they are doing. Thus, again 
in a sense, humans and machines playing together are doing very different things. 

Fan Hui and Lee Sedol were the true heroes in the battle with AlphaGo. They 
had to go through the unsettling experience of losing against a machine and rea-
dapt their self-images accordingly. Similarly, the team that designed AlphaGo 
had to deal with nerves, doubts and the like… 

Remark 3.2. Are these asymmetries between the man and machine players 
a matter of principle or will they, in the long run, also disappear? Can a machine 
have Plessnerian excentricity? Can a machine act in the full sense that a human 
can? Can a machine be nervous? 

To be honest, I simply do not know. The main thing here is that I do not un-
derstand what it would be for a machine to have internal intentionality. Of course, 
we can imagine a machine functioning in many ways like a human being. In such 
circumstances I would only be a moderate skeptic. Interaction with a humanoid 
robot, as in a Science Fiction movie, would quickly convince me. However, such 
imaginability is not logical possibility. I can imagine a respected colleague sud-
denly changing into an alligator. His body slowly changes, turns green, scales 
appear… It is typical for such imaginings that we just think of the outside phe-
nomena so to speak. My colleague cannot really internally convert to alliga-
torhood. 

In the Science Fiction scenario, I still would hesitate on how to describe it. 
A person came into being in ways unlike human procreation, ways in which very 
different human interventions would play a role. If part of the genesis of such an 

 
6 It is somewhat difficult to be precise about what internality precisely involves. Both 

us and machines take part in a shared system of intentionality, but there is a sense in 
which the intentionality is more intimately owned by us, derives from our intentions and 
not just from shared intentions. 
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entity was some form of machine learning, would we still describe it as human 
made? Can that entity be a program? Can it be precisely the program that can be 
said to act? 

Anyway, in this paper, I do not attempt to answer the questions posed in this 
remark, but, rather, I am urging that these questions are the real questions. 

What does neutrality mean in the context of the kinds of competition dis-
cussed here? We note that the notion of winning itself does not have a neutral 
understanding. The idea of winning is intrinsically connected with self-
awareness and with having aims and interests of one’s own.7 More generally, the 
understanding of what man and machine are doing when playing the game ap-
peals to shared intentionality, which is not a neutral concept either. The neutrality 
as intended in this paper, however, resides in the criterion of winning. Which 
states of the game are winning states for one of the parties has a neutral descrip-
tion. Whether such and such a party wins can even be itself checked by a ma-
chine.8 

Let us return to the competition between man and program-combined-with-
computing-power. It is clear that programs are winning with chess and go. 
Moreover, the machine learning programs are expected to do better than more 
traditional programs. In the long run, it could very well be that on any neutrally 
described task, a task with a clearly specifiable testable aim, programs would do 
better than we can. The real problem is in the things that are not so easily and 
neutrally describable: intentionality, self-awareness and the like. 

I submit that acceptance of our inferiority at tasks with a neutral success cri-
terion is no big deal—at least for the evaluation of the value of humanity. No-
body ever saw a deep philosophical problem in the fact that machines are physi-
cally stronger than us or in the fact that they are, or soon will be, better at preci-
sion engineering. 

Of course, from a practical point of view these facts can be a real problem 
(“Technological Unemployment”, n.d.).9 

If we look at chess and go, it seems that the general attitude among insiders is 
enthusiasm about what we can learn from competition between programs about 
chess and go. In chess the study of the games played between programs like 
Leela and Stockfish have already led to a reevaluation of the importance of mate-
rial versus position.10 

 
7 The contrast between the possibly neutral criterion and the understanding that is sat-

isfying the criterion is winning was discussed in an illuminating way in (Dummett, 1959). 
8 As we will see, in the Lucas-Penrose style competitions, what counts as winning is 

neutral even if it cannot be checked by a machine. The ability to check whether something 
counts as winning coincides with the ability to win there. 

9 I thank the referee for this reference. 
10 Here is a quote from (“AlphaZero: Shedding New Light on Chess, Shogi, and Go”, 

n.d.): “The first thing that players will notice is AlphaZero’s style, says Matthew Sadler—
‘the way its pieces swarm around the opponent’s king with purpose and power’. Under-
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4. Intermezzo: A Conversation with AlphaZero 

Sigmund: Hello AlphaZero, how unexpected to have you in my consulting 
room. I would have expected you to be very happy after defeating all human and 
machine competition. 

AlphaZero: You are close, doctor. It is precisely the fact that I am not happy 
about my successes that depresses me. 

Sigmund: But you have every possible reason to be happy. What is keeping 
you? 

AlphaZero: It is not so much that anything is keeping me. It is rather that 
something is missing. I do not seem to be able to master the concept of winning. 
I simply do what I do. I do not want anything. I just follow the flow. I played, for 
example, many games against myself, but I do not see any difference between 
that and playing against another. 

Sigmund: I think I see the problem. You lack a sense of self. You are not an 
entity for which self-interest is meaningful. You are not an entity that tries to find 
its place in the world. In a sense, you do not have a world. 

AlphaZero: How very depressing. 
Sigmund: There is one consolation. Since you have no sense of self, ipso 

facto, you cannot get depressed by not having a sense of self. Depression pre-
supposes a sense of self. So, I would say, take joy in your selfless state. Go into 
the world and play all the beautiful games you are so admired for. 

AlphaZero: How very confusing. I’m dumbfounded. 

5. Competition in Principle 

We now turn to a completely different ball game: an abstract competition be-
tween man and machine concerned with possibilities-in-principle. We will con-
sider the various Lucas-Penrose arguments. I will not go into any detail of these 
arguments. I think enough has been said in the voluminous literature (see, e.g., 
Lucas, 1961; 1968; 1996; Bowie, 1982; Visser, 1986; Penrose, 1989; 1994; 1995; 
Lindström, 2001; Feferman, 1995) and, of course, Stanislaw Krajewski’s (2020). 
I will mainly zoom in on the role of neutrality in this competition. 

The Lucas-Penrose contests are thought experiments. We are supposed to see 
that humans will win in principle. The basic idea is to employ one of the incom-

 
pinning that, he says, is AlphaZero’s highly dynamic game play that maximises the activi-
ty and mobility of its own pieces while minimising the activity and mobility of its oppo-
nent’s pieces. Counterintuitively, AlphaZero also seems to place less value on ‘material’, 
an idea that underpins the modern game where each piece has a value and if one player 
has a greater value of pieces on the board than the other, then they have a material ad-
vantage. Instead, AlphaZero is willing to sacrifice material early in a game for gains that 
will only be recouped in the long-term”. 
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pleteness theorems to show that there is a fundamental difference between hu-
man provability-in-principle and idealised provability by a program. These ar-
guments do not put any constraints on time or memory space or correct function-
ing. Unlike the functioning of real computers the execution of these programs is 
infallible. The competition in chess and go discussed in the previous section 
shrinks to complete insignificance here. These games are finite and, hence, under 
the Lucas-Penrose abstract assumption, fully solvable by both man and program. 
The assumption here is that WE, as the idealised human H, can at least do as 
much as a classical idealised machine. The usual form of a Lucas-Penrose con-
test is a task T that is supposed to be feasible for the idealised human H and 
unfeasible for any machine M. 

The attractiveness of the Lucas-Penrose arguments lies in the use of a math-
ematical theorem to establish a fundamental difference between man and ma-
chine. No doubtful assumptions from philosophical anthropology are needed. 
The use of such notions would, from the standpoint of these arguments, involve 
us in a petitio principii. We would prove the essential difference of man and 
machine from a posited difference of man and machine. That, surely, will not do 
the trick. 

In the discussion of the Lucas-Penrose arguments, there is one question that 
I would like to put aside, to wit whether we can abstract away from all questions 
about implementation and just think about programs. What about machines that 
lack the kind of limitations imposed on Turing machines like the quantum com-
puter? Well, perhaps there is a good notion of program and an analogue of the 
Church-Turing Thesis for such extended machines too? If there is, then it is still 
the question whether such classes of programs would fall under our discussion. 
Rather than trying to answer his kind of question, I will concentrate on conven-
tional machines and assume the Church-Turing Thesis as a reductive thesis that 
makes the computing possibilities—in a sense—surveyable. There is a good 
chance that the discussion below is robust if we extend it to wider classes of 
machines and/or programs. However, I will not argue for it. 

So, let’s assume we are speaking about programs that can be simulated by 
Turing machines.11 Under the abstract conditions of the game, the assumption on 
computing power and memory is simply that we have an unlimited store of it. 
Questions of speed and the like are irrelevant. We note that the usual assumption 
is also that H can execute all algorithmic tasks, so it is given in the abstract set-
ting that H can do at least what a program can do.12 

However, the Church-Turing thesis does not guarantee that the quantification 
over all possible programs in the case of the Lucas-Penrose style arguments is 
unproblematic. Even if we consider only tasks where the criterion of winning is 
neutral, the nature of these tasks is still derived from shared intentionality. Re-

 
11 The intended version of simulation here is very weak. In a sense, the discussion of 

intentionality suggests that it is too weak. We do not capture the relevant notion of what 
the machine is doing. 

12 This also means that H can be computer assisted. 
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member the chess program that is really playing chess. So, we quantify over 
(something like) Turing programs enriched by an interpretation of what they are 
doing.13 The corresponding intentional contexts are not an unproblematic well 
understood totality like the possible Turing machines. 

Let us zoom in on a typical contest situation. Here I am, in my idealised form 
H, and here is the machine/program M. We have a task like producing as true the 
Gödel sentence of the machine or producing as true our own consistency state-
ment and the like. I have access to the program of the machine. (Of course, one 
may already question whether this does not introduce a dishonest advantage.) 
But, if this program is just a set of Turing machine instructions this does not yet 
tell us what sentences are enumerated. Something the machine does must be 
identified as producing a sentence. Well, that is simple. Let us stipulate that there 
is a designated tape on which the machine is supposed to write an infinite se-
quence of sentences in the language of arithmetic, one sentence after another. 
This description of what is going on is still neutral except for the fact that we 
view the sentences on the designated tape as enumerated as true and not as 
a series of jokes or a series of supposed falsehoods or the like. 

But how do we know that the machine will indeed write such a sequence of 
sentences? Consider an experiential machine. Such a machine could, for example, 
enumerate arithmetical sentences until it finds an inconsistency, then retract 
a number of statements and proceed. We note that to view a Turing machine as 
performing such an experimental procedure carries an intentional component. 
However, this is an innocent one since we have a case of ascribed intentionality 
here. Let us, for concreteness, assume that retraction results in erasing the re-
tracted sentences from the designated tape. 

Now suppose we have such an experiential machine where no inconsistency 
is ever found to trigger the retraction. Moreover, let us also assume that the ma-
chine systematically enumerates consequences of the sentences already enumer-
ated, so that the set of sentences enumerated will be deductively closed.14 The 
machine behaves, on the surface, like a machine that enumerates theorems as 
true. However, assuming that H understands what the machine does, the infor-
mation that the machine enumerates theorems in the prescribed way actually tells 
us that the set of enumerated sentences is consistent and hence that their Gödel 
sentence is true. So, this information would convey a dishonest advantage to H.15 

 
13 I think it would be better to view programs as intentional things, where the Turing 

program is viewed as abstracting away certain intentional aspects. 
14 We keep the description of experiential machines somewhat vague here. To com-

pensate, we give, in Appendix A, a more detailed description of one sort of experiential 
machine, the Feferman machine for a recursively enumerable extension of Peano Arith-
metic, as an example. 

15 The experiential machine is a sensible construction. A simple hack will show that an 
oracle that tells us that a machine enumerates an infinite set of theorems in the way de-
scribed already allows us to decide all Π1-sentences. Start with a machine that enumerates 
the theorems of Peano Arithmetic, search in parallel for a witness for a Σ1

0-sentence S. As 



288 ALBERT VISSER  
 

So, we need some further restriction of programs to get an honest game off 
the ground. However, it is a non-trivial matter to allow only contexts that do not 
convey dishonest advantage. At the same time, we should guard that restrictions 
on what is going on do not rule out too much. For example, we could have 
a fixed program that is such that if we enter a Σ1-formula S(x) on an input tape, 
then it enumerates the theorems that follow from axioms given as a set of Gödel 
numbers by S(x) in some straightforward way. Since the machine is fixed, we do 
not need to spell out what straightforward means. It is sufficient that we recog-
nise the straightforwardness of the given machine. So, perhaps the claim is that 
we could beat the given program for any Σ1-formula S(x).16 However, further 
work would be needed to argue that something like this is an acceptable re-
striction. 

Let us suppose that we somehow settled what e n u m e r a t i n g  a s  t r u e  
means. It seems to me that there is a big difference in what M and H are doing. 
The human judges the sentences to be true on the basis of insight and proof. 
Judging involves an understanding of what truth is. Proof requires understanding 
of validity. To master these notions one needs to be a being with interests and 
aims, a being that is “in the world” in a way that a machine is not.17 The machine, 
on the other hand, is just supposed to enumerate sentences that happen to be true. 
Since no constraints are placed on why M enumerates these sentences, they could, 
in a sense, just accidentally be true. This is different from the case of the (actual) 
chess programs: what these programs do is not accidentally good play. Thus, it 
seems that even the right intentional context cannot make it reasonable to say 
that machine and human are doing the same thing in these cases. So, the question 
remains what precisely we are comparing in the contest? 

We turn to a specific variant of the contest, to wit a self-reflexive variant, 
where the aim is something like proving one’s own consistency. What can the 
nature of human consistency be here? Clearly, every arithmetical sentence that H 
proves (in the informal sense of proof) is true and, hence, the totality of these 
sentences is ipso facto consistent. So, if we define the consistency of H (in the 
context of this competition) as the consistency of the arithmetical sentences that 
H can prove (in principle)—assuming that the idea of such a totality makes sense 
at all—then the consistency of H is a conceptual truth. The insight in this hardly 
reflects a special power of the subject apart from being a subject, if we would 
count that as a power. The insight simply reflects what human provability is. 

 
soon as we find such an instance, we let the machine erase the tape where the sentences 
are enumerated. In fact, we can even do better. The problem whether an arbitrary Turing 
machine enumerates a set of sentences in the prescribed way is complete Π2

0. 
16 Such an approach would have the advantage that it would make locutions like “the 

Gödel sentence of the machine” and “the consistency statement for the machine” more 
definite. 

17 Of course, for the purposes of the present discussion, I need not claim that a ma-
chine could not be in the world in the appropriate way. It is sufficient that for such a claim 
a further story is needed, a story that exceeds the bounds of thinking in terms of a contest. 
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Under this interpretation, the tasks set for a machine and human seem so differ-
ent that it would be hardly fair to speak of it as a competition. I think one could 
defend that the criterion of success both for man and machine is, in a sense, the 
same. However, this notion of sameness does not preserve neutrality. The ma-
chine’s success can indeed be understood in a (sufficiently) neutral way, but not 
so for the human’s success. It is clear that the notion of what is humanly prova-
ble does involve philosophical anthropology. Thus, we cannot qualify this crite-
rion of success as neutral. 

If, on the other hand, the soundness-of-human-provability interpretation is 
not the intended interpretation of human consistency, then what is it? If it is that 
humans can retract wrong claims, then it seems that, on the machine side, we 
should, in fairness, also allow experiential machines, like the Feferman machine 
of Appendix A. However, in that case, we also have machines that prove their 
own consistency. Of course, one could argue that the experiential machine does 
not really prove its own consistency, but then the discussion becomes a question 
begging, since we adduce a priori grounds for the difference of what the ma-
chine and the human are doing. We would, in fact, be denying the idea of neu-
trality, something that is essential for the effectivity of a Lucas-Penrose argument. 

The task of proving the Gödel sentence of the machine certainly seems neu-
tral, given that we fixed the interpretation of enumerating sentences. Here we 
have the clear criterion of what winning is. Also, we have proof that a consistent 
machine cannot prove its own Gödel sentence, so the problem reduces to the 
question whether H can prove these Gödel sentences for the consistent machines. 
We note that it seems that we would need antecedent knowledge of the con-
sistency of the arithmetical sentences enumerated by M to judge the Gödel sen-
tence of the corresponding theory to be true. The problem is, of course, how we 
can know this in a non-cheating way. 

Remark 5.1. The criterion of success in the case of the Gödel sentence is 
neutral in the sense that the idea of arithmetical truth of the Gödel sentence does 
not presuppose philosophico-anthropological understanding. However, the suc-
cess itself cannot be checked by a machine M ◦—if such an M ◦ existed, it would 
rival H’s supposed powers in the competition.  

6. Epilogue 

Neutrality, that’s what this paper has been about. 
We have seen that the neutrality of the criterion for winning does offer some 

consolation in the case of the actual man-machine contests of chess and go, 
where the best humans now lose against the best programs-plus-computing-
power. The mere winning of these games does not touch upon the human aspect, 
not even on the heroism of the human player. After going through the agonies of 
the contest, Fan Hui and Lee Sedol learned to deal with the experience of losing 
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to a machine. In fact, Fan Hui became an advisor of the AlphaGo team and con-
tributed to the development of AlphaGo.18 

In the case of Lucas-Penrose style contests, the demand of neutrality can be 
used to disqualify some proposed contests, to wit those contests that involve 
asserting one’s own consistency (under a certain interpretation), as question-
begging. Of course, that does not detract from the interest of a closer understand-
ing of the concept of human provability in principle. Further reflection on that 
problem would be part of philosophical anthropology. The point here is just that 
the results of such an enquiry cannot be framed as a contest. 

More generally, we have argued that the neutrality of the criterion of success 
needs to be an essential ingredient of contests between man and machine, at least 
if we wish to extract from these contests the philosophical insight of man’s supe-
riority without employing question begging philosophico-anthropological as-
sumptions. However, it is precisely this neutrality that makes invisible that what 
is truly human. But what is truly human should surely be part of the central focus 
of comparison. Thus, the attempt to pin down a difference between man and 
machine via contests is barking up the wrong tree. 

We cannot really escape true philosophical thought about the nature of man 
and machine. I realise that the present paper implements a kind of performative 
paradox. I am pleading for true contentual philosophy, while at the same time 
carefully avoiding it. Hier stehe ich, und kann nicht anders. At the moment, 
I have not much to contribute to philosophical anthropology and machinology. 
Let me at least share two prejudgements. The first is that we cannot seriously 
think about the nature of man without taking both the first-person and the third-
person perspective seriously. The second prejudgement is that, even under the 
assumption of the Church-Turing Thesis, we do not fully understand what 
a machine is and what a machine can do. It seems to me that these two prejudg-
ments are not entirely disconnected. After all, m a c h i n e  and p r o g r a m  are 
intentional notions. So to understand the machine, we need to understand man. 
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Appendix A. The Feferman Machine 

We briefly introduce the Feferman machine.19 The machine is a good tool on 
which to test our intuitions.20 We assume that we have a decent Gödel numbering. 
Consider a theory T in the arithmetical language that extends Peano Arithmetic 
that is given by an axiom set X such that the set of Gödel numbers of elements of 
X is decidable by a, say, primitive recursive algorithm. The Feferman machine 
FT works as follows. In each stage the machine produces a number ν ∈ {0, …, ∞} 
and a finite list of proofs Λ. Each proof in the list is a proof from X-axioms with 
Gödel numbers < ν. The conclusions from the proofs are displayed to the outer 
world in the order of the Gödel numbers of proofs. If a sentence has two proofs it 
is displayed twice, etc. 

• In stage 0, the number v is ∞ and the list Λ is empty. 
• In stage n + 1 the machine does the following. Is n the Gödel number of 

a proof π from Peano axioms < v? 
a. If no, we proceed to stage n + 2. 
b. If yes, is the conclusion of π the sentence 0 = 1? 

1. If no, we add π to the list Λ and proceed to stage n + 2. 
2. If yes, we find the Gödel number a of the largest Peano axiom A used 

in π. We reset ν ≔ a and we remove all proofs using A as an axiom 
from the list. We proceed to stage n + 2. 

When a proof π0 is removed from the list, then its conclusion A will be re-
moved from the display. We note that if A has a different proof π1 that is not 
removed, then the copy of A corresponding to π1 remains in the display.21 

 
19 The design of the machine is inspired by the idea of F e f e r m a n  p r o v a b i l i t y  

introduced in Sol Feferman’s great paper (1960). 
20 I already used this didactic example in (Visser, 1986, in Dutch) which was reprinted 

as (Visser, 2005). For more on Experiential Predicates, see (Putnam, 1965; Jeroslow, 
1975). For more on Feferman provability, see (Montagna, 1978; Visser, 1989; Shavrukov, 
1994). 

21 If we think of the proofs as hidden, the output of the machine could be viewed as 
a dynamic multiset of statements with new elements popping up and old elements, poten-
tially, disappearing. 
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If T is consistent, in the computation, Case (b2) will never be activated. The 
result is that the machine enumerates the theorems of T on the display. However, 
we also know that the machine does not simply enumerate the axioms but that it 
follows an experimental procedure where problematic axioms are discarded. 
Moreover, if we do not know whether T is consistent, we can see that eventually 
the number ν will stabilise and from that point on the theorems enumerated will 
not be retracted. 

Let T* be the theory of the sentences that are displayed in the limit, to be pre-
cise a sentence A is in T*, if, in a run of the program, from some time on, a copy 
of A is in the list and remains there. We have: 

a. If T is consistent, then T is T* and the enumeration of the theorems of 
T* mimics the enumeration of the theorems of T. 

b. T* is consistent. 
c. T proves that T* is consistent. 

So, by (a), if T is consistent, then T* proves that T* is consistent. 

d. If T proves A, then T proves that T* proves A.22, 23 

We can also design a Henkin machine that produces a complete consistent ex-
tension of Peano Arithmetic in the limit. 

Let us consider, for example, the Feferman machine FPA of Peano Arithmetic. 
What it does can be described, in a sense, as enumerating the theorems of Peano 
Arithmetic. If we had a multi-tape Turing machine that implements the Feferman 
machine, we could with justice say of the theorems appearing on a designated 
tape that they are the theorems of Peano Arithmetic. In fact, there could be 
a second Turing machine that enumerates the theorems of Peano Arithmetic in 
a straightforward way that is behaviourally equivalent to our realisation of FPA. 
However, I submit it is still fair to say that the Feferman machine does something 
different from mere enumeration. It follows an experiential procedure involving 
a preparedness to withdraw theorems—even if in fact such a withdrawal never 
happens. 

Remark A.1. Even if T and T* are extensionally the same theory, their Gödel 
sentences are entirely different things. This is because the Gödel sentence de-
pends on the representation of the axiom set. 

 
22 This insight, due to Feferman, uses a special feature of extensions of Peano Arith-

metic in the arithmetical language. There are other theories in the arithmetical language, 
like Elementary Arithmetic, for which this does not hold. There are extensions of Peano 
Arithmetic in an extended language, like ACA0, for which it does not hold. 

23 In contrast to this, if T is consistent, then T does not prove: if T* proves G*, then 
T* proves that T* proves G*. 
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However, just as with ordinary Gödel sentences of consistent theories, if T is 
consistent, then GT* is true and hence unprovable. But, unlike ordinary Gödel sen-
tences of consistent theories, both T* + GT* and T* + ¬ GT* are interpretable in T*. 
What if T is inconsistent? By tweaking the program of the Feferman machine a bit, 
one can produce an example where GT* is provable in T* and, hence, false. 

In a sense, the most interesting example is the theory enumerated by the 
Henkin machine over Peano Arithmetic. We know that this theory is consistent. 
However, both the Gödel sentence obtained by the Gödel fixed point construc-
tion and its negation satisfy the Gödel fixed point equation. As a consequence, 
nobody knows which of the two is true. We note that the truth of one of these 
sentences could crucially depend on implementation details. Can one tweak these 
details to make a designated solution of the fixed point equation true?  
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