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1 INTRODUCTION

Mathematics is what mathematicians are doing when they do their 

work as mathematicians. They create new formalisms, formulate 

axioms, deduce theorems. This is more or less clear. It seems that for 

a philosopher who decides to interfere into the mathematicians’ work, 

it is left only to determine syntactical rules and reconstruct everything 

in a logical order. However, there are important questions involved in 

this kind of ordering work. What mathematics is about? How do exist 

mathematical formalisms? Have axioms and theorems some kind of 

independent existence? In other words, how to cope with the seman-

tics of mathematics? This is a vast terrain open for philosophers of 

mathematics.

There is an opinion that “mathematics is closed with respect to 

its philosophy”, i.e. that it is possible to do philosophy of mathemat-

ics in a mathematical way. In last decades, mathematical category 

theory was the arena of enormous progress, and at the same time 

became a powerful tool for many philosophical investigations (see, for 

instance, Landry [2017]). Its impact on the philosophy of mathemat-

ics was evident almost from the very beginning. In the present work, 

I employ mathematical tools of this theory to face the syntax-seman-

tics problem in the philosophy of mathematics.

It is a standard way to logically organize a mathematical theory, 

a theory T, say, so as to have its syntax well defined. It is also well 

known that every category, for instance a category C, has its internal 

logic, and if this logic is sufficiently rich, the category C provides se-

mantics for the theory T. If this is the case, we can say that T is about 

C. Moreover, the categorical logic allows us to investigate the in-

teraction between syntax and semantics of T. More precisely, there 

exists a pair of functors, Lang and Syn, from a category, belonging 

to a certain class of categories (for instance, coherent categories) to 

a category of theories, and vice versa, which mathematically describe 

this interaction. Moreover, it turns out that these functors are adjoint 

functors. Land and Syn describe, in a formal way, mutual dependen-

cies between the syntactical structure of T and the internal logic of its 

semantics. Syntax and semantics are interwoven with each other in 

a manner corresponding to the adjointness of the functors Lang and 

Syn.
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This is presented in sections 2 and 3. They contain material well 

known to category theorists, and the style of presentation is didactic 

rather than mathematically precise. For the sake of simplicity, the 

analyses are, in principle, restricted to the first order predicate logic. 

Section 2 focuses on preliminaries; section 3 penetrates more deeply 

into the role of functors Lang and Syn.

We are now ready to make category theory operational in the 

domain of the philosophy of mathematics. It was John Bell (1986) 

who proposed to abandon set-theoretic approach to foundations of 

mathematics, and to regard topos theory as the univers de discours for 

mathematics. Consequently, according to him, mathematical concepts 

have only local meaning (i.e. only with respect to a topos equipped 

with a natural numbers object [NNO], called local framework), and 

the truth values of mathematical statements are defined only locally 

(only those mathematical assertions have absolute truth values that 

are invariant with respect to admissible transformations between local 

frameworks). My proposal, rather a loose idea, is to extend Bell’s 

program beyond the realm of topoi to the conglomerate (certainly 

not a category) of all categories and all functors between them. To un-

derline an informal and indeterminate character of this conglomer-

ate, I propose to call it “categorical field”. Since categories have their 

internal logics, logic is a “local variable” in the categorical field. To the 

field of categories there corresponds the “field of theories”, and in-

teractions between their syntactic and semantic aspects also develop 

locally. Some people claim that Gödel’s theorems caused crisis in 

mathematics, but the theorems themselves and their consequences 

are valid only in those categories which contain basic arithmetic, e.g. 

Peano’s arithmetic. In the categorical field, the “crisis” has certainly 

only a local outreach.

This is covered in sections 4 and 5. Section 4 focuses on Bell’s 

program and its extension to the categorical field; section 5 deals with 

Gödelian limitations of mathematics.

After reflecting on the nature of mathematics, the natural question 

is: what about physical theories? As far as they employ mathematical 

theories, they are subject to the same syntactic and semantical rules; 

the essentially new aspect is their reference to the physical world. This 

domain or aspect of the physical world, to which a given physical theory 

T refers, I propose to call natural semantics (NS) of T. It is tempting to 
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consider two “adjoint functors”, I call them Mat and Measur, between 

natural semantics and physical theories, and vice versa, in a loose 

analogy with functors Lang and Syn, and use them to investigate in-

teractions between syntactical structures of physical theories and those 

domains or aspects of the physical world these theories are about.

This is done in section 6. It is obvious that in this section, one must 

go beyond the strict formalism.

2 CATEGORIES AND LOGIC

In this section, I start to present this material from category 

theory and categorical logic that is indispensable to grasp the inter-

play between syntax and semantics of formal theories.1 We must first 

make precise what do we mean by a formal theory. The definition 

must be strict to enable formal manipulations, and at the same time 

broad enough to embrace real mathematical theories. To ensure the 

latter, we will assume that it is a type theory, i.e. that each of its terms 

is equipped with a specific type. Many mathematical theories use 

a single type language but category theory, for instance, uses either 

two type language (with objects and morphisms as types) or a single 

type language (with morphisms as a type). A rule assigning a type to 

a term is called a type assertion (for details about type, terms and 

formulae see Appendix). To guarantee a sufficiently broad character 

of the approach, we will assume that the theory in question is an ax-

iomatic theory.

Definition 1 A (type) theory T consists of:
1. a set S of types,
2. a set V of variables with a type assigned to each variable,
3.  a set F of function symbols with a type assigned to each domain and 

codomain of every function symbol,
4.  a set R of relation symbols with a type assigned to each argument of 

every relation symbol,
5. a set of logical symbols,
6. a set A of axioms (in the form adapted to the type formalism).

1 In doing so I essentially follow Fu (2015) with some simplifications. I also 
recommend reading Bell (2017).
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The relation symbols may also refer to unary relations (i.e. rela-

tions having one argument); we may interpret them as properties (for 

details of this definition see Mac Lane, Moerdijk [1992, p. 527]). For 

instance, the Zermelo-Fraenkel set theory (with the axiom of choice) 

can be put into this form. Let us notice that not only mathematical 

theories can be formulated as type theories.

A sufficiently rich category C with finite limits can be made (in a ca-

nonical way) a model for any type theory T. In this way, C provides 

a semantics for T, the so-called categorical semantics.

 Definition 2 The categorical semantics ⟦⋅⟧ for a theory T is defined in the 
following way:

1. for each type A, ⟦A⟧ is an object in the category C,
2.  for each function symbol  with the types A and B for its domain and 

codomain, correspondingly, ⟦ ⟧ is a morphism ⟦A⟧ ⟶ ⟦B⟧ in C,

3.  for each relation symbol R of a type A (with arguments of certain types) 
and a term t, ⟦R(t)⟧ is a chosen subobject ⟦R⟧ of ⟦A⟧ in C.2

To this definition we must add all of (first order) logic which is used 

by T expressed in terms of ⟦⋅⟧, but this is almost obvious and going 

deeper into this matter is not necessary for the rest of my argument 

(for details see Fu [2015]).

What does this mean “sufficiently rich category”? Categories have 

their own “internal logics”, and if such a logic is too weak, it is unable 

to provide semantics for the theory T. Any category C with final limits 

can model a logic with operators ∨ and ⊤, but for a stronger logic 

more structure would be required. Usually, it is enough to consider 

theories formulated in the so-called coherent logic. This is a part of 

the first order logic using only the connectives ∧ (and) and ∨ (or), ⊤ (true), ⊥ (false), and the existential quantifier (for a full definition 

see Coherent Logic [2018]). A category, the internal logic of which is 

coherent is called a coherent category. In the coherent logic there 

is no difference between classical and intuitionistic logic. Moreover, 

large parts of mathematics can be axiomatized as coherent theories.

Let us make the concept of the internal logic for a category C precise.

2 Technically, this means that for every relation R and any term t, R(t) is the 
pullback of R along t (for details see Low [2013]).
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Definition 3 The internal logic of a category C is defined in the following way:
1. its types are objects of C,
2. its variables are identity morphisms in C,
3. its function symbols are non-identity morphisms in C,
4.  its relation symbols are subobjects in C. If φ is a subobject of an object 

A in C, it can be regarded as a proposition; by analogy with the usual 
set theory, just think of φ as a collection of all things of type A which 
verify φ.

Logical symbols are assumed as usual, and if the category C is to be regarded 
as a semantics for a theory T, axioms of T must be given by the order relation 
on the subobject poset in C.3

In the obvious way, internal logic of a category C defines a type 

theory T for which C provides the semantics. Therefore, if a statement 

is provable in T, it is also true in C (soundness), and vice versa if a state-

ment is provable in C, it is true in T (completeness). The fact that we 

can “extract a type theory out of any category” (Fu, 2015) allows us to 

treat definition (3) as defining a functor, call it Lang, from categories 

to type theories. To change definition (3) into the formal definition of 

the functor Lang we need only to determine a suitable category of cat-

egories and a suitable category of theories between which this functor 

operates. If this is done, given a category C of CATEGORIES, we 

simply identify Lang(C) in THEORIES with the internal logic of C as 

it is defined in definition (3).

Let us first define the category THEORIES of theories. As it should 

be expected, its objects are theories and, less obviously, there is an 

arrow from a theory T to a theory T', T ⟶ T', if one can express (in-

terpret) T in terms of T' (Fu, 2015).

We also define the category CATEGORIES of categories as the col-

lection of those categories (with corresponding functors as morphisms) 

that have enough structure required by definition (3) to provide se-

mantics for theories of THEORIES (for details see: Fu [2015], Internal 
Logic [2018]). To make this rather sketchy description more concrete, 

we may agree to identify the category CATEGORIES with the category 

of coherent categories having coherent functors as morphisms.

3 A proposition φ implies a proposition ψ if, regarded as subobjects of an object 
A in C, they are connected by a morphism φ ↪ ψ in the poset of subobjects of A.
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In this way, definition (3) determines the functor Lang: CATEGO-

RIES → THEORIES. The nice thing is that we also have a functor 

“in the reverse direction”, Syn: THEORIES → CATEGORIES. If 

T ∈ THEORIES, then Syn(T) is called the syntactic category (of T). 

Before we define it, we should introduce some new terminology.

The pair (Γ,Φ), where Γ is a collection of type assertions4 and Φ 

a collection of well defined formulae, is called a context. It is a for-

malization of what in ordinary language we mean by this term. In the 

present case, it consists of everything that has to be assumed to render 

a given assertion valid. When T is a mathematical theory, this practi-

cally means to explicitly determine types of all its terms.

Definition 4 Let T be a type theory. Its syntactic category Syn(T) is defined 
in the following way:

1. its objects are contexts (Γ,Φ),
2.  its morphisms (Γ,Φ) → (Δ,Ψ) are interpretations of variables, i.e. for 

each type, prescribed by Δ, we must be able to construct an element of 
this type out of data contained in Γ. We also must, for each assumption 
required by Δ (if there are any) present a proof of this assumption out of 
assumptions contained in Γ.5

Syn(T) is also called a category of contexts (for details and examples 

see Syntactic Category [2018]). From a theory T we have constructed the 

category Syn(T). For all practical purposes T and Syn(T) are the same, 

but Syn(T) is less dependent on the language than T, in the follow-

ing sense: let T and T' be two type theories having different structures 

(therefore, they differ as far as the language is concerned), but Syn 

and Syn(T) may be equivalent as categories. If the latter is the case, the 

theories T and T' are said to be Morita equivalent.6 Usually, theories 

4 For instance, Γ = {x
1
:A

1
,…,xn:An} 

assigns types A
1
,…,An to variables x

1
,…,xn, 

respectively.
5 More precisely, if Γ = {x

1
:A

1
,…,xn:An} and Δ = {y

1
:B

1
,…,yn:Bn} are two con-

texts, then a morphism (Γ,Φ) → (Δ,Ψ) is a collection of terms Γ ⊢ t
1
:B

1
,…, Γ ⊢ tn:Bn. 

This means that to give this morphism we must give, for each type, or assumption, 
required by Δ, a method to construct an element of that type, or a proof of that 
assumption, from the data or assumptions given by Γ.

6 Morita equivalence is usually defined without mentioning syntactic catego-
ries; for instance, two theories are said to be Morita equivalent just in case their 
classifying toposes are equivalent (Tsementzis, 2015). Originally, Morita equiva-
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are regarded just equivalent if they are Morita equivalent (for details 

and discussion see Halvorson, Tsementzis [2017]). In such a case, 

one defines a morphism between theories T and T' to be a functor 

between their syntactic categories Syn(T) → Syn(T '). “Moreover, the 

fact that the syntactic category is defined »syntactically« means that 

a morphism T → T ' actually induces a »translation« of the types, func-

tions, and relations of T into those of T '” (Internal Logic, 2018).

It turns out that the functors Syn and Lang are adjoint functors. 

Since the object Syn(T) in CATEGORIES provides a semantics for the 

theory T, and the object Lang(C) in THEORIES provides a syntax 

for the category C, the adjointness of these two functors determines 

a strict interaction between semantics and syntax. This can be seen 

from the two following formulae

(1) Syn(Lang(C)) → C,
(2) T → Lang(Syn(T)),

with both morphisms natural (in the sense of category theory), which 

formally express the adjointness of Syn and Lang functors.

As these two formulae are heavy with meaning, they call for 

a deeper attention.

3 THEORIES AND FUNCTORS

Let us start with formula (1). We construct, by following instruc-

tions contained in definition 3, the internal logic of a category C, that 

is to say a theory TC = Lang(C) for which C provides a semantics. The 

objects of C are types, its identity morphisms are variables, etc. But the 

theory TC should also satisfy some axioms. We inductively define an 

interpretation of each term (as a morphism in C) which may be con-

structed in TC, and then we define (also inductively) an interpretation 

of each formula (as a subobject in C), which may be constructed in C 

(see Internal Logic [2018]).7

lence was defined in the algebraic ring theory: two associative rings R and S with 
units are Morita equivalent if the category of (left) modules over R and the cate-
gory of (left) modules over S are equivalent.

7 For instance, in the case of group theory, there exist two arrows G × G × G → G, 
which are interpretations of the following terms: m(m(x, y), z) and m(x, m(y, z)) (the 
law of associativity).
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The category C contains logical tools able to express various ax-

iomatics for the theory TC ; in other words, it potentially contains all 

possible axiomatics for TC . The internal logic Lang(C) is not only 

a way to describe the internal structure of C, but it also provides tools 

to prove (by “internal reasoning” in C) things in C that are provable 

in TC (this is a content of the soundness theorem). The idea is to start 

with the axioms of a given type theory and make deductions from 

them by using standard methods, “which in practice amounts to pre-

tending that the types are sets, the function symbols are functions, and 

the relation symbols are subsets”, then we are entitled to conclude that 

“anything we prove will still be true when the theory is interpreted in 

an arbitrary category” (Internal Logic, 2018). Obviously, one is allowed 

to employ only those logical rules that are permitted by the logic ap-

propriate to a given category; for instance, if we are working with 

a coherent theory, we must use rules of coherent logic.

We now construct the category Syn(Lang(C)) = Syn(TC). It is 

a category whose objects are contexts, and morphisms are interpre-

tations. Formula (1) tells us that “there is always a canonical model of 

the internal logic of C within C” (Fu, 2015). We can abbreviate Syn(TC) 

to CTc . What can be proved in CT , is true in all models of T (Fu, 2015, 

Theorem 3.2).

Similar analysis can be carried out starting from formula (2), which 

can be written as T → TCT
. It turns out that the theory TCT

 is Morita 

equivalent to T (Tsementzis, 2015).

The above analysis shows a close interaction between syntax and 

semantics. This can intuitively be seen in natural languages, but here – 

for formal languages, in particular for formal mathematical languag-

es – this is put into a nice formal interplay. It has the form of adjoint 

functors. This means that the morphism C → Syn(T) corresponds to 

a morphism Lang(C) → T, and this correspondence is an isomorphism 

which is natural in C ∈ CATEGORIES and T ∈ THEORIES. This is 

written in the form

(3) Hom
CATEGORIES

(C, Syn(T)) ≅ Hom
THEORIES

(Lang(C),T).

The natural isomorphism ≅ plays an essential role in any adjunc-

tion situation.8 It says that when C varies in CATEGORIES and T varies 

8 For a full definition of adjoint functors see any textbook on category theory.
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in THEORIES, the isomorphism between morphisms Lang(C)  → T 
in THEORIES and C → Syn(T) in CATEGORIES varies in a way that 

is compatible with composition of morphisms in CATEGORIES and 

THEORIES, correspondingly, and with the actions of Lang and Syn 

(Leinster, 2014). If we have in mind the meaning of functors Lang 

and Syn, we can see how intimately semantics and syntax interact with 

each other.

Formula (3) preserves its validity if theory T is everywhere replaced 

by a theory T ' Morita equivalent to T. This means that a given theory 

can be expressed in various languages without changing its essential 

content.

Traditionally, one sharply distinguishes syntax and semantics. 

“This distinction is at the same time an epistemological and an on-

tological distinction, or at least it is motivated by epistemological and 

related ontological elements” (Marquis, 2010, p. 234). Syntax rep-

resents “the »concrete« facets of language and its epistemic accessibil-

ity is a crucial element”, whereas semantics “is the world of »entities« 

syntactical expressions are supposed to refer to” (ibid.). Category the-

oretical approach fully respects this distinction, but is at the same time 

able to show nuances of their interactions with each other that were 

transparent to traditional logical tools. Loosely speaking, we not only 

have dependencies going from semantics to syntax, and vice versa, but 

since Lang and Syn are adjoint functors, these dependencies deter-

mine each other up to a unique natural equivalence.

4 THE EXTENDED BELL’S PROGRAM

Material presented in the previous sections invites mathematical-

ly informed thinkers to draw some philosophical implications from it. 

Exactly this material inspired John Bell to develop a new approach to 

the philosophy of mathematics (Bell, 1981, 1986). “The fundamen-

tal idea is to abandon the unique absolute universe of sets central to 

the orthodox set-theoretic account of foundations of mathematics, re-

placing it by a plurality of local mathematical frameworks – elementa-
ry toposes – defined in category-theoretical terms” (Bell, 1986). Con-

sequently, mathematical concepts lose their absolute meaning, and 

mathematical assertions their absolute truth values. Their meanings 

and truth values are defined locally, with respect to local frameworks, 
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where by a local framework Bell understands a topos equipped with 

a natural numbers object (commonly abbreviated to NNO). When one 

changes from one local framework to another local framework, the 

meanings of concepts and truth values of assertions change accord-

ingly. Formally, a change from one local framework to another is done 

with the help of what Bell calls admissible transformations. If E and F 
are local frameworks, an admissible transformation f : E → F is a pair 

of adjoint functors f *: E → F and f* 
: F → E.

The analogy of this “philosophy” with that of the theory of relativ-

ity is evident. And as in special relativity, statements that are invari-

ant with respect to Lorentz transformations are regarded as physical 

laws, statements that are invariant with respect to admissible transfor-

mations are regarded as mathematical laws. Since the internal logic of 

topoi is intuitionistic logic, “the invariant mathematical laws are those 

which are demonstrable constructively” (Bell, 1986).

Such a fundamental concept as that of real number is an example 

of a concept that changes depending on a local framework. Let 

f : S → Sh(X) be an admissible transformation from a topos S to the 

topos Sh(X) of sheaves on a topological space X (both these topoi are 

local frameworks). What from the point of view of Sh(X) is a “real 

number”, from the point of view of S is a continuous real valued 

function on X, and the viewpoint is changing with the help of f.
Of course, in this game logic is involved from the very beginning. 

Topoi are the models for theories that are formulated in many-typed 

languages. “Each topos E is associated with such a language whose 

types match the objects of E and whose function symbols match the 

arrows of E. A theory in such a language is a set of sentences closed 

under intuitionistically valid deductions” (Bell, 1986). As we can see, 

our analysis, made in previous sections, fully applies to this case. And 

precisely here there appears a possibility to generalise Bell’s program.9 

The limitation to topoi is justified only as far as one is concerned with 

details (such as local frames and admissible transformations), making 

the program concrete and possibly workable, and this was precisely 

Bell’s goal. However, if one is concerned with the philosophy of math-

ematics as such, this limitation is neither wanted, nor useful.

9 I call it a program, although, as far as I know, it never went beyond the orig-
inal formulation.
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It seems that Bell included the existence of NNO into the defini-

tion of a local framework since one could hardly imagine a mathe-

matical theory without a counterpart of natural numbers, i.e. without 

something with the help of which one could count things. But even 

among topoi there are some in which “counting” is done with the help 

of an object different from NNO. For instance, in the so-called Zariski 

topos and Basel topos, in spite of the fact that the NNO does exist in 

them, the role of natural numbers is better fulfilled by the so-called 

smooth numbers (Moerdijk, Reyes, 2010, pp. 252, 289).10 Therefore, 

in general, the insistence on the existence of NNO does not seem nec-

essary.

Moreover, there are interesting domains of mathematics whose 

logic goes beyond intuitionistic logic, and consequently beyond the 

topos theory. If one wants to remain within a relatively well explored 

territory, one should mention the cotopos theory with its paraconsis-

tent (or inconsistency-tolerant) logic. It is constructed by dualizing the 

usual topos theory (Angot-Pellissier, 2015; Estrada-González, 2014).11 

As it is well known, the algebra of open sets of a topological space 

(with negation of a proposition p defined as the interior of the com-

plement of an open set corresponding to p12) is a model of intuition-

istic logic, and generates a Heyting algebra. By dualizing this con-

struction, we obtain the algebra of closed sets of a topological space 

(with negation defined as the closure of the complement of a given 

closed set) which is a model of the paraconsistent logic. It generates 

a co-Heyting algebra, called also Brouwer algebra.13

Mathematical theories, which can find their semantics in cotopoi, 

are not necessarily some exotic mathematical structures. For instance, 

10 In these topoi, when one uses NNO, the interval [0,1] of ℝ is non-compact 
and the object R is non-Archimedean (here R = C ∞(ℝ); R is non-Archimedean, 
if the following axiom is not satisfied: ∀(x ∈ R)∃(n ∈ ℕ) x < n). When one uses 
smooth numbers, both these “pathologies” disappear. The price is, however, the 
weakening of arithmetic and logic.

11 In Estrada-González (2014) cotopoi are called complement-topoi.
12 The complement of an open set, representing negation in classical logic, is 

not open.
13 One must be careful: performing the dualization is not mechanical. For in-

stance, the co-exponential object, that must exist in cotopoi, is not related to im-
plication, as it is the case with the exponential object in topoi, but to a connector 
called pseudo-difference.
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the theory of partial inner product spaces is a good mathematical 

theory with interesting applications and the paraconsistent logic as 

its internal logic. This theory unifies some structures of functional 

analysis, such as generalized functions and scales on Hilbert or Banach 

spaces (Antoine, 1980; Antoine, Lambert, Trapani, 2011; Antoine, 

Trapani, 2009, 2010). 

Let us then extend Bell’s program beyond local frameworks and 

admissible transformations to any categories and functors between 

them. It is no longer a program but rather an idea, the aim of which 

is to organize certain intuitions related to the philosophy of mathe-

matics. To the conglomerate of all categories and all functors between 

them we attach the label the field of categories (or categorical field). The 

label of field is intended to emphasize an undetermined character of 

this conglomerate (it is obviously not even any kind of “category of cat-

egories”). For some concrete purposes we might narrow it to certain 

of its subfields; for instance to n-categories, for some n, to coherent 

categories, to all topoi, etc.

The categorical field is not only a huge collection of categories, but 

also a highly dynamic entity with a lot of interactions given by functors 

between categories. To better emphasize this dynamical character of 

the categorical field, we could adopt the point of view of the one-type 

category theory. In this point of view, the categorical field is a field 

of “pure activity”, consisting only of functors (with identity functors 

playing the role of categories [Heller, 2016]).

Let us notice that in the categorical field logic is a “local variable”, 

in the sense that each category has its internal logic. To the field of 

categories there corresponds the “field of mathematical theories”, and 

functors Lang and Syn are responsible for organizing the interaction 

between syntax and semantics of mathematical theories.

It goes without saying that the concept of the categorical field is 

far from being a well defined mathematical (or metamathematical) 

concept. And it is not intended to be. I think, it shows in the new light 

the nature of mathematics on its most global scale, and testifies to the 

capability of the category theory in disclosing deep structural aspects 

of mathematics.
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5 GÖDELIAN LIMITATIONS

Our next excursion into philosophical consequences of the cate-

gorical field idea is connected with Gödel’s theorems. Putnam, in his 

paper “Mathematics without Foundations”, quotes a not uncommon 

opinion according to which “Gödel’s theorem suggests that the truth or 

falsity of some mathematical statements might be impossible in princi-

ple to ascertain”, and remarks that “this has led some to wonder if we 

even know what we mean by »truth« and »falsity« in such a context” 

(Putnam, 1967). Indeed, one often hears about the crisis at the foun-

dations of mathematics. Let us take a closer look at this problem. As it 

is well known, Gödel’s theorems demonstrate the inherent limitations 

of every formal axiomatic system containing basic arithmetic (such as 

Peano axiomatic system). The first Gödel theorem states that no such 

axiomatic system can prove all truths about the arithmetic of natural 

numbers: there will always be true statements about natural numbers 

that cannot be proved within this axiomatic system. The second Gödel 

theorem demonstrates that no such axiomatic system can prove its 

own consistency.

These theorems are often interpreted as showing the collapse of 

the Hilbert program, the aim of which was to formulate a complete 

and fully consistent set of axioms for the whole of mathematics. This 

was supposed to be a remedy for the critical situation in the foun-

dations of mathematics after recently discovered inconsistencies and 

paradoxes. After Gödel’s theorem the crisis even deepened.

Gödel’s achievement paved the way for further discoveries. Let 

us mention Tarski’s theorem on the formal undefinability of truth, 

Church’s theorem that Hilbert’s Entscheidungsproblem is unsolvable, the 

Löwenheim–Skolem theorem, stating that if a theory has an infinite 

model, then it has an infinite number of other models, and Turing’s 

theorem that there is no algorithm for solving the halting problem 

(for all these theorems see Smith [2007]).

If we agree to look at mathematics as at the field of categories, and 

take into account the fact that logic is a “local property” of the field 

(i.e. internal logic changes depending on category), then it becomes 

clear that the “Gödelian crisis” is also only a local effect. Or more pro-

saically: Gödel’s theorems and their consequences are valid only in 

categories which contain basic arithmetic (for the sake of concreteness, 
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let us think about Peano’s arithmetic). Peano’s arithmetic itself can be 

formulated as a type theory, and it can be shown that Peano’s axioms 

hold in any topos, i.e. they are available in the internal language of any 

topos (Lambek, Scott, 1986, p. 145), and each topos, in which Peano’s 

axioms hold, has an NNO (p. 189). However, there are many cate-

gories, having NNO, in which Peano’s axioms do not hold (Awodey, 

2010, p. 246).

The conclusion is that there are vast domains of mathematics, 

outside of the world of topoi, which are immune to Gödel-type limita-

tions.14 The Hilbert program cannot be revived not so much because 

of Gödel’s theorems, but rather because of the nature of the categori-

cal field, in which logic is but a “local variable”.

6 BEYOND THE FORMALISM

My main concern in the previous sections was about formalised 

mathematical theories and what the theories are about (their seman-

tics). In the present section, I want to introduce into the orbit of my 

interest physical theories. Their linguistic (syntactic) aspect does not 

differ much from that of mathematical theories (although physical 

theories are rather seldom fully formalised), and their categorical se-

mantics could in principle be constructed. The essentially new aspect, 

when dealing with them, is the reference to the physical world.

In the philosophy of science, there are two main approaches to sci-

entific theories: the syntactic approach and the semantic approach. 

Roughly speaking, the syntactic approach regards scientific theories 

more or less in the spirit of Definition 1, section 2. It emerged out of 

classical works of Carnap (1937), Hempel (1966) and other authors re-

maining under the influence of Logical Positivism. Scientific theories 

are sets of sentences in the language of a given science which should 

be subject to the logical analysis. This approach, once known as the 

“received view”, met later with a strong criticism as being faraway 

from the scientific practice. According to its rival view, the so-called 

14 The above remarks inspire the following idea. As it is well known, any for-
malized axiomatic system can be organized as a category (with axioms and theo-
rems as objects and deduction chains as morphisms). It would be interesting to 
investigate the internal logic of such categories, for instance, the internal logic of 
the category of the Peano axiomatic system.
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semantic approach, propagated by Suppes (1960), van Fraassen (1989) 

and others, a scientific theory should be reconstructed in terms of the 

class of its models, and by taking into account its mathematical appa-

ratus rather than predicate logic.

In the light of the analysis carried out in the preceding sections, it 

is clear that to base our approach to theories on an opposition between 

syntactic and semantic view is unjustified. As we have seen, in formal 

mathematical theories, syntax and semantics strongly interact with 

each other (via the Lang and Syn functors), and there is no reason to 

suspect that in not fully formalised mathematical and physical theories 

things are much different. Already Halvorson and Tsementzis (2017) 

have persuasively argued that a categorical approach to the problem 

of scientific theories “can transcend the syntax-semantics dichotomy 

in 20th century philosophy of science”.

Let us notice, however, that having a formalized theory T, we – so 

to speak artificially – create the category C providing the semantics 

for T. Loosely speaking, the theory T is about what happens in C. Re-

lations (1) and (2) describe interaction between syntax and semantics 

of T. Let now T be a physical theory. Of course, we could in principle 

reconstruct its formal semantics, but doing physics in this way would 

be impractical, especially as far as more advanced physical theories 

are concerned. Usually, physicists think about their theories as being 

about a certain domain of physical reality. By using analogy with our 

previous analyses, let us try to reconstruct the interaction between 

the structure of a mathematized physical theory T and its “natural 

semantics” NS, i.e. the domain of the physical world the theory T in-

vestigates. It goes without saying that the following reconstruction is 

both informal and simplified. The process of reconstruction, that will 

be sketched here, is usually extended in time. The “we”, appearing 

in this description, could denote several generations of investigators.

The process starts with the delineation of this domain or aspect 

of the world that will become an NS for the future theory T (in fact, 

this process is not completed until the theory T is formulated; in what 

follows, we disregard the time factor).

The initial information about NS consists of the so far existing 

knowledge and what can be termed “learned intuition”. Basing on 

this, one tries to reconstruct an internal logic inherent in NS, by using 

various methods. The logic being reconstructed is implemented into 
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the language of mathematics rather than into a logically informed 

language. The result of this – usually, long and laborious – process 

is a mathematized physical theory T. The process of its creation can 

schematically be presented (in a loose analogy with the functor Lang) 

as a “functor”

Mat: Natural Semantics → Physical Theories.

“Functor” (in quotes) because neither “Natural Semantics” nor “Phy-

sical Theories” is a category.

Having the theory T, we deduce from it some dependencies 

between measurable quantities (observables). We might say that when 

doing so we define (in a loose analogy to the functor Syn) a “functor”

Measur: Physical Theories → Natural Semantics.

We perform actual measurements in NS, that is we test the physical 

theory T, and obtain a new information about NS.

In this way, the theory T represents, in a sense, its natural seman-

tics SN. Obviously, between T and NS there is neither an identity, nor 

any kind of isomorphism, but rather some sort of adjointness (again 

in a loose analogy with the adjoint functors Lang and Syn). Owing to 

this adjointness, we are entitled to assume that what has been proved 

in T, has its counterpart in NS. This is how physical theories enrich 

our knowledge of the world. 

APPENDIX: MANY TYPE THEORY

Many type theory is given by

1. a collection S = {X,Y,…} of types;

2.  a collection F = {f,g,…} of function symbols; each function 

symbol is given together with the types of its arguments and the 

type of its value;

3.  a collection R = {U,W,…} of relation symbols; each relation 

symbol is given together with the types of its arguments

4.  and possibly a collection of constants: a,b,…, each constant 

together with its type.
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It is also assumed that each type X has infinitely many variables: 
x

1
,x

2
,… of this type. Then one builds up terms and formulae of the 

theory in the following way• Each variable (or constant) of type X is a term of this type.•  Suppose t
1
,…,tn are terms of types X

1
,…,Xn, and f : X

1 
× … × Xn → 

Y is a function symbol, then f(t
1
,…,tn) is a term of type Y.•  If R ⊆ X

1 
× … × Xn is a relation symbol having arguments of types 

X
1
,…,Xn and t

1
,…,tn are terms of types X

1
,…,Xn, then R(t

1
,…,tn) is 

an atomic formula.• If t and t' are of the same type, then t = t' is an atomic formula.•  The symbols ⊤ (true) and ⊥ (false) are atomic formulae.

Having atomic formulae, one constructs more complicated 

formulae with the help of the connectives ∧, ∨, ⇒, ¬, and quantifiers ∀, ∃ in the standard way. For details see Mac Lane, Moerdijk (1992, 

pp. 527–530).
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