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1. Introduction 

The Lucas-Penrose anti-mechanist argument against computability of the 
human mind in a nutshell states the following. According to Gödel’s incomplete-
ness theorems, a (sufficiently rich) consistent theory that can prove its own con-
sistency does not exist. However, mathematical practice shows that Gödel-type 
results are commonly proven by human mathematicians. In consequence, says 
the argument, human mathematicians are not describable as formal proof sys-
tems, nor are they reducible to performing algorithms. 

In (2020), Krajewski criticises the Lucas-Penrose argument by claiming that 
Gödel’s incompleteness theorems standing alone (as it is in the Lucas-Penrose 
case) are not sufficient for formulating the claim that the human mind is non-
computational. The anti-mechanist argument based on Gödel’s incompleteness 
theorems needs to be enriched by an extra-formal assumption. For instance, an 
assumption that the theory constituting the human mind is consistent. 

In order to provide an additional context to his investigations, Krajewski 
(2020), highlights the analogy between the claim that Gödel’s incompleteness 
theorems imply the non-computational nature of the human mind, and the claim 
that “we [humans] cannot give a definition of the natural numbers as we under-
stand them” (p. 49). The analogy goes as follows: in order to make a successful 
anti-mechanist argument based on Gödel’s incompleteness theorems, one needs 
to assume—in addition to the formal counterpart—that the theory constituting 
the human mind is consistent. The fact that Gödel’s argument can be iterated for 
increasingly rich theories is not sufficient for formulation of the anti-mechanist 
argument. The possibility to iterate increasingly rich theories, which all have 
a Gödel’s sentence, and none of which proves its own consistency, is a formal 
process and as such can be executed by purely formal means. Thus, it does not 
say anything about computability or non-computability of the human mind. In 
order to be able to formulate the anti-mechanist argument, one needs to as-
sume—for instance—that the human mind is consistent. Analogously, each defi-
nition of a natural number ends up in a vicious circle of definitions, or—as Kra-
jewski says 

[O]ur axioms [both the first-order (PA1) and the second-order Peano Arithmetic 
(PA2)] define numbers only when taken together with some background 
knowledge or apparatus that makes possible our intuitive grasp of numbers [such 
as the intuition that the first-order Peano’s Arithmetic is complete or the intuition 
that there exists the set of all natural numbers being referred to in the background 
of the second-order Peano’s Arithmetic]. (2020, p. 49) 

In both cases, an immediate, but incorrect according to Krajewski, conclusion 
could be that “no computer can be taught our concept of a number” and that in 
consequence “we [humans] are better than any machine” (2020, p. 49). 

In this paper, I observe that this analogy can be pushed further to a circular 
reasoning. In both cases, making an extra-formal assumption leads to a vicious 
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circle because one assumes consistency of one’s mind while proving that the 
human mind outperforms machines, or one assumes that the concept of a set of 
natural numbers can be intuitively apprehended while defining natural numbers. 
Studies show that the method of conceptual analysis is particularly sensitive to 
falling into circular reasoning. The circularity related to the concept of natural 
number has been investigated in discussions about c o m p u t a t i o n a l  s t r u c -
t u r a l i s m  (Halbach & Horsten, 2005; Quinon & Zdanowski, 2007). Computa-
tional structuralism is a position, according to which the concept of natural num-
ber and the concept of computation are closely related. More precisely, according 
to this position, an adequate account of natural numbers treats them as objects 
that can be used for computations. After a brief overview of the anti-mechanist 
argument and its criticism in Section 1, in Section 2 I will explain inter-relation 
and inter-definability between the concept of natural number and the concept of 
computation. In Section 3, I describe how the two concepts fall into a vicious 
circle of definition individually, and also while used in definition of one another. 

Rescorla (2007) identifies problems with conceptual analysis related to the 
concept of computation, Quinon (2018) suggests that there is no fully satisfacto-
ry way out from vicious circles in definitions within conceptual analysis. Ap-
proaching the concept of computation and the concept of natural number from 
another methodological perspective, seems to be more fruitful. For instance, an 
interesting insight can be gained thanks to c o n c e p t u a l  e n g i n e e r i n g . Both 
concepts have a form of what in the area of conceptual engineering is called 
“conceptual fixed point”. A conceptual fixed point is an idea issued from the 
conceptual engineering of moral concepts, where it is claimed that some basic 
moral concepts should not be engineered, but should always be understood in the 
most objective way (Eklund, 2015). Section 4 is devoted to the presentation of 
the method of conceptual engineering and the adequacy of conceptual fixed 
points for the concept of computation and the concept of natural number. As 
suggested by the phenomenon of conceptual fixed points, the only way out from 
these vicious circles consists in an arbitrary decision which is the intended mean-
ing of the given concept. 

In Section 5, I extend my methodological investigations into yet another 
method, and I discuss the advantages of thinking about formalisation of the con-
cept of computation in terms of Carnapian explications. It has been argued, for 
instance in (Quinon, 2019), that a move from an intuitive concept of computation, 
used in everyday life, to a scientific or formal concept as stated by the Church-
Turing thesis, follows the schema of a Carnapian explication. In Section 6, 
I extend the context of Carnapian explications of the temporary aspect. I realise 
that both, the concept of natural number and the concept of computation, have 
been evolving in such a way, that their core meanings were shifting. I propose 
a hypothesis that at least a part of the confusion regarding the specificity of the 
conceptual structure of the concept of computation contributes to the confusion 
regarding the nature of human reasoning and the human mind. In consequence, 
In consequence, I claim that—at least partially—the “feeling” that there are non-
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computational processes is due to the complexity of the conceptual structure of 
the concept of computation. 

In the final Section 7, I wrap up with the ways in which my observations re-
garding the concept of computation and the concept of natural number, could be 
used for understanding the reasons for which the anti-mechanist argument fails. 
I suggest a different reason from the one proposed by Krajewski, for which the 
extra-formal assumption prevents the anti-mechanist argument from success. 
Firstly, I claim that thanks to the method of Carnapian explications, it is highly 
possible to go from intuitive pre-scientific concept to a formal concept. Secondly, 
I observe that the extra-formal assumption after an arbitrary formalisation, leads 
to the vicious circle in reasoning. Therein lies the problem. 

2. The Lucas-Penrose Argument and Its Criticism 

In this section, I present a brief overview of various versions of the anti-
mechanist argument based on Gödel’s incompleteness theorems, and the ways in 
which those arguments have been criticised. In particular, I explicate Krajewski’s 
way of refuting the argument. In my overview, I prioritise the authors to who 
Krajewski refers to in his paper. 

The first of Gödel’s incompleteness theorem says that in every sufficiently 
rich1 consistent first-order theory2 there exist statements that are true3, but that 
cannot be proven within this theory. The second of Gödel’s incompleteness theo-
rem says that every sufficiently rich consistent first-order theory cannot prove its 
own consistency. 

According to the anti-mechanist argument based on Gödel's incompleteness 
theorems, since human mathematicians can fruitfully work with Gödel's incom-
pleteness theorems, that means those mathematicians use the resources from the 
outside of the theory (e.g., they are able to refer to the intended model of arith-
metic or recognize that the human mind is consistent). Thus, human mathemati-
cians outperform machines, because—unlike machines—they are able to include 
in their reasoning such external resources. 

The intuition that humans could prove theorems which machines could not 
has already been present in (Turing, 1950)4 and in (Post, 1941).5 One of the most 
famous voices exploring the anti-mechanist argument based on Gödel’s incom-
pleteness theorems against the computational theory of mind—next to Hofstadter 

 
1 By “sufficiently rich” one means that the formal system is able to express arithmetic 

of addition and multiplication. 
2 A formal system, or a theory, is a collection of axioms together with rules of inference. 
The importance of using first-order logic is because of the completeness of this logic. 
3 A statement is true, when it is satisfied in the intended model of the theory. 
4 As reported by Krajewski, Turing believed that even if a machine cannot prove as 

much as humans can, it is still worth constructing robots. 
5 As reported by Krajewski, Post believed that man cannot construct a machine which 

can do all the things he can. 
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(1979), Nagel and Newman (1958; 1961)—is Lucas (1961; also 1968; 1996), 
who presented a “mathematical proof” of man's superiority over a machine. 
Lucas extended the applicability of Gödel’s incompleteness theorems from for-
mal systems to human subjects. In his view, humans are subjects to the same 
formal limits as machines. However, as Lucas observes, human mathematicians 
can prove Gödel’s incompleteness theorem, which means, human mathematicians 
use extra-formal resources that enable them to perform such proofs. 

Lucas’ argument relies on the fact that Gödel’s theorem(s) is formulated in 
purely formal terms. As Lucas observes himself, this is what differentiates Gö-
del’s results from the liar paradox. The liar paradox, which states that “This 
statement is untrue”, is “viciously self-referential, and we do not know what the 
statement is, which is alleged to be untrue, until it has been made, and we cannot 
make it until we know what it is that is being alleged to be false” (Lucas, 1990, 
p. 2). Unlike the liar paradox, Gödel’s theorem is formulated within a full-
blooded system where it is clearly defined, which sentences are true and what 
does it mean to be provable. Lucas’ claims that the fact that a (idealised) human 
mind, even if it cannot prove Gödel’s theorem(s) for the given theory, can—
thanks to its additional non-mechanical skills—recognize this theorem as true in 
its system. In consequence, a human mind outperforms a machine. 

Penrose in (1989; 1994) extended Lucas’ reasoning of a positive claim re-
garding the extra-formal resources available to humans that enable them to con-
struct reasonings unavailable to machines. Penrose suggested that in the brain 
the physical basis of non-computable behavior exists, and he indicated quantum 
mechanics as a credible candidate. According to him quantum processes might 
explain not only reasoning of human mathematicians, but also consciousness. 

A constructive criticism of the Lucas-Penrose style argument was formulated 
by Putnam (1960), Benacerraf (1967), Wang (1974), then later also by Boolos 
(1995) and Shapiro (1998). Penrose’s version got criticised in particular by Fe-
ferman (1995), Putnam (1995) and Shapiro (2003). Krajewski claims that the 
ways of criticizing the Lucas-Penrose argument follow one of the two main lines 
(2020, pp. 5–6): 

• The mind is a machine and it is consistent, but it cannot prove Gödel’s sen-
tence by itself.6 

• The mind is a machine, but it is inconsistent, and Gödelian limitations do 
not apply to it. 

 
6 This line of argument has already come from Gödel, who distinguished subjective 

arithmetic that humans can do, and who believed that in objective mathematics full 
arithmetic is a consistent theory. He also believed that the concept of computation can be 
defined without referring to any domain of computation; these claims amount to Gödelian 
platonism (Gödel, *1951). 
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Krajewski (2020) refutes the Lucas-Putnam argument in yet another way: he 
observes that iterations of increasingly strong theories proving the corresponding 
Gödel’s sentences can be processed in a purely mechanical or computational 
manner available to both, humans and machines. In consequence, Krajewski 
claims that anti-mechanist is not implied by Gödel’s incompleteness theorems 
alone. In addition, claims Krajewski, one needs to assume that humans have 
a privileged access to assessing consistency of the human mind. Krajewski 
claims that the argument fails because of the necessity of making this extra-
formal assumption. This is so, because there is no formal way to account for the 
formal counterpart of assumptions. 

Before I come back, in the last section, to Krajewski’s rejection of the anti-
mechanist argument, and my proposal of how to shift the way of thinking about 
the reasons for this rejection, I will now focus on the part which is particularly 
interesting for me, that is the m e t a - t h e o r e t i c a l  corollary to the anti-
mechanist argument stating that humans cannot fully describe the concept of 
natural number. 

3. The Concept of Natural Number and the Concept of Computation 

I initiate my investigation into the nature of the extra-formal elements of the 
reasoning that enable the conclusion that the human mind is not computable, by 
discussing the corollary relating human inability to define the concept of natural 
number. Additionally, I extend the corollary of the claim that humans—for simi-
lar reasons—cannot define the concept of computation. Finally, I present the 
view according to which the concept of natural number and the concept of com-
putation are closely related. 

The fact that every formal definition of the concept of natural number leads 
to a necessary assumption from the outside of the formal system has been studied 
in the context of the view in philosophy of mathematics, called s t r u c t u r a l -
i s m . According to structuralism, mathematics is the “science of structures”, and 
while defining mathematical objects, one should first target their structural prop-
erties. For instance, while defining natural numbers, one should define the struc-
ture of natural numbers through relations they hold to each other, and not focus 
on individual properties of those elements. 

Traditionally, structuralism defined natural numbers using second-order Pea-
no Arithmetic (PA2). PA2 is categorical and the class of (isomorphic) models in 
which it is satisfied is identified with natural numbers. The usual way of criticis-
ing the use of second-order Peano Arithmetic to define natural numbers consists 
in saying that the underlying logic is “set theory in sheep’s clothing” (Quine, 
1970, p. 66). Second-order logic has the ability, for instance, to express the in-
formation that two sets have the same cardinality. The concept of set is itself 
most frequently (implicitly) defined with a first-order axiomatic theory, such as 
ZF, that in turn, is a subject of non-standard interpretations, the Löwenheim-
Skolem theorem, etc., which makes its intended model “hidden” within a contin-
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uum of other non-intended models. Therefore, in order to define the concept of 
natural number with PA2, humans have two choices. They can get involved in 
a vicious circle of definitions, or an infinite regression of theorems, or they can 
use extra-formal resources and admit in an arbitrary manner that there is such 
a thing as an intended (or a standard) model of set theory where the intended 
model of arithmetic exists. 

Another, less known, version of structuralism, so called computational struc-
turalism, proposes distinguishing the s t a n d a r d  model of arithmetic from the 
continuum of non-standard models with the resources of PA1 only (Halbach 
& Horsten, 2005; Quinon & Zdanowski, 2007). In order to do that, defenders of 
computational structuralism suggest adding a meta-mathematical constraint re-
garding the computability of interpretation of functional symbols in the language, 
and then use Tennenbaum’s theorem in order to single out the standard model of 
arithmetic. 

Theorem 2.1 (Tennenbaum, 1959) Let ℳ = 〈𝕄𝕄, +, ×, 0, 1, <〉 be an enumerable 
model of PA1, and not isomorphic with the standard model 𝒩𝒩 = 〈ℕ, +, ×, 0, 1, <〉. 
Then ℳ is not recursive. 

More explicitly why Tennenbaum’s theorem is relevant for the structuralist 
way of thinking is visible in the transposition of the theorem: 

Theorem 2.2 (Tennenbaum transposition) Let ℳ be an enumerable model of 
first-order Peano arithmetic. If the interpretation of addition and multiplication 
within ℳ are computable then ℳ is a standard model for arithmetic (a model 
with ω–type ordering). 

One of the philosophically interesting consequences of the application of 
Tennenbaum’s theorem is that the set of models singled out with its help consists 
of those ω models, where ω is computable (Quinon & Zdanowski, 2007). Those 
models are called “intended” and form a proper subset of standard models. 

The intended model of arithmetic,7 is such a model where functions of addi-
tion and multiplication are interpreted as computable functions.8 Tennenbaum’s 
theorem establishes a connection between a meta-mathematical property of being 
computable by arithmetical functions, and the order of the elements of the set of 
natural numbers. Thus, in the most general lines, computational structuralism is 
a position, according to which the concept of natural number and the concept of 
computation are closely related. 

The usual way of criticising computational structuralism is, again, by point-
ing out the vicious circle or infinite regression of definitions that threatens the 
proposed account of natural numbers. The criticism goes as follows: in order to 

 
7 Intended models of arithmetic are identified up to a c o m p u t a b l e  isomorphism. 
8 The model of arithmetic is intended for both theories PA1 and PA2. 
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define the concept of natural number, one needs to use the concept of computa-
tion, whereas every concept of computation is defined on the domain of (some 
representation of) natural numbers. Thus, the vicious circle or the necessity to 
assume that there is an intended interpretation of what to compute means, or that 
the intended model of arithmetic is distinguished from within other models. 

Analogously, it is pretty straightforward that the concept of computation falls 
itself into a vicious circle, as in order to account for what “to compute” means, 
referring, for instance, “to be computed on a Turing Machine”, necessitates to 
account for which entities are suitable for computing with (in the case of TM-
computations, what can be the input for a Turing Machine). Since the question 
asked about the input precedes the definition of computing, which is just being 
given, one cannot use the concept of computing to define which sequences can 
be used for the input. 

More precisely, 

[T]he Church-Turing Thesis states that Turing Machines formally explicate the in-
tuitive concept of computability. The description of Turing Machines requires de-
scription of the notation used for the INPUT and for the OUTPUT. The notation 
used by Turing in the original account and also notations used in contemporary 
handbooks of computability all belong to the most known, common, widespread 
notations, such as standard Arabic notation for natural numbers, binary encoding 
of natural numbers or stroke notation. The choice is arbitrary and left unjustified. 
In fact, providing such a justification and providing a general definition of nota-
tions, which are acceptable for the process of computations, causes problems. This 
is so, because the comprehensive definition states that such a notation or encoding 
has to be computable. Yet, using the concept of computability in a definition of 
a notation, which will be further used in a definition of the concept of computabil-
ity yields an obvious vicious circle. (Quinon, 2018, p. 338) 

In this section, I explained similarities between the process of defining the 
concept of natural number, the process of accounting for the concept of computa-
tion, and the formulation of an anti-mechanist argument based on Gödel’s in-
completeness theorems. All these contexts are related because the way out of the 
definitional vicious circles proper to the definitional processes within formal 
theories, is through the necessity of assuming an additional non-formal, meta-
theoretical knowledge. In the next section, I will expand on the phenomena of 
vicious circles and regression ad infinitum. 

4. Nested Vicious Circles 

Quinon (2018) proposes a taxonomy of what can be called “deviant encod-
ings”, that is those encodings—or in different words, sequences of symbolic 
representations of natural numbers—which are non-computable, but which are 
formally indistinguishable from computable encodings. For instance, in its sim-
plest form the problem presents itself as follows: 
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The problem in its purely syntactical version can be formulated as follows. In 
a definition of Turing computability, one of the aspects that needs to be clarified is 
the characterization of notation that can be used as an input for a machine to pro-
cess. If a Turing Machine is supposed to explicate the intuitive concept of com-
putability it is necessary to explain, which sequence of numerals can be used as an 
input without the use of the concept of computability. That means, we cannot 
simply say: “sequences that can be used as input are the computable ones” as we 
have not yet defined what it means “to be computable”. (Quinon, 2018, p. 340) 

Deviations refer to non-computable sequences that cannot be distinguished 
within the general formal context from sequences that are computable and can be 
used in computations. In this paper, I use the expression “deviant encoding” 
independently of the ontological framework within which natural numbers are 
understood. Quinon (2018) claims that the phenomenon of deviant encodings 
persists independently of which ontological status we assign to objects of com-
putations (e.g., natural numbers, sequences of symbols, etc.). Quinon (2018) 
hypothesizes that the phenomenon of deviant encodings persists independently 
of the philosophical standpoint and provides an analysis of the following simpli-
fied standpoints: (i) purely mechanical/syntactical approach (nominalism, en-
twined mathematical concepts); (ii) notations have meanings (mild realism); (iii) 
semantics comes first (radical realism, platonic insight). 

The study of conceptual “deviations” is conducted for a simplified frame-
work where: 

• on the syntactic level there are uninterpreted inscriptions, and where func-
tions are string-theoretical generating string values from string arguments; 

• on the semantic level there are interpretations that can range from the con-
ceptual content ascribed to initially uninterpreted symbols, to Platonic ab-
stract objects, and where functions are number-theoretical sending numbers 
to numbers; 

• between the two levels there is defined a function of denotation. 

Deviations occur on each level. Thus, there exist “deviant encodings” devia-
tions that happen on the syntactic level; “deviant semantics” deviations that hap-
pen on the semantic level; “unacceptable denotation function” deviations of the 
denotation function. 

The simplified framework is inspired by Shapiro (1982), who distinguishes 
string-theoretic functions from number-theoretic functions and searches for “ac-
ceptable”, that is “non-deviant”, ways of associating their domains. The frame-
work is further used by other researchers. Rescorla (2007) uses it to study behav-
iour of denotation functions which associate numerals (symbolic representations 
of natural numbers) to natural numbers (abstract entities) in a non-computable 
manner. There is a continuum of such mappings. 
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 The expression “deviant encodings” has been used differently by Copeland 
and Proudfoot (2010) for whom the deviations relate to encodings, or enumera-
tions, of Turing Machines. The authors claim that a deviant encoding happens 
when the omniscient programmer “winks at us” to let us know when the number 
of a Turing Machine (from some standard encoding of Turing Machines), which 
is being currently processed by some sort of Halting Machine (a machine com-
puting which Turing Machines stop on an input 0), refers to a machine that stops. 
In this way, the Halting Machine computes the halting function, which is an 
uncomputable function. The “wink” of the omniscient programmer gets encoded 
in the syntactic structure of the numerals: the numerals representing the ma-
chines that stop, have a special form—for instance—are even (their general syn-
tactical form can be reduced to “2n” where “n” is any numeral). Copeland and 
Proudfoot mean by a deviant encoding such a standard enumeration of Turing 
Machines where the encoding is enriched by an extra-formal feature impersonat-
ed by the omniscient programmer (a Turing oracle). This is a specific case of 
a more general problem where deviant encodings refer to encodings representing 
natural numbers. 

An occurrence of the phenomenon of deviant encodings involving all the lev-
els, is the case of the Semantical Halting Problem (van Heuveln, 2000). Imagine, 
you have encoded Turing machines with some standard—computable, thus non-
deviant—encoding, and that you believe that symbols have meanings or interpre-
tations. It can happen that even if your syntax is generated in a recursive manner, 
your semantics is not following any recursive rules. The Halting Machine that 
processes encodings of Turing Machines is designed to process information on 
syntax in an algorithmic manner. If inputted with a given non-computable enu-
meration of Turing machines, the machine will process those non-computable 
encodings as if it were a standard notation. Again, there is no effective way of 
defining which semantics are acceptable and which are deviant. 

I call “nested vicious circles” the hierarchies of vicious circles that keep re-
appearing at every stage of syntactical and semantic complexity of the presented 
picture. 

To give an example of a philosophical position outside the strict theoretical 
context discussed in this paper, the phenomenon of deviant encodings appears as 
well in the case of concrete computations. 

In our ordinary discourse, we distinguish between physical systems that perform 
computations, such as computers and calculators, and physical systems that don’t, 
such as rocks. Among computing devices, we distinguish between more and less 
powerful ones. These distinctions affect our behaviour: if a device is computation-
ally more powerful than another, we pay more money for it. What grounds these 
distinctions? What is the principled difference, if there is one, between a rock and 
a calculator, or between a calculator and a computer? Answering these questions 
is more difficult that it may seem. (Piccinini, 2010)9 

 
9 See also Piccinini’s (2015). 



 THE ANTI-MECHANIST ARGUMENT… 253 
 

In (2020), Quinon notes that the phenomenon of nested vicious circles, relat-
ing to the concept of computability, does not disappear in the case of explicit 
inter-definiability between the concept of natural number and the concept of 
computation, as established by computational structuralism. As I have already 
described above, the criticism of computational structuralism consists in pointing 
at the choice between the definitional vicious circles or the necessity of making 
extra-formal arbitrary assumptions. 

The way of extra-formal assumptions is investigated by Button and Smith 
(2012) who observed that when the concept “natural number” is explicated for, 
the concepts used in this explication, such as “to compute” or “finite” need to be 
accounted for on their turn, etc. In consequence, claim the authors, this problem 
cannot be tackled by offering more mathematics. An arbitrary decision regarding 
the meaning of some concept is necessary for the argument from Tennenbaum’s 
theorem to work. However, as they claim in a slightly undermining way, this is 
a philosophical problem: “Suffice it to note that our discussion of Tennenbaum’s 
Theorem illustrates a familiar moral: philosophical problems which are suppos-
edly generated by mathematical results can rarely be tackled by offering more 
mathematics” (Button & Smith, 2012, p. 120). 

Dean (2014) is similarly sceptical when it comes to the purposefulness of us-
ing Tennenbaum’s theorem to formally single out the standard model of arithme-
tic. However, differently to Button and Smith, Dean develops a full-fledged 
philosophical position. It is a Putnam-style model-theoretic realism for the con-
cept of computation (Putnam, 1980). Dean claims that there is no point in trying 
to find external arguments to distinguish between various standard and non-
standard models neither of arithmetic, nor of recursive theory. We should rather 
use the richness of the model-theoretic universe for studying structural properties 
of the concept of computation. Dean claims that Tennenbaum’s phenomenon 
shows that there exists a continuum of pairs: a model of arithmetic and computa-
tion in this model of arithmetic. In consequence, the Tennenbaum’s result instead 
of contributing to singling out the standard model of arithmetic, it indicates that 
non-computable ω-models of arithmetic exist (the so called deviant or weird 
permutations) with a corresponding concept of computation defined within the 
model. 

The vicious circle faced by computational structuralism, differs from the vi-
cious circles that are the focus of Quinon (2018). There, I was only concerned by 
the concept of natural number being indirectly involved in the definition of what 
“to compute” means. Conceptual structuralism needs to handle a slightly more 
elaborate idea. Its objective is to explicate the concept of natural number, identi-
fied with the standard model of arithmetic. Its solution consists in using the idea 
that natural numbers, and in particular those which are defined by Peano’s axi-
oms, are the entities used for counting and computing. In consequence, natural 
numbers are defined in terms of computations. However, and this is where the 
vicious circle arises: one of the characteristic features of the concept of computa-
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tion is that computation is a l w a y s  defined on some given domain.10 This do-
main is always identifiable with the structure of natural numbers. I discuss the 
nested vicious circles in this context in (Quinon, 2020). 

5. Conceptual Engineering and Conceptual Fixed Points 

One of the promising ways out of the impasse consists in embracing that the 
circularity in the account of what “to be computable” and what “natural number” 
mean is due to limitations of conceptual analysis. Similarly to other scientific 
concepts, when analysis is conducted within the strict scope of a given formal 
theory, one often ends up with a necessity to use the concept which is being 
defined in the account of some concept used for its definition. Philosophers and 
logicians see in this feature of conceptual analysis both an advantage that enables 
us to understand more about the conceptual structure of the world (Dean, 2014), 
and a problem that blocks science from progress (Maddy, 2007). Rescorla (2007) 
identifies problems with conceptual analysis related to the concept of computa-
tion. In their paper (2012), Button and Smith claim that Tennenbaum’s theorem 
is of no use to a philosopher who wants to distinguish the standard model from 
other possible models of arithmetic. 

Quinon (2018) suggests that there is no fully satisfactory way out from vi-
cious circles in definitions, resulting from conceptual analysis. Approaching the 
concept of computation and the concept of natural number from another method-
ological perspective, seems to be more fruitful. For instance, in recent years 
a particular type of conceptual work gained quite a bit of popularity, it is called 
conceptual engineering. What I try to convey in this section is that the new re-
search on conceptual engineering actually provide additional insight into the 
possible ways of thinking about non-mathematical or non-formal knowledge. 

According to Cappelen (2018), conceptual engineering is concerned with the 
assessment and improvement of concepts. As highlighted by Cappelen and Plun-
kett: 

since it’s unclear and controversial what concepts are (and whether there are any), 
it’s better to broaden the scope along the following lines: 
Conceptual Engineering = (i) The assessment of representational devices, (ii) re-
flections on and proposal for how to improve representational devices, and (iii) ef-
forts to implement the proposed improvements. (2020, p. 3) 

Researchers involved in developing the methodology of conceptual engineer-
ing realised that the method reaches its limits when concepts which are funda-
mental to the given theory are being scrutinised. They call it “conceptual fixed 
points”. The most extensive reflection has been done in the area of ethics (Cap-

 
10 A non-realised Gödel’s objective consisted in finding an “absolute” concept of 

computation, i.e., such a concept of computation that does not depend on any domain. 
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pelen et al., 2020), but Eklund (2015) extends it to formal contexts and concepts 
such as “truth”, “belief”, or “existence”. In addition to traditional arguments 
used in ethical contexts, such as “Kantian philosophy [with its regulative ideas], 
or from a naturalistic philosophy according to which what is innate severely 
constrains which concepts we can use”, Eklund considers basic formal concepts 
in the spirit of rigid designators. 

In moral philosophy, “the moral fixed points” are those moral propositions 
that are moral truths which always need to be incorporated into a moral system. 
A normative system which fails to incorporate such propositions is not a moral 
system, but a normative system of some other kind. The leading example of such 
a moral fixed point is the proposition “It is wrong to engage in the recreational 
slaughter of a fellow person” (Cueno & Shafer-Landau, 2014). 

Eklund (e.g., 2015, Chapter 5) extends this phenomenon to frameworks out-
side moral philosophy and, as he calls it, the “thinnest” normative words like 
“good”, “right”, “ought”. Eklund observes that in each conceptual framework, 
concepts exist that are difficult, if not impossible, to engineer. “Truth” is one of 
those concepts. People care about truth, writes Eklund, and they do not care 
about some conceptually engineered concept “truth*”. In consequence, truth is 
a concept that should keep a fixed position in a conceptual framework, and refer 
to the natural kin of assertions and beliefs. Similarly, “existence” is a conceptual 
fixed point. Eklund opposes the claim from the contemporary meta-ontological 
debate, where it is assumed “that there are alternative notions of existence that 
can be employed”. He claims that, similarly as in the case of “truth”, a conceptu-
al framework that would result from adapting a conceptually engineered concept 
of “existence” would need to adjust its other key concepts in such a way that the 
resulting framework would be isomorphic to the initial one. Thus, “One cannot, 
so to speak, s e l e c t i v e l y  engineer the quantifier”. 

Suppose we set out to conceptually engineer truth. Insofar as the job description 
of truth is that of being the property our beliefs and assertions aim at, the engi-
neering project would be that of finding a property more adequate to that job de-
scription. But by what has been noted about Stich’s argument, it is hard even 
properly to conceive of a practice of belief or assertion that is guided by a differ-
ent property. (Eklund, 2015, p. 378) 

There is one last thing that I consider worth mentioning while talking about 
conceptual fixed points and mathematical concepts, in particular the concept of 
computation, that is a possible proximity between conceptual fixed points and 
fixed points that are traditionally analysed in mathematics in the context of diag-
onalisation. At first sight, they do not have much in common11 as conceptual 
fixed points relate mostly to the cross-model intended interpretation of a concept, 
whereas diagonalisation is about self-reference and vicious circles. Conceptual 
fixed points are concepts interpreted in, what we call in the philosophy of math-

 
11 I might be wrong, but I will not try to sort it out in this paper. 
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ematics, their intended models. In different words, a fixed point consists of the 
pair t h e  e n g i n e e r e d  c o n c e p t  corresponding to the intended meaning of 
the concept, or—to borrow Eklund’s expression—the interpretation that “people 
care about”, and a  p o s s i b l e  w o r l d  o f  i n t e r p r e t a t i o n , which actually 
corresponds to the intended model of this concept. Both, the concept of natural 
number and the concept of computation are in this sense conceptual fixed points. 
A more careful look should be applied to those two phenomena, but in this paper 
I will just leave it without further comment.12 

6. The Church-Turing Thesis as a Carnapian Explication 

Another methodological framework that offers a solution for conceptual 
structure escaping conceptual analysis is the method of Carnapian explication. 
Quinon (2019) explores the idea that the structure of the concept of computation, 
accounted for with the Church-Turing thesis, is best understood through the 
method of explication. This section is devoted to the presentation of the method 
of explication for the concept of computation, and also for the concept of natural 
number. 

Treating the concept of computation, as accounted for in the Church-Turing 
thesis, as a Carnapian explication has multiple advantages, namely, it overcomes 
problems of conceptual analysis; it explains how one intuitive concept of what 
“to be computable” means can be translated into a multitude of extensionally 
equivalent formal concepts of “to be computable” in a specific formal concept 
means; it finally provides a ground for thinking of mathematical or formal con-
cepts as “open-textures” evolving through time (Makovec & Shapiro, 2019); it 
also relates to the initial intuitive prescientific concept with the formal concept, 
because an explication relies on an existing meaning, and offers a specification 
which offers the best possible fit in a given context. 

An explication in the Carnapian sense consists in introducing new formal 
concepts to the scientific language coined on the basis of everyday concepts. In 
different words, it is a procedure of transformation from an inexact prescientific 
concept into a scientific one. Moreover, an explication consists in providing 
a scientific concept within a given context, within an existing theory. It is done in 
two steps: 

• The clarification of the explicatum 
• The specification of the explicatum 

The rationale for clarification is that a given term may have many different 
meanings in ordinary language. Unless one of these meanings is clearly picked 

 
12 If you want to get a more formal description of this phenomenon, you can think of 

hybrid modal logics which provide a framework for thinking of epistemic access to other 
possible worlds from the perspective of the selected distinguished world. 
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out from the start and the context of its use is clearly indicated, it is unlikely that 
the method of explication will yield a useful result. Clarification serves this pur-
pose. As Carnap explains, “[a]lthough the explicandum cannot be given in exact 
terms, it should be made as clear as possible by informal explanations and exam-
ples” (Carnap, 1950, p. 3). Quinon (2019) highlights the importance of the clari-
fication stage, the stage which has traditionally been underestimated. 

A clarification of the explicandum enables the next step of the explication 
process, a specification of the explicatum and formulation of the exact concept in 
the targeted context. 

Since several clarifications most often can be foreseen, and several scientific 
contexts are available, one pre-scientific concept can be explicated in various 
manners. In order to decide which explication is the most successful, Carnap 
proposes four criteria that can be applied for assessing the value of an explication, 
and also for comparison between available options. 

• SIMILARITY TO THE EXPLICANDUM: most of the cases in which the 
explicandum has so far been used, the explicatum can be used; however, 
close similarity is not required, and considerable differences are permitted. 

• EXACTNESS: the rules of use of explicatum have to be given explicitly and 
precisely, for example, by providing a concept with the formal definition. 

• FRUITFULNESS: shall be “useful for the formulation of many universal 
statements”. 

• SIMPLICITY: an explication should be as simple as the previous three al-
low it. 

I think that it is worth investigating whether abandoning the path of analysis 
and taking the path of explications could offer an additional insight into the con-
ceptual structure of formal concepts, and also informal concepts lying in the 
foundations of their formalization. The idea is that every formal concept is—at 
least in subjective arithmetic (to borrow Gödelian terminology)—grounded upon, 
or issued from, an everyday intuitive, pre-scientific concept. The next section is 
devoted to a preliminary investigation into the possibility of extending the idea 
that the method of explication, consisting in building up the formal concept out 
of the intuitive concept, is anyhow relevant to the anti-mechanist argument 
against the computability of mind using Gödel’s incompleteness theorems. 

Both intended interpretations determined in the consequences of accepting 
conceptual fixed points solution and the choice of the formal aspect, and the 
formal context at the stage of the concept clarification in the process of Carnapi-
an explication, share a similar threat. In the case of a fixed point solution and in 
the case of clarification an agent needs to take an arbitrary decision regarding the 
intended interpretation. 

 



258 PAULA QUINON  
 

7. Theory of Mind and Computations 

In this section, I propose an additional complication to the method of Carnapian 
explication, which is a temporary, or a phylogenic, aspect of conceptual development. 

The method of Carnapian explication enables introducing new formal con-
cepts to the language by transforming an intuitive pre-scientific concept into 
a new scientific concept within some formal context. Usually, at the stage of 
clarification one chooses the meaning that will guide the formalisation of the 
intuitive pre-scientific concept and also the targeted formal context. What I pro-
pose in this section, is an additional dimension to the clarification stage: a rela-
tivisation to the phylogeny of the formal concept. At the stage of clarification, in 
addition to deciding which aspect of the intuitive concept one wants to formalise, 
one needs to realise that each concept develops. The phylogenic development of 
the concept of natural number and the concept of computation is studied in 
Shapiro on open-texture (2013). 

The relation between the concept of computation and the concept of natural 
number underwent a very dynamic development. In consequence, the set of po-
tential clarifications of intuitive concepts of computation and of natural numbers 
have grown. What is interesting from my perspective, is that computability is 
today an expected feature of natural numbers. Natural numbers are those mathe-
matical entities that are all day long used for enumerating and computing, for 
programming, and in various sorts of logistic projects as an underlying discrete 
structure. Both concepts have become increasingly important in the everyday life 
of our society. This is called digitalisation. 

Various areas of digitalisation are additionally reinforced by the fact that 
computationalism—even if its formal details are still discussed by philosophers, 
mathematicians and logicians—is today the mainstream theory of mind. This 
process is described by Turkle (1984; 2011; 2015) who studies how concepts 
from computer sciences and robotics have got into common language and how 
they have changed ordinary people’s approach to inter-personal relations or ethi-
cal questions. 

According to Turkle the intensity in which digitalisation of everyday life de-
velops is strongly connected to the fact that computational language was first 
used to reformulate our perception of our own mind and consciousness.13 

 
13 Turkle’s earlier work related to a similar development of conceptual trends in ex-

planation of phenomena of everyday life that had a place in France in the 1960s and 1970s 
as a consequence of the spread of psychoanalytical ideas, see her book Psychoanalytic 
Politics: Jacques Lacan and Freud’s French Revolution from 1978). In The Second Self: 
Computers and the Human Spirit (1984), Turkle describes these changes that have got 
into general culture through digitalisation and robotics in the same way as “psychoanalyt-
ic culture” penetrated structures of the general social and political life in France: “Psycho-
analytic language spread into the rhetoric of political parties, into training programs for 
schoolteachers, into advice-to-the-lovelorn columns. I became fascinated with how people 
were picking up and trying on this new language for thinking about the self. I had gone to 
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When Turkle speaks about her experience with the digitalised society, she 
compares two experiences: 

My experience at MIT impressed me with the fact that something analogous to the 
development of a psychoanalytic culture was going on in the worlds around com-
putation. At MIT I heard computational metaphors used to think about politics, 
education, social process, and, most central to the analogy with psychoanalysis, 
about the self. (Turkle, 1984, p. 305) 

She sees within it a first step in the cultural assimilation of a new way of 
thinking: 

The essential question in such work is how ideas developed in the world of high 
science are appropriated by the culture at large. In the case of psychoanalysis, how 
do Freudian ideas move out to touch the lives of people who have never visited 
a psychoanalyst, people who are not even particularly interested in psychoanalysis 
as a theory? In the study of the nascent computer culture, the essential question 
was the same: how were computational ideas moving out into everyday life? 
(Turkle, 1984, p. 305) 

She searches how “the idea of mind as a program enters into people’s sense 
of who is the actor when they act”. A model of the mind that is adapted by socie-
ty influences how people think about their frustrations and disappointments, their 
relationships with their families and with their work (Makovec & Shapiro, 2019, 
p. 305). On the other hand, says Turkle, computers became a new constructed 
object—“a cultural object that different people and groups of people can appre-
hend with very different descriptions and invest with very different attributes. 
Ideas about computers become easily charged with personal and cultural mean-
ings” (Turkle, 1984, p. 308). 

In her other books, Turkle studies human attachment to objects. In the vol-
ume of essays Evocative Objects: Things We Think With (2007) she speaks about 
the attachment that people, many of her friends, have developed with physical 
objects. In her book, Alone Together Turkle (2011) extends her observations to 
different types of automated artificial agents, such as virtual agents mediated by 
electronic support, or robots. In a series of social experiments, where she asked 
her subjects to interact with an automated artificial agent, she observed that the 
stronger attachment develops in the most vulnerable members of our society, 
such as neglected children with unfulfilled emotional needs, or with old people 
suffering from a lack of human interactions. Our natural inclination to form emo-
tional attachment with humans, and with objects in the absence of humans, might 
soon lead to even more human-AI interactions. Those interactions are obviously 

 
France to study the psychoanalytic community and how it had rein- vented Freud for the 
French taste, but I was there at a time when it was possible to watch a small psychoanaly-
tic community grow into a larger psychoanalytic culture” (Turkle, 1984, pp. 304–305). 
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structured in a very particular, very automated, way, which even more strongly 
influences the digitalisation of the language we use. 

Krajewski makes a similar observation in the last section of the paper. 

Our attitude toward the arguments of Lucas, Penrose, and others is shaped mostly 
by our general vision of machines and minds. And this vision adjusts with changes 
of civilization. For the youth of today, if I may judge from listening to my students, 
our computerized world makes it easier to accept the idea that anything is mech-
anizable—including the mind. (2020, p. 49) 

I propose a hypothesis that at least part of the confusion regarding the speci-
ficity of the conceptual structure of the concept of computation contributes to the 
confusion regarding the nature of human reasoning and the human mind. In con-
sequence, I claim that—at least partially—the “feeling” that there are non-
computational processes is due to the complexity of the conceptual structure of 
the concept of computation. 

8. The Lucas-Penrose Argument and Extra-Formal Concepts 

Let me now come back to the anti-mechanist argument against computability 
of mind based on Gödel’s incompleteness theorems.  

In the first part of this section, I reconstruct Krajewski’s claim according to 
which, in order to make the anti-mechanist argument work, one needs to add an 
extra-formal assumption stating the consistency of the underlying theory, that is, 
the theory corresponding to the human mind. The core of Krajewski’s criticism is 
as follow: it is not possible to formalize the extra-formal assumption and there-
fore, the whole of Lucas’ argument is fallacious. I disagree with Krajewski’s 
claim that formalization of the extra-formal assumptions is not possible. There 
are contemporary philosophical methods that might enable formulation of such 
a formalization. As example, in the previous sections, I have presented the meth-
odological and conceptual framework was based on Carnapian explications. 
Instead, I focus on another problem, which the issues from an internal character-
istic of formal contexts, namely on the part of the argument, which leads to 
a circular reasoning. In order to show that the human mind (THM) outperforms 
a machine (TM), one needs to assume that the human mind is consistent and 
knows it (and in this way outperforms a machine that can never “know” if it is 
consistent or not). Observe, that I do not reject Krajewski’s conclusion, but 
I point at a fallacy in a proof. Again, I have already discussed how the method of 
conceptual engineering enables structured thinking of extra-formal assumptions 
and the resulting circular reasoning. 

In the second part of this section, I will continue my investigation of possible 
extra-formal assumptions relative to the anti-mechanist argument based on Gö-
del’s incompleteness theorems. 

The Lucas’ anti-mechanist argument based on Gödel’s incompleteness theo-
rems consists of two parts. Firstly, Gödel’s results establish that each sufficiently 
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rich consistent theory admits a Gödel sentence and also that none such theory 
can prove its own consistency. 

Let T be a consistent theory containing arithmetic, let φT be the Gödel’s sen-
tence for the theory T. 

Con(T) → T ⊬ φT 
Con(T) → T ⊬ Con(T) 

Moreover, it is broadly known that an inconsistent theory proves any sentence, 
but Gödel’s incompleteness theorems do not apply to an inconsistent theory. 

Secondly, human mathematicians can work with subsequent increasingly 
stronger theories, 

T1 = T ∪ Con(T ) 
T2 = T1 ∪ Con(T1) 

⋮ 
Tn+1 = Tn ∪ Con(Tn) 

which—for some defenders of the anti-mechanist argument—signifies that hu-
man mathematicians outperform machines. Krajewski objects to this view claim-
ing that the construction of the hierarchy can be fully mechanised. In conse-
quence, he claims that the ability to construct and work with the hierarchy of 
increasingly stronger theories alone is not sufficient for formulating the anti-
mechanist argument. As stated by Krajewski, additional assumptions are missing. 

In addition to Gödel’s results, at least two assumptions that are not self-evident are 
used in the above reasoning. First, every exact proof of our consistency can be 
formalized, second, it is possible to express “our consistency”. […] If this is ac-
cepted, one could question the second point. It is not clear at all how one can ex-
press “our consistency”. Basically there are two options to express this: either 
(i) by the common sense statement “I am consistent” or (ii) by a formal counter-
part to this statement. Let us consider them in turn. 

In case (i) we refer to a common sense statement, which have no connection 
to formal considerations. Hao Wang (1974, pp. 317–320) reflected on just this 
statement and believed that it is not provable. […] If that were possible, it would 
mean that we are not machines, or that we are not even equivalent to machines in 
the realm of proof-producing reasoning. We certainly may believe that, but it is no 
more than a general feeling. 

In case (ii) we consider the formal counterpart to a loose statement expressing 
consistency […]. The usual meaning of the statement refers to the will to avoid 
contradictions, to the reliability of our vision of the world, to the claim that the 
methods used by mathematicians are unfailing. The sentence Cons or any other 
similar arithmetical formula is rather far from those ideas. Thus, while something 
is strictly proved, it is unclear to what extent the conclusion conveys our con-
sistency. (2020, pp. 47–48) 
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Krajewski’s reasoning can be reconstructed as follows. Applying the formal 
predicate “being consistent” can only apply to a formal theory. Applying the 
formal predicate “being consistent” to anything else than a formal theory is 
a categorical mistake. In consequence, if “consistency” is to be a predicate apply-
ing to on the human mind, the mind must have certain formal properties and 
needs to be identified with a theory. The following options exist: 

• If human mind is a theory and it is consistent, then as to all other theories, 
a Gödel’s sentence applies to it and the human mind encounters the same 
constraints as any theory (a machine). 

• If the human mind is a theory and it is inconsistent, then Gödelian argu-
ment limitations do not apply at all. 

If the human mind is a theory, a human disposing of a mind cannot know—from 
the formal point of view—if it is consistent or not. In consequence, in order to 
prove that the human mind outperforms a machine, a second extra-formal addi-
tional assumption needs to be made. It has to be assumed that the human mind is 
indeed consistent. This assumption can be done in one of the two ways. “Case 
(i)”, “I am consistent” cannot be formalised. “Case (ii)”, there exists a formal 
counterpart of “I am consistent”. 

My analysis of “case (i)” is in line with the analysis of Krajewski. If “I am 
consistent” is an informal statement, it is useless for any formal proof. And here 
we speak of being able to p r o v e  more than a machine. Whereas Lucas’ argu-
ment is supposed to be a formal proof of the superiority of the human mind over 
a machine. 

My analysis of “case (ii)” differs from Krajewski’s analysis. His argument re-
turns to the idea that each formalisation of the informal “I am consistent” re-
mains—maybe more informed or more precise—but is still an informal account. 
As such it is useless for any formal proof. I think that the conclusion from (ii) is 
different. An agent can find a formal counterpart of the statement “I am con-
sistent”, or rather “the theory constituting my mind is consistent”. The frame-
work of the Carnapian explications enables us to understand how it can be done. 

I also assume that an agent c a n  recognise their own consistency. This insight 
is available to a human being, while it is—on the grounds of the second of Gö-
del’s incompleteness theorem—unavailable to a machine. This extra-formal 
assumption is necessary for formulating an anti-mechanist argument against the 
computability of the mind. It is also exactly at this point where a vicious circle 
occurs. We are in the act of proving that the human mind outperforms a machine, 
and so one cannot in this proof assume that human mind is consistent. 

Another possible extra-formal assumption that can be made in order to enable 
the anti-mechanist argument based on Gödel’s incompleteness theorem, is the 
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ability to refer to the intended model of arithmetic.14 Instead of assuming that the 
human mind is consistent (i.e., assuming that the theory underlying all human 
reasoning is a consistent theory, which does not prove both a φ and a ¬φ, for 
every φ), in order to use Gödel’s incompleteness theorems to support the anti-
mechanist argument, one can assume that the human mind is able to refer to the 
intended model of arithmetic. The assumption that the human mind can refer to 
the intended model of arithmetic disables the possibility that the Gödel sentences 
get to have non-standard Gödel numerals. 

In the way it is usually interpreted—in particular in the context of philosoph-
ical argumentation supporting the anti-mechanist argument that the human mind 
is non-computable—Gödel’s incompleteness theorems provide us with the in-
formation from the perspective of a formal system. The semantical aspect is 
taken for granted. When the model-theoretical reasoning is applied, Gödel’s 
incompleteness theorems indicate that there exist non-standard models in which 
the (non-standard) Gödel number of the proof for Gödel’s incompleteness theo-
rems has its (semantical) reference. It also means, that there exist models where 
the Gödel (non-standard) number of the proof for the negation of Gödel’s first 
theorem, has an interpretation as a (non-standard) natural number. 

What is famously referred to by Gödel’s platonism is his belief that there is 
a model of arithmetic in which all arithmetical truths are satisfied. This is obvi-
ously not the intended model of arithmetic that humans have privileged cognitive 
access to, but the model of arithmetic in objective mathematics (Gödel, *1951). 

9. Conclusions 

Additionally to the critical analysis of Krajewski’s rejection of the anti-
mechanist based on Gödel’s incompleteness theorems to which I suggest some 
possible improvements, my paper is sympathetic to the idea that certain key 
concepts in formal contexts naturally fall into circular or infinite reasonings. In 
this way, I try to shift attention from the theory of the human mind and con-
sciousness, to the study of the conceptual structure of the language. 

In my paper, I explored similarities between various formal contexts in which 
key concepts fall into a vicious circle of reasoning. I looked at the formalisation 
of the concept of natural number, of the concept of computation, and at the con-
cept of consistency in the context of Gödel’s incompleteness theorems. I sug-
gested that the way to switch from an informal pre-scientific concept to a full-
blooded formal scientific concept formulated in an adequate formal context is 
best modeled by Carnapian explications. I have also suggested that the phenom-

 
14 The intended model is intended for both PA1 and PA2 and for this reason I do not 

make a distinction between the intended model of PA1 and the intended model of PA2. 
I can think of a philosophical position that makes such a distinction, but for my purpose 
that would unnecessarily complicate my presentation. 
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enon of conceptual fixed points offers a methodological framework to think of 
intended interpretations necessary to jump out of circularity. 

 
 

REFERENCES 
 

Benacerraf, P. (1967). God, the Devil, and Gödel. Monist, 51, 9–32. 
Boolos, G. (1995). Introductory Note to *1951. In: S. Feferman et al. (Eds.), 

Collected Works, Volume III, Unpublished Essays and Lectures (pp. 290–304). 
Oxford University Press. 

Button, T., Smith, P. (2012): The Philosophical Significance of Tennenbaum’s 
Theorem. Philosophia Mathematica, 20(1), 114–121. 

Cappelen, H. (2018). Fixing Language: An Essay on Conceptual Engineering. 
Oxford University Press. 

Cappelen H., Plunkett D. & Burgess A. (Eds.). (2020). Conceptual Engineering 
and Conceptual Ethics. Oxford University Press. 

Carnap, R. (1950). Logical Foundations of Probability. Routledge and Kegan Paul. 
Copeland, J., Proudfoot, D. (2010). Deviant Encodings and Turing’s Analysis of 

Computability. Studies in History and Philosophy of Science, 41, 247–252. 
Cuneo T., Shafer-Landau, R. (2014). The Moral Fixed Points: New Directions 

for Moral Nonnaturalism. Philosophical Studies, 171, 399–443. 
Dean, W. (2014), Models and Computability. Philosophia Mathematica, 22(2), 

143–166. 
Eklund, M. (2015). Intuitions, Conceptual Engineering, and Conceptual Fixed 

Points. In C. Daly (Ed.), The Palgrave Handbook of Philosophical Methods 
(pp. 363–385). London: Palgrave Macmillan. 

Feferman, S. (1995). Penrose’s Gödelian Argument. Psyche: An Interdisciplinary 
Journal of Research on Consciousness, 2, 21–32. 

Gödel, K. (193?), Undecidable Diophantine Propositions. In S. Feferman et al. 
(Eds), Collected Works, Volume III, Unpublished Essays and Lectures 
(pp. 164–175). Oxford University Press. 

Gödel, K. (*1951). Some Basic Theorems on the Foundations of Mathematics 
and Their Implications [Gödel’s 1951 Gibbs lecture]. In S. Feferman et al. 
(Eds.), Collected Works, Volume III, Unpublished Essays and Lectures 
(pp. 304–323), Oxford University Press. 

Halbach, V., Horsten, L. (2005). Computational Structuralism. Philosophia 
Mathematica, 13(2), 174–186. 

Hofstadter, D. R. (1979). Gödel, Escher, Bach, and Eternal Golden Braid. New 
York: Basic Books. 

Krajewski, S. (2007). On Gödel’s Theorem and Mechanism: Inconsistency or 
Unsoundness is Unavoidable in any Attempt to ’Out-Gödel’ the Mechanist. 
Fundamenta Informaticae, 81, 173–181. 

Krajewski, S. (2020). On the Anti-Mechnist Arguments Based on Gödel’s Theo-
rem. Studia Semiotyczne, 34(1), 9–56. 



 THE ANTI-MECHANIST ARGUMENT… 265 
 
Lucas, J. R. (1961). Minds, Machines and Gödel. Philosophy, 36(137), 112–127. 
Lucas, J. R. (1968). Satan Stultified: A Rejoinder to Paul Benacerraf. The Monist, 

52, 145–158. 
Lucas, J. R. (1990). A Paper to Read to the Turing Conference at Brighton on April 

6th, 1990. Retrieved from: http://users.ox.ac.uk/~jrlucas/Godel/brighton.html 
Lucas, J. R. (1996). Minds, Machines and Gödel: A Retrospect. In P. Millican, 

A. Clark (Eds.), Machines and Though (pp. 103–124). Oxford University Press. 
Maddy P. (2007). Second Philosophy. A Naturalistic Method. Oxford University Press. 
Makovec, D., Shapiro S. (Eds.). (2019). Friedrich Waismann. The Open Texture 

of Analytic Philosophy. New York: Springer. 
Nagel, E., Newman J. R. (1958). Gödel’s Proof. New York University Press. 
Nagel, E., Newman J. R. (1961). Answer to Putnam. Philosophy of Science, 28, 

209–211. 
Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds 

and The Laws of Physics. Oxford University Press. 
Penrose, R. (1994). Shadows of the Mind: A Search for the Missing Science of 

Consciousness. Oxford University Press. 
Piccinini, G. (2010). Computation in Physical Systems. In E. N. Zalta (Ed.), The 

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford 
University. 

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford 
University Press. 

Plunkett D., Cappelen, H. (2020). A Guided Tour of Conceptual Engineering and 
Conceptual Ethics. In: H. Cappelen, D. Plunkett, A. Burgess (Eds.), Concep-
tual Engineering and Conceptual Ethics (pp. 1–26). Oxford University Press. 

Post, E. (1941). Absolutely Unsolvable Problems and Relatively Undecidable 
Propositions—Account of an Anticipation. In M. Davis (Ed.), The Undecida-
ble (pp. 338–433). Hewlett, N. Y.: Raven Press. 

Putnam, H. (1960). Minds and Machines. In S. Hook (Ed.), Dimensions of Mind: 
A Symposium (pp. 138–164). New York: New York University Press. 

Putnam, H. (1980). Models and Reality. Journal of Symbolic Logic, 45(3), 464–482. 
Putnam, H. (1995). Review of The Shadows of the Mind. Bulletin of the Ameri-

can Mathematical Society, 32(2), 370–373. 
Quine, W. V. O. (1970). Philosophy of Logic. Harvard University Press. 
Quinon, P. & Zdanowski, K. (2007). Intended Model of Arithmetic. Argument 

from Tennenbaum’s Theorem. In S. B. Cooper et al. (Eds.), Computation and 
Logic in the Real World (pp. 313–317). Berlin: Springer-Verlag. 

Quinon, P. (2014). From Computability Over Strings of Characters to Natural 
Numbers. In A. Olszewski, B. Brożek, P. Urbańczyk (Eds.), Church’s Thesis, 
Logic, Mind & Nature (pp. 310– 330). Warsaw: Copernicus Center Press. 

Quinon, P. (2018). Taxonomy of Deviant Encodings. In: F. Manea, R. Miller, 
D. Nowotka (Eds.), Sailing Routes in the World of Computation (pp. 338–
348). Berlin: Springer-Verlag. 



266 PAULA QUINON  
 
Quinon, P. (2019). Can Church’s Thesis be Viewed as a Carnapian Explication? 

Synthese, Online First. 
Quinon, P. (2020). Implicit and Explicit Examples of the Phenomenon of Devi-

ant Encodings. Studies in Logic, Grammar and Rhetoric, 63(76), 53–68. 
Rescrola, M. (2007), Church’s Thesis and the Conceptual Analysis of Computa-

bility. Notre Dame Journal of Formal Logic, 48(2), 253–280. 
Shapiro, S. (1982). Acceptable Notation. Notre Dame Journal of Formal Logic, 

23(1), 14–20. 
Shapiro, S. (1998). Incompleteness, Mechanism, and Optimism. Journal of Phil-

osophical Logic, 4, 273–302. 
Shapiro, S. (2003). Mechanism, Truth, and Penrose’s New Argument. Journal of 

Philosophical Logic, 32, 19–42. 
Shapiro, S. (2013). Computability, Proof and Open-texture. In A. Olszewski, 

J. Wolenski, R. Janusz (Eds.), Church’s Thesis After 70 Years (pp. 420–455). 
Berlin: Walter de Gruyter. 

Turing, A. (1950). Computing Machinery and Intelligence. Mind, 59, 433–460. 
Turkle, S. (1978). Psychoanalytic Politics: Jacques Lacan and Freud’s French 

Revolution. New York: Basic Books. 
Turkle, S. (1984). The Second Self: The Second Self: Computers and the Human 

Spirit. MIT Press. 
Turkle, S. (2011). Alone Together: Why We Expect More from Technology and 

Less from Each Other. New York: Basic Books. 
Turkle, S. (2015). Reclaiming Conversation: The Power of Talk in a Digital Age. 

London: Penguin Press. 
van Heuveln, B. (2000). Emergence and Consciousness: Explorations Into the 

Philosophy of Mind via the Philosophy of Computation [Unpublished Ph.D. 
thesis]. State University of New York, Binghampton. 

Wang, H. (1974). From Mathematics to Philosophy. Routledge and Kegan Paul. 
 


	The Anti-MechanisT Argument Based on Gödel’s Incompleteness Theorems, Indescribability of the Concept of Natural Number and Deviant Encodings
	1. Introduction
	2. The Lucas-Penrose Argument and Its Criticism
	3. The Concept of Natural Number and the Concept of Computation
	4. Nested Vicious Circles
	5. Conceptual Engineering and Conceptual Fixed Points
	6. The Church-Turing Thesis as a Carnapian Explication
	7. Theory of Mind and Computations
	8. The Lucas-Penrose Argument and Extra-Formal Concepts
	9. Conclusions


