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S U M M A R Y : Georg Kreisel (1972) suggested various ways out of the Gödel incomplete-
ness theorems. His remarks on ways out were somewhat parenthetical, and suggestive. He 
did not develop them in subsequent papers. One aim of this paper is not to develop those 
remarks, but to show how the basic idea that they express can be used to reason about the 
Lucas-Penrose-Putnam arguments that human minds are not (entirely) finitary computa-
tional machines. Another aim is to show how one of Putnam’s two anti-functionalist 
arguments (that use the Gödel incompleteness theorems) avoids the logical error in the 
Lucas-Penrose arguments, extends those arguments, but succumbs to an absurdity. A third 
aim is to provide a categorization of the Lucas-Penrose-Putnam anti-functionalist argu-
ments. 
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1. Introduction 

J. R. Lucas (1961) argued that for any finitary computational machine hy-
pothesized to simulate full human mentality, there will be a Gödel sentence for 
that machine it cannot prove to be true, but which human beings can prove to be 
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true. David Lewis (1969) responded that Lucas (and any other human being) can 
prove the Gödel sentence for that machine to be true if and only if they can also 
prove the theorems in Lucas arithmetic. But Lewis doubts a finitary human can 
do that, since Lucas arithmetic uses infinitary rules of inference—and so there 
might be infinitely many premises in a given proof. Lucas (1970), in turn, re-
sponded that Lewis failed to appreciate the dialectical character of Lucas’ argu-
ment. Lewis (1979), in response, argued that even appreciating the dialectical 
character of the Lucas argument, Lucas cannot prove true the Gödel sentence of 
any finitary machine hypothesized to simulate full human mentality. 

Roger Penrose (1989; 1994) improved upon Lucas’ argument by proposing 
a neurobiological mechanism by which human beings might “see” the truth of 
the Gödel sentence of any finitary computational machine hypothesized to simu-
late full human mentality. Hilary Putnam argued (1995), famously, that Penrose 
commits a simple logical error. The finitary computational machine might have 
a program so long that no human being could physically survey it—and thus not 
be able to prove that it is consistent. If so, then even if full human mentality is 
not completely described by that finitary program, our failure to prove its con-
sistency would not distinguish us from the finitary computational machine which 
(by the Gödel incompleteness theorems) fails to prove its own consistency. If so, 
the Gödel incompleteness theorems could not be used to arrive at a conclusion 
that functionalism as a theory of the human mind is a false theory, since it could 
not be demonstrated that there is an objective truth human minds can verify that 
no finitary computational machine can verify. The Penrose error is that even if 
human minds can “see” the truth of the Gödel sentence for the finitary computa-
tional machine that is hypothesized to describe human mentality, physically 
human beings are finite (in terms of time and space limitations). If the program 
of the finitary computational machine is so long that no human could survey it 
(such as read it) in their lifetime, then no human being could “see” that it is con-
sistent (if it is). It is a logical error in Penrose’s argument, since it is a possibility 
that, if true, undermines the argument by showing that the conclusion of the 
argument is false. The burden of proof is on Penrose’s shoulders—to show that 
the possibility cannot be true. But this Penrose cannot do, since the ultimate 
finitary computational description of human mentality is yet to be written (if, in 
fact, there is one).  

Putnam went on to construct an anti-functionalist argument using the Gödel 
incompleteness theorems (1988; 1994a; 1994b), applying it to both demonstra-
tive and non-demonstrative reasoning. He does not apply the Gödel incomplete-
ness theorems to a finitary computational program hypothesized to simulate full 
human mentality. Instead, he exploits the Kaplan-Montague paradox—the basic 
idea of which is the Computational Liar. The Computational Liar shows—if 
Putnam is right—that any attempt to formalize human reasoning must fail be-
cause any formal description of human reasoning can always be transcended by 
human reasoning. (Although Putnam does not make it, a distinction needs to be 
made between (i) prima facie, any formal system can be transcended by another 
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formal system and (ii) any formal description of human reasoning can be trans-
cended by human reasoning. It would be a mistake to reduce (ii) to (i)—that is 
not what Putnam claims.)  

But his argument leads to a dilemma. If not all methods of inquiry are shown 
to be subject to the Gödel incompleteness theorems, one can take Kreisel’s way 
out. But if all methods of inquiry are subject to the Gödel incompleteness theo-
rems, there is an absurdity. I will provide (in section 7 of this paper) a categoriza-
tion of the Lucas-Penrose-Putnam anti-functionalist arguments employing the 
Gödel incompleteness theorems.  

What Putnam did not notice is that there is another way to show that human 
minds and any finitary computational machine hypothesized to simulate human 
minds are epistemically indistinguishable (even if they are de facto metaphysi-
cally distinguishable). What the Gödel incompleteness theorems show is that it is 
impossible to either prove the Gödel sentence of a formal system subject to the 
Gödel incompleteness theorems or to prove the consistency of that formal system 
using finitistic reasoning within that formal system (which delivers its theorems 
in the epistemic modality of mathematical certainty). Not even an infinitary mind 
can do that—an infinitary mind would use infinitary reasoning.  

However, it is left open that either the Gödel sentence of a formal system 
subject to the Gödel incompleteness theorems or the consistency of that formal 
system can be proved with less than mathematical certainty or in some other 
epistemic modality. Both a human mind and a finitary computational machine 
might be able to do that. If so, both can prove the same thing, and no difference 
can be made between the two. This is the lesson from Kreisel’s way out of the 
Gödel incompleteness theorems—and if taken, adds an interesting wrinkle to the 
Lucas-Penrose-Putnam anti-functionalist arguments. (Roger Penrose, in a pref-
ace to a reprinting of The Emperor’s New Mind [Penrose, 1999], notes that one 
loophole to his argument is that “our capacity for [mathematical] understanding 
might be […] inaccurate, but only approximately correct”. He says he will address 
this loophole to his argument in Shadows of the Mind [1994], but he does not.) 

2. Kreisel’s Way Out of the Gödel Incompleteness Theorems 

Kreisel (1972) raises the question of whether there is non-mathematical evi-
dence that can be used to establish the soundness of a formal system F (adequate 
for mathematical reasoning, and so subject to the Gödel incompleteness theo-
rems). He observes that it does not logically follow from the fact that a formal 
system is subject to the second Gödel incompleteness theorems that there are 
absolutely no means available to prove its consistency. It only follows logically 
that its consistency cannot be mathematically demonstrated with mathematical 
certainty using finitistic reasoning. It is left open that its consistency can be 
proved by other means, viz., mathematically with less than mathematical certain-
ty (typically by statistical reasoning) and non-mathematically, with less than 
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mathematical certainty, by abstract philosophical reasoning (a priori reasoning 
that is not encodable into a formal system). 

He believes that there are two different ways to realize the possibility of non-
mathematical evidence to prove the soundness of F, both of which are left open 
by the Gödel incompleteness theorems. The first kind of nonmathematical evi-
dence to prove the soundness of F is inductive evidence and the second is a met-
aphysical nonmathematical interpretation. Both kinds of evidence require sub-
stantial explanation—unfortunately, Kreisel’s explanations are brief.  

Nonmathematical inductive evidence is taken by Kreisel to be based on our 
experience with formal systems, such as our experience with Principia Mathe-
matica. In one way of understanding what our experience of formal systems 
delivers, our confidence in the soundness of formal systems is acquired by vari-
ous case studies of formal systems. Kreisel rejects this view—calling it a sham—
for two distinct reasons. The first reason is that we have little or no experience of 
proving the soundness of a formal system by inductive methods. From this 
Kreisel thinks it follows that we have no good ideas about what are the appropri-
ate statistical principles that would be used in evaluating the inductive evidence. 
Without statistical principles we have a data set, but no means by which to find 
in it the data which is necessary for establishing the soundness of some formal 
system. Whatever statistical principles we choose, one job which they must be 
able to do is to ascertain that the nonmathematical inductive evidence establishes 
that the entire formal system is sound, and not that only some subsystem of the 
formal system is sound. 

The second reason Kreisel rejects the idea of nonmathematical inductive evi-
dence for establishing the soundness of a formal system is that it is not done by 
using the experience we acquire from case studies of soundness proofs of formal 
systems. It is, instead, done by—at least in the case of Principia Mathematica—
reflection on the intended meaning of the terms in the language of Principia 
Mathematica. However, what is interesting about Kreisel’s point is that the act of 
reflecting upon what is the intended meaning of the terms in the language of 
a formal system may or may not be a computable procedure. There might not be 
a computational description of such acts. If there is no computational description 
of such acts, then there is some cognitive activity that humans can do which no 
machine can do. In which case, there would be a difference between humans and 
machines e v e n  i f  n e i t h e r  h u m a n s  n o r  m a c h i n e s  c a n  p r o v e  t h e  
G ö d e l  s e n t e n c e  o f  s o m e  f o r m a l  s y s t e m . Of course it would be 
a research project to show that acts of reflection upon the intended meanings of 
terms in some language (whether it is a formal language or not) have no compu-
tational description. (We shall see below that, using an ingenious Gödelian ar-
gument, Putnam attempts to close the door on both statistical methods and ab-
stract philosophical methods for demonstrating CON(PA) by arguing that they 
are subject to the Gödel incompleteness theorems.)  

The other way of proving the soundness of F is by an abstract but nonmath-
ematical interpretation of F. Kreisel cites as an analogy the identification in in-
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tuitionistic mathematics of what is mathematical with what is intuitionistically 
acceptable. He notes that in intuitionism set-theoretic concepts are metaphysical 
and then claims that it might be possible to establish the soundness of some set-
theoretic formal system using a metaphysical nonmathematical interpretation. 
Kreisel believes that this way of proving the soundness of F is more realistic 
than using inductive evidence to establish the soundness of F. I don’t know what 
he means by “realistic” in this context. Perhaps he means that there is a wealth of 
mathematical and foundational work in intuitionism, and so we have a better 
understanding of what an abstract nonmathematical interpretation of F would 
look like than we do of statistical principles.  

An interpretation is usually understood to be a map from syntactical objects 
(that is, symbols) to objects which need not be syntactical—perhaps mathemati-
cal objects. What, then, is a nonmathematical interpretation? Could it still be 
a map and yet be nonmathematical? And what does it mean to say it is metaphys-
ical? Kreisel restricts the metaphysical nonmathematical interpretation to an 
abstract metaphysical nonmathematical interpretation. But if it is a map and it is 
abstract, it is not clear how it could not be mathematical.  

Regardless of what Kreisel actually means by a metaphysical nonmathemati-
cal interpretation of F, using it to establish the soundness of F is different from 
proving the soundness of F within a classical formal system using finitary rea-
soning in the following respect: the proof of soundness of F within a classical 
formal system using finitary reasoning will be with mathematical certainty. (See 
below for a discussion of Church’s view that the theorems of a given system of 
logic are proved with mathematical certainty.) On the other hand, the proof of the 
soundness of F using a metaphysical nonmathematical interpretation will per-
haps not be with mathematical certainty. Kreisel’s way out is the use of statistical 
proofs of consistency of PA with less than mathematical certainty or proofs in 
another epistemic modality such as (nonmathematical philosophical proofs). For 
more on the epistemic modality of a proof see 4.1 below. 

3. Penrose on the Role of Trust in Mathematics 

The key idea of Kreisel’s way out is that one might be able to prove CON(PA) 
with less than mathematical certainty (using statistical methods) or in some other 
epistemic modality (such as metaphysical nonmathematical reasoning). Through-
out the rest of this paper we will see how these possibilities enter into the Lucas-
Penrose-Putnam anti-functionalism arguments. Recently Penrose has argued that 
trust plays an important role in mathematical proofs (2016). He claims that in 
order to trust a mathematical argument, we must trust that the rules of the formal 
system are sound. In cases where it cannot be established that the formal system 
is consistent because of the restriction imposed by the second Gödel incomplete-
ness theorem, we need to trust that the formal system is consistent. If we do, then 
we can prove true the Gödel sentence and the consistency of that formal system 
by ascending to a stronger formal system—which we trust to be consistent.  
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We can view trust in the soundness of the rules of a formal system as an epis-
temic modality alternative to mathematical certainty delivered by proofs in 
a formal system. What Penrose fails to see is that if a finitary computational 
machine can meaningfully trust a formal system to be consistent, then there is no 
metaphysical difference between it and human minds. The move Penrose makes 
to show that human minds can determine the consistency of CON(PA) is one 
which defats his anti-functionalist argument, since it is open that finitary compu-
tational machines can do the same. The burden of proof is upon Penrose—to 
show that no finitary computational machine can exhibit the attitude of trust. 
(See Buechner, 2011, for an argument that finitary computational machines can 
engage in relations of trust with other finitary computational machines and with 
human beings.) 

4. Two Uses of the Gödel Incompleteness Theorems  
in Refuting Functionalism 

I introduce a distinction between two different uses of the Gödel incomplete-
ness theorems in anti-functionalist arguments. This distinction has not been made 
in the literature—and it is important to make it because the conclusions of the 
arguments made under each use are significantly different. Perhaps the reader is 
puzzled: “Isn’t there only one use of the Gödel theorems in refuting functional-
ism?” There are two different ways in which one can attempt to refute function-
alism using the Gödel incompleteness theorems, and the conclusions about func-
tionalism differ in each. Additionally, each method of refutation opens up differ-
ent possibilities in the Lucas-Penrose-Putnam anti-functionalism arguments.  

4.1. Metaphysical Uses of the Gödel Incompleteness Theorems in Refuting 
Functionalism   

One way of using the Gödel incompleteness theorems in anti-functionalist 
arguments concludes that the human mind does not have the nature of a finitary 
computational machine, in which case, functionalism is false. This refutation 
establishes a metaphysical difference between human minds and finitary compu-
tational machines: human minds do not have the nature of such machines. 

The metaphysical use of the Gödel incompleteness theorems in refuting func-
tionalism is found in (Gödel, 1995; Lucas, 1961; Penrose, 1989): if it can be 
shown there is a mathematical truth that can be proved by a human mind, but 
that cannot be proved by a finitary computational machine (that, by hypothesis, 
finitely computationally models that human mind) then the human mind is not 
computationally modeled by that finitary computational machine. Whatever is 
the nature of the human mind, it does not have the nature of a finitary computa-
tional machine, since the human mind is different from the finitary computation-
al machine in virtue of its causal powers, which enable it to prove a theorem that 
the latter cannot prove.  
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Another way of putting the same point: the human mind can prove that the 
program of the finitary computational device which purports to model it is cor-
rect, while the program cannot prove of itself that it is correct (assuming that 
there is no additional program embodied in the finitary computational device). 
So there is a cognitive power that the human mind possesses that is not pos-
sessed by the finitary computational machine. A human mind could justify the 
truth of the claim that the program that purports to describe it is correct, while 
the program itself cannot do that. But if the program, by hypothesis, describes all 
of the cognitive powers of the human mind, then it cannot be a complete finitary 
computational description of the human mind, since it lacks (at least) one cogni-
tive power a human mind possesses.  

This application of the Gödel incompleteness theorems shows functionalism 
is a false philosophical view by demonstrating that human minds are not identi-
cal with finitary computational machines. This non-identity claim is a metaphys-
ical claim about the nature of the human mind: they do not have the nature of 
finitary computing machines. Functionalism is the view that human minds are 
identical with finitary computational machines (of some kind). The metaphysical 
argument (using the Gödel incompleteness theorems) demonstrates that human 
minds are not identical with finitary computing machines. Hence functionalism 
is false if the metaphysical argument is sound.  

The Gödel incompleteness theorems (in the context of this metaphysical argu-
ment) provide a mathematical proof that the human mind is not identical to a finite 
computing machine and thus does not have the nature of a finite computing ma-
chine. (This claim can be generalized: the Gödel incompleteness theorems pro-
vide a mathematical proof that the human mind is not identical to any kind of 
finite computing machine and thus does not have the nature of any kind of finite 
computing machine. It can be generalized because the Gödel sentence unprova-
ble in finitary computing machine1 can be proved in a stronger finitary compu-
ting machine2. However, a new Gödel sentence can be expressed in finitary 
computing machine2 that cannot be proved in it. This is true for all finitary com-
puting machines.) So we have a mathematical proof of a negative metaphysical 
claim about the human mind: it is not any kind of finitary computing machine. 
We will call this use of the Gödel theorems “MGF” (“Metaphysical claims that 
are consequences of using the Gödel theorems to refute functionalism”.)  

It would be a mistake to claim that the Gödel incompleteness theorems speci-
fy an exact bound on the extent of the metaphysical difference between human 
minds and a given finitary computing machine. For instance, given a finitary 
computing machine that cannot prove its program is consistent, the extent to 
which the human mind differs from it is that the human mind can prove the pro-
gram is consistent. This is not informative, since it says nothing positive about 
the cognitive functions necessary for human minds to prove that the program 
describing their mentality is consistent. It does say something negative, though. 
It says that no human mind can prove the program is consistent by simulating 
a finitary computing machine. 
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What is not usually addressed in metaphysical refutations of functionalism 
that use the Gödel incompleteness theorems is the epistemic modality of the 
provability relation in the formal system in which the reasoning occurs. A (sound) 
proof in a formal system (whether or not it is subject to the Gödel incomplete-
ness theorems) proves a theorem with mathematical certainty. Our justification 
for believing the theorem is true is that it has been proved with mathematical 
certainty. So the Gödel theorems need to be qualified: the second incompleteness 
theorem says that no formal system subject to the Gödel incompleteness theo-
rems can prove its own consistency with mathematical certainty. Here the epis-
temic modality—the way in which we come to know the truth of the claim made 
in the proof—is mathematical certainty. But there are other ways than mathemat-
ical certainty by which we can come to know the truth of a claim made in a proof. 
As the epistemic modality of a proof changes, so does the nature of the proof.  

It is left open by the Gödel theorems that the formal system can prove its 
consistency with less than mathematical certainty or in some other epistemic 
modality. A statistical proof that a formal system (that is subject to the Gödel 
incompleteness theorems) is consistent has less than mathematical certainty. 
(Probabilistic proofs have this feature; see Wigderson, 2019.) A nonmathematical 
philosophical proof that such a formal system can prove its consistency would be 
a proof in another epistemic modality than that of a proof in logic or in mathe-
matics. A proof using diagrams or pictures would be a proof in an epistemic 
modality other than mathematical certainty because the nature of a picture proof 
differs from the nature of a proof in a system of logistic. Intuitionistic reasoning 
in Brouwer’s version of intuitionism might also be an example. Only a proof 
using a symbol system found in the formal languages of logic or in classical 
mathematics would have mathematical certainty. (Understanding in what epis-
temic modalities other than mathematical certainty there can be proofs of math-
ematical truths is an important and open research topic.)  

If the only means of achieving mathematical certainty that S is true is to 
prove S in a formal system by finitistic reasoning within that formal system, then 
if S is either a Gödel sentence for that formal system or a consistency claim 
about that formal system, it follows that no human being (whether finitary in its 
cognitive powers or infinitary in its cognitive powers) can prove S is true with 
mathematical certainty using finitary reasoning within that formal system. So no 
human mind can prove the master program for a finitary computing machine 
simulating human mentality is correct with mathematical certainty by engaging 
in finitistic reasoning described by that master program. If so, human minds are 
indistinguishable from the finitary computing machine. On the other hand, there 
is no prohibition on the human mind proving the correctness of the master pro-
gram with either less than mathematical certainty or in some other epistemic 
modality. But neither is the finitary computing machine prohibited from this, 
either. (This is so, unless proof with less than mathematical certainty or in anoth-
er epistemic modality is subject to the Gödel incompleteness theorems. In that 
case, it is ruled out for the finitary computing machine to do that. But then it is 
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also ruled out for human beings to do so as well.) If human minds can perform 
infinitary reasoning, and can prove the correctness of the master program using 
infinitary reasoning, this would distinguish human minds from finitary compu-
ting machines (which, by definition, cannot perform infinitary reasoning). But 
since it is an open question whether human minds can perform infinitary reason-
ing, this line of argument cannot establish its conclusion.  

If the MGF argument is sound, then we know, with mathematical certainty, 
that we are not finitary computing machines. What is the provenance of the qual-
ifier “mathematical certainty”? The Gödel theorems show that any formal system 
subject to the them cannot prove its Gödel sentence nor its consistency sentence 
with mathematical certainty using finitistic formalizable reasoning within that 
formal system. Why mathematical certainty? Why not logical certainty? Because 
there are different systems of logic—such as relevance logic—what is provable 
with logical certainty in one kind of logic might not be provable in some other 
kind of logic. Since the finitary reasoning in classical first-order logic can be 
described mathematically, the theorems of that logic are said to be proved with 
mathematical certainty.  

Where does the claim that proofs in a formal system of logic carry mathemat-
ical certainty come from? Alonzo Church (1956) uses the phrase “mathematical 
certainty” in his discussion of proofs in mathematics that are translated into first-
order logic. For Church, the only way to achieve mathematical certainty is 
a proof system where the axioms are effectively specified and in where, for any 
line in the proof, there is an effective procedure by which one can tell that it is an 
authentic line in the proof. This finitary reasoning in first-order logic can be 
described mathematically. An auditor of a proof  

[M]ay fairly demand a proof, in any given case, that the sequence of formulae put 
forward is a proof; and until this supplementary proof is provided, he may refuse 
to be convinced that the alleged theorem is proved. This supplementary proof 
ought to be regarded […] as part of the whole proof of the theorem, and the primi-
tive basis of the logistic system ought to be so modified as to provide this, or its 
equivalent. (Church, 1956, p. 53) 

The only logistic systems for which Church’s requirement is satisfied are 
those in which the axioms and the rules of inference are effectively specified—
these are finitary proof systems in which there are only finitely many lines in 
a proof and the pedigree of each line in the proof can be effectively ascertained. 
Infinitary logistic systems are different, for rules of inference are not effectively 
specified. A mind that has infinitary capacities can effectively specify them, but 
the notion of “effectiveness” then belongs to alpha-recursion theory, a theory of 
effectivity for infinite minds. Church obviously assumed human minds are 
finitary in his discussion.  

So if the MGF argument is sound, then we know, with mathematical certainty, 
that human minds are not identical with any kind of finitary computing machine. 
This is an extraordinarily strong claim. Compare it with the following claim: we 
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know, with mathematical certainty, that B follows from A and A → B. This claim 
is trivial. On the other hand, one does not know with mathematical certainty that 
one is (now) looking at a tree. The claim an MGF argument makes is strong, then, 
in the sense that the information it establishes about the nature of the human 
mind has important value. (I do not suggest, in using the phrase “extraordinarily 
strong”, that the claim is thereby unlikely to be true.) 

But the strength of the claim should make us suspicious of it. The assumption 
that underlies the metaphysical claim is that human minds can prove the correct-
ness of the finitary computing machine’s master program (for simulating human 
mentality). But we have seen that this assumption needs to be qualified: human 
minds can prove, with mathematical certainty using finitistic reasoning, the cor-
rectness of the computing machine’s master program. This, though, is highly 
unlikely to be true. If a human mind has infinitary cognitive capacities, it might 
do so (for instance, by employing Turing’s infinitary procedure; see Turing, 
1939). But do we have infinitary cognitive capacities? Some philosophers and 
cognitive scientists believe we do not have infinitary cognitive capacities. Others 
believe that we do. So a stalemate is reached in the absence of evidence conclud-
ing one or the other position.  

If the assumption underlying the MGF argument is changed by changing the 
qualification to “with less than mathematical certainty or in some other epistemic 
modality”, then the MGF argument cannot establish its conclusion, since it is 
also available for a finitary computing machine to prove the correctness of its 
own master program with less than mathematical certainty or in some other epis-
temic modality. Thus the metaphysical claim is bankrupt and the refutation of 
functionalism using the Gödel incompleteness theorems is drained of its force. 
This is a significant philosophical result overlooked in the anti-functionalism 
debate. If it is true that human minds are not completely describable by a finitary 
computational machine and that human minds are able to verify the consistency 
of Peano arithmetic, i.e., CON(PA), how is it done? It cannot be done by employ-
ing a recursively axiomatized finite proof system to do it, since for any such 
proof system (strong enough to capture arithmetic), the Gödel incompleteness 
theorems apply. On the other hand, if we use a recursively axiomatized finite 
proof system which is too weak to be subject to the Gödel incompleteness theo-
rems, then this will not distinguish us from any finitary computational machines, 
since finitary computational machines are also capable of proving theorems in 
such weak proof systems.  

In such a finitary proof system, there is nothing human minds can prove 
which a finite computational machine (of the appropriate kind) cannot prove. 
How, then do we differ from the finite machine? We know from Gentzen’s proof 
of CON(PA) by transfinite induction, that infinitely long derivations can secure 
CON(PA). We also know that within formalized systems of Peano arithmetic, 
proofs of transfinite induction for any ordinal up to, but not including the infinite 
ordinal epsilon0, are available. However, we need transfinite induction along 
a well-ordered path of length epsilon0 to prove CON(PA). The issue, then, is this: 
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if human minds know the truth of CON(PA) with mathematical certainty, is the 
only mathematical method by which we do it the use of infinitely long deriva-
tions? There cannot be a finitary method of reasoning that proves CON(PA) with 
mathematical certainty within the formal system for PA. One can find stronger 
formal systems in which CON(PA) can be proved by finitistic reasoning, but 
only if CON(stronger formal system) can be verified. If it is verified, then we do 
it this way only if we have infinitary cognitive capacities, and that is at present 
an open question.  

4.2. Epistemic Uses of Gödel’s Incompleteness Theorems in Refuting Func-
tionalism  

MGF arguments show the nature of the human mind differs from the nature 
of physical finitary computing machines. MGF arguments are philosophically 
satisfying, since they rule out one metaphysical possibility about the nature of 
the human mind—that our minds have the nature of finitary computational ma-
chines. Even though they do not have the resources to describe the true nature of 
the human mind, their importance lies in showing what the human mind is not. 
But MGF arguments are not the only use of the Gödel theorems in the function-
alism debate. Even if we assume that human minds are finitary computing ma-
chines, we can still enlist the Gödel incompleteness theorems to make philosoph-
ically important claims about the human mind. Call these uses of the Gödel theo-
rems “EGF” (“Epistemic claims that are consequences of using the Gödel in-
completeness theorems to refute functionalism”). There are two different kinds 
of EGF arguments.   

4.2.1. The first kind of EGF argument. 

Assume that human minds are finitary computational in nature. (However, 
the argument is the same if human minds cannot be fully described by finitary 
computational machines.) Suppose human cognition is finitely computationally 
described by computer program P. If we assume human beings can prove truths 
of Peano arithmetic, P is subject to the Gödel incompleteness theorems (since 
P must be equipped with enough syntax to arithmetize metamathematics, which 
is necessary for the Gödel theorems to take root). CON(P) expresses the con-
sistency (or correctness) of P. Since it is equivalent to P’s Gödel sentence, it 
follows that P can’t prove it is consistent. Assuming we are correctly described 
by P, human beings cannot verify the consistency of P.  

Since the project of cognitive science is to find P, then that project can never 
be epistemically justified (since it cannot be established that P is consistent). Any 
science of the human mind that views the human mind as a finitary computing 
machine will not be able to epistemically justify its claims, because we cannot 
verify that the correct program of the finitary computing machine is consistent. 
Human beings will not be able to prove, with mathematical certainty, P is con-
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sistent. Human beings cannot prove the consistency of P in the epistemic modali-
ty of mathematical certainty. To do so, our reasoning about P would have accord 
with that of a finitary computing machine, to which the notion of “proof with 
mathematical certainty” applies. This is a radical form of philosophical skepti-
cism: we have a mathematical proof (of which we are mathematically certain) 
that we cannot know, with mathematical certainty, the correct computational 
theory of how our minds work.  

EGF arguments do more than provide a new form of philosophical skepticism. 
They also address the competence/performance distinction essential for the via-
bility of cognitive science. A critical distinction is made in cognitive science 
between how the human mind actually works and how it ought to work—
between a performance level description and a competence level description of 
the human mind. Without such a distinction, the very idea of a psychological law 
is jeopardized. EGF arguments show three basic assumptions essential for cogni-
tive science to be viable cannot consistently obtain: (i) that the human mind can 
be represented (at a level of computational description) by a computational de-
vice, (ii) that its cognitive capacities can be viewed as finitely computable func-
tions and (iii) that there is a competence description of the human cognitive mind. 
The Gödel incompleteness theorems show the first two assumptions are incom-
patible with the third. If we take the first two to be part of Marr’s (2010) imple-
mentation level and the third to be Marr’s theory of the function (the what, i.e., 
the function, which is computed), Gödel’s theorems reveal an incompatibility in 
Marr’s foundational program for cognitive science. (For details, see Buechner, 
2010.) 

4.2.2. The second kind of EGF argument. 

Assume that human minds are not finitary computational in nature (but that 
we do not know this fact). If so, any finitary computational machine conjectured 
to describe human mentality fails to do so—it either fails to describe all of hu-
man mentality or else it falsely describes parts of human mentality. Suppose it is 
conjectured human mentality is correctly described by computer program P, 
which is subject to the Gödel incompleteness theorems. Suppose, additionally, 
the length of P is infeasibly long for a human being to survey. In which case, no 
human being will be able to establish that P is consistent. 

Since no human being will be able to verify that P is consistent (which is an 
epistemic claim), we cannot use the mathematical theory of computation or cog-
nitive science to show that there is a metaphysical difference between human 
mentality and a finitary computational machine. Although this kind of EGF ar-
gument does not refute functionalism, it reveals a shortcoming in it—that we 
cannot use it to establish metaphysical claims about the human mind. Additional-
ly, since cognitive science and functionalism might be false theories (if P is in-
consistent), any psychological claims made within cognitive science and any 
philosophical claims made within functionalism might be false, and we could 
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never fully justify those claims no matter how much evidence we had supporting 
them. 

 

4.3. Correct and Incorrect Readings of the Gödel Theorems  

In arguments that use the Gödel theorems to attempt to refute functionalism 
and in critical discussions of those arguments, an obvious point has been over-
looked. What the Gödel incompleteness theorems show is that there is no math-
ematically certain finitistic mathematical proof of the Gödel sentence and the 
consistency sentence of any formal system susceptible to the Gödel theorems. 
We cannot fintistically prove, w i t h  m a t h e m a t i c a l  c e r t a i n t y, the Gödel 
sentence and the consistency sentence of Gödelizable formal systems. What is 
overlooked is the epistemic modality of mathematical certainty that qualifies the 
proof relation. Perhaps it is overlooked since the method of proof within a sys-
tem of logic is what delivers mathematical (or logical) certainty. 

The standard reading is that we cannot prove CON(PA), period. By failing to 
qualify “prove”, it appears the claim is that there is no proof of any kind of 
CON(PA). This is an incorrect reading of the Gödel incompleteness theorems. 
The correct reading is that we cannot prove CON(PA) with mathematical certain-
ty by finitistic reasoning in a formal system for PA. (John von Neumann, in his 
tribute to Gödel, notes that “for no such system can its freedom from inner con-
tradiction be demonstrated with the means of the system itself” [1969, p. x]. This 
is a correct reading of the Gödel incompleteness theorems.) 

It does not follow, however, that we cannot prove CON(PA) with less than 
mathematical certainty or prove it in some other epistemic modality than mathe-
matical certainty (as Kreisel rightly noted). (The claims of statistical proofs are 
with less than mathematical certainty. Epistemic modalities other than mathemat-
ical certainty might include pictorial proofs and nonmathematical philosophical 
reasoning.) The same remarks hold if we transpose the discussion of the Gödel 
incompleteness theorems to the context of what we know about CON(PA). If we 
substitute “know the truth of” for “prove”, the same point applies. We cannot 
know the truth of CON(PA) with mathematical certainty. It is left open by the 
Gödel theorems that we can know the truth of CON(PA) with less than mathe-
matical certainty and that we can know the truth of CON(PA) in some epistemic 
modality other than mathematical certainty.  

If we accept a mathematical epistemology in which we can know mathemati-
cal propositions with less than mathematical certainty or in some other epistemic 
modality than mathematical certainty, new possibilities become available for the 
functionalism debate. For instance, if there are formal systems (in which the 
Gödel incompleteness theorems hold) in which CON(PA) is proved with less 
than mathematical certainty and the epistemic modality in which it is proved 
satisfies a reasonable notion of epistemic justification, then the limitations of the 
Gödel incompleteness theorems might be dramatically circumvented. Substitute 
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“the correctness of its own computer program” for “CON(PA)” in the preceding 
sentence. If an anti-functionalist enlists the Gödel theorems to refute functional-
ism, she must show that the notion of justification under which a finite machine 
can prove the correctness of its own computer program with less than mathemat-
ical certainty is normatively bankrupt. Suppose that human beings are finitary 
computational machines. Define the goal of cognitive science to be discovery of 
the master computer program for the human mind. Assume the cognitive activi-
ties cognitive scientists engage in when they attempt to discover the master com-
puter program are themselves described in that program. Suppose that in the 
future a cognitive scientist claims to have found the master computer program. 
Do we require that her belief that this is the correct master computer program 
must be mathematically certain in order to count as being epistemically justified? 
Whether that requirement does or does not appear to be too strong, it is clear that 
it is a question that must be addressed wherever the Gödel theorems are enlisted 
in the functionalism debate.  

Even within mathematics there is evidence that this demand is negotiable. 
Mathematical proofs not formalized within a system of logic do not satisfy the 
stringent demands of mathematical certainty. Only proofs that are formalized in 
a formal system whose axioms, rules of inference and application of rules of 
inference are recursively specified can satisfy those stringent demands. Proofs in, 
for instance, algebraic topology do not meet them, though mathematicians do not 
feel that they need to translate those proofs into a formal system before they can 
be said to know (with adequate justification) the truths of algebraic topology.  

The consequence is that no finitary being can prove CON(PA) finitistically 
with mathematical certainty. The reason this is so is obvious. If mathematical 
certainty is secured only in virtue of a finitistic proof within a system of logic, no 
finite being can prove CON(PA) with mathematical certainty unless they con-
struct a finitistic proof of it within a system of logic. But the Gödel theorems 
forbid this. (A being with infinitary powers can construct a proof of CON(PA) 
with mathematical certainty only if constructions in a system of logic requiring 
infinitary operations confer mathematical certainty upon the theorems proved 
within that system. Church did not consider this matter in his discussion of 
mathematical certainty.)  

When anti-functionalists, such as Penrose, claim that human beings can know 
CON(PA) they must qualify their claim. We cannot know CON(PA) with math-
ematical certainty. But if we can know it with less than mathematical certainty or 
in some epistemic modality than mathematical certainty, it is possible that 
a finitary computational machine can acquire that knowledge as well. If so, the 
Gödel incompleteness theorems cannot drive a wedge between what a human 
being can know and what a finitary computational machine can know. 
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5. Putnam’s First Version of His Argument That Not All Methods 
of Inquiry Can Be Formalized 

An early argument Putnam (1988) uses against the view that methods of in-
quiry can be formalized by a finitary computational machine is his Gödelian 
argument that that there can be no prescriptive competence description of human 
reasoning (including the reasoning in mathematical proofs). Suppose that there is 
a description P of human prescriptive mathematical competence. There will be 
many functions that are provably recursive according to P. List the index of each 
partial recursive function that P can prove to be total recursive. There will be 
infinitely many functions on this list—since a mathematician can (in principle) 
prove infinitely many functions are general recursive. This list of functions can 
be diagonalized, and the diagonal function will be total, since there are infinitely 
many functions on the list.  

However, if it could be proved that P is a sound proof procedure, it could also 
be proved that the diagonal function is a total recursive function. Unfortunately, 
such a proof would also show that P is inconsistent. Why is that? Suppose that 
the proof is on the list—in which case, the diagonal function would be on the list. 
But by the definition of a diagonal function, if it is the jth member on the list, 
then diagonal function (j) = diagonal function (j + 1). It follows that any formali-
zation of human mathematical proof ability cannot both (i) be sound and (ii) can 
be proven to be sound using human mathematical proof abilities.  

Putnam’s conclusion needs to be emended: no formalization of human math-
ematical proof ability can both be sound and be such that it is part of human 
mathematical proof ability to finitarily prove that soundness, with mathematical 
certainty and from within P. We cannot prove with mathematical certainty and 
finitistic reasoning that P is correct. It follows that we cannot prove with mathe-
matical certainty and finitistic reasoning that the competence theory for human 
mathematical proof ability is correct.  

It is impossible for us—whether we are or are not subject to the Gödel in-
completeness theorems—to finitarily prove with mathematical certainty from 
within P that the competence level description is true of us. If we were able to 
finitarily prove it is true of us, with mathematical certainty and from within P, we 
would have proven that the formal theory encapsulated by the competence de-
scription is consistent. But this is prohibited by Gödel’s second incompleteness 
theorem. Notice we would have to ascend to a stronger computational system to 
finitarily prove, with mathematical certainty, the consistency of our competence 
description. If so, then the competence description that we finitarily prove to be 
correct, with mathematical certainty, in the stronger system is not our compe-
tence description. Since we ascended to a new computational system, the compe-
tence description of the weaker computational system is no longer true of us.  

Suppose that human minds are not subject to the Gödel incompleteness theo-
rems. The Gödel incompleteness theorems rule out the possibility that a finitary 
human mind can finitarily prove, with mathematical certainty, that a finitary 
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computer program that simulates it is correct. What this means is that whether 
human minds are or are not subject to the Gödel incompleteness theorems, the 
human mind cannot finitarily prove with mathematical certainty that a program 
that simulates it is correct. Thus whether human minds are or are not subject to 
the Gödel incompleteness theorems, they cannot justify claims in cognitive sci-
ence about its computational structure. EGF arguments do not need to show that 
there is something a human mind can do that any finitary computing machine 
cannot do in order to make philosophically interesting claims about the mind. In 
this case, the claim concerns the limits of cognitive science in providing a rigor-
ous, scientific study of the human mind. 

EGF argument (such as the one Putnam makes above) must (as we argued 
earlier) make a very strong assumption: that justifications of claims in cognitive 
science are mathematically certain. This follows from the use of the Gödel in-
completeness theorems. We know, with mathematical certainty, that we cannot, 
with mathematical certainty, finitarily prove the correctness of the program, P, 
that describes our competence. If P is the master program for human cognition, 
we can’t mathematically prove it is correct with mathematical certainty. Do any 
other scientific disciplines impose such stringent epistemic requirements upon 
the claims they make? I think it is too high a price to ask of cognitive science, 
and one that is incompatible with the epistemic demands other scientific disci-
plines impose upon their own claims. This is an important issue that deserves 
further attention.  

Notice that statistical methods and proof methods in an epistemic modality 
other than that of mathematical certainty (we will call them ‘weak methods’) will 
be included in P. There’s no absurdity or inconsistency in this inclusion, since 
they do not finitarily prove the correctness of P with mathematical certainty. 
Rather, they prove it with less than mathematical certainty or in some other epis-
temic modality. The central issue for EGF arguments is what we should take as 
the standard of epistemic justification of P. If we take the standard of epistemic 
justification to be mathematical certainty, then they refute computational func-
tionalism. If the standard is less than mathematical certainty or some other epis-
temic modality, they lose all their potency in refuting functionalism. 

This version of Putnam’s anti-functionalist argument using the Gödel incom-
pleteness theorems—that there can be no prescriptive competence description of 
human mathematical reasoning—succeeds only if the epistemic modality of the 
proof relation is that of mathematical certainty achieved by finitistic reasoning. 
Where that is not the case, the argument fails. 

6. An Exposition of Putnam’s Second Gödelian Argument  
Against Functionalism 

Whether there is or is not a finitary computational description of total human 
mentality is an open question. However, if we cannot (now) know the ultimate 
finitary computational description of total human mentality—should there be 
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one—then we cannot (now) know whether its program is (or is not) infeasibly 
long. This presents an irresolvable difficulty for any MGF or EGF arguments—
such as the Lucas-Penrose arguments. To assume the program is feasibly long—
and one which can be shown consistent by human minds—is a logical error. 
Putnam diagnosed this error in Penrose’s argument. As we saw earlier, since is it 
possible the program is infeasibly long, it is therefore possible that even if hu-
man minds do not have a complete finitary computational description, they can-
not be distinguished from finitary computational machines because they will not 
be able to prove the consistency of an infeasibly long program. (Even if we do 
have infinitary minds, our physical bodies in some of their aspects are finitarily 
restricted—and so we would not be able to read all of the lines in a program 
which is infeasibly long.) To neglect this possibility is a logical error. Yet Putnam 
makes a Gödelian argument against functionalism without making either logical 
error—he does not assume the program is feasibly long and he does not have to 
consider the possibility that it is infeasibly long. How is it done?  

One way out of this difficulty for EGF and MGF arguments is to show that 
all epistemically justified methods that prove CON(P) with less than mathemati-
cal certainty or in some other epistemic modality (the weak methods) are subject 
to the Gödel incompleteness theorems. Putnam claims that all weak methods are 
subject to the Gödel incompleteness theorems. This argument appears in Reflex-
ive Reflections (Putnam, 1994b). The argument employs Gödel’s second incom-
pleteness theorem. In what follows, I use the acronym “PGA” (“Putnam’s use of 
the second Gödel incompleteness theorem in his argument that all weak methods 
are subject to the Gödel incompleteness theorems”).  

PGA claims that our prescriptive inductive competence is subject to the Gö-
del incompleteness theorems. Putnam cites his earlier work on Carnapian induc-
tive logics and on computational learning theory, only to assert that it does not 
matter whether this work is taken into account in PGA, since PGA will assume 
there is some finitary computational description of our prescriptive inductive 
competence and that one does not need to know what that description looks to 
make the PGA argument. “P” denotes a finitary computational description of our 
inductive (or non-demonstrative) and demonstrative prescriptive competence.  

Putnam uses an idea in the Montague-Kaplan Paradox of the Knower (Fe-
ferman, 1960) that is an application of self-reference. It is T h e  C o m p u t a -
t i o n a l  L i a r  (CL): 

(CL) There is no evidence on which acceptance of the sentence CL is justi-
fied (Putnam, 1994b) 

CL is arithmetizable, and its arithmetization is a sentence of arithmetic to 
which the Gödel diagonal lemma applies. The diagonal lemma tells us that for 
any predicate that is definable in the language of Peano arithmetic, there is some 
sentence that is true if and only if its Gödel number is false of that predicate. The 
diagonal lemma allows us to couple P with CL.  
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It follows from Gödel’s work that there is a sentence of mathematics which is true 
if and only if P does not accept that very sentence on any evidence, where P is 
any procedure itself definable in mathematics—not necessarily a recursive proce-
dure. (Putnam, 1994b) 

In an important caveat to CL, Putnam says that “[…] if the inductive logic 
P uses the notion of degree of confirmation rather than the notion of acceptance, 
then one replaces ‘is justified’ by ‘has instance confirmation greater than .5’, […]” 
(1994b, p. 426, note 5). This is significant, since the notions of a justified belief 
and of acceptance of a justified belief play critical roles in non-quantitative mod-
els of inductive reasoning, while “has instance confirmation greater than .5” and 
“degree of confirmation” play critical roles in both quantitative and logical mod-
els of inductive reasoning. This caveat gives us reason to think that Putnam takes 
P to be a computational description of any kind of inductive reasoning and not 
just logical models of inductive reasoning, such as those found in computational 
learning theory.  

If there is evidence which justifies the acceptance of CL, it easily follows that 
CL is false, and it is a sentence of pure mathematics. Since P formalizes our 
prescriptive competence in demonstrative and non-demonstrative reasoning, our 
(fully justified) reasoning tells us to accept a mathematically false proposition.  

The negation of CL is that there is evidence on which the acceptance of CL is 
justified. If there is evidence on which the acceptance of the negation of CL is 
justified, then we know from what was just established above that CL is a math-
ematically false sentence. (Putnam notes that it is an omega inconsistency.) It 
follows that should P converge on CL—that is gives an answer to CL—to which 
we are justified (by P), then that evidence for the answer licenses us to accept 
a mathematical falsehood. So it has been established that CL cannot be shown 
true or shown false using P, which is a computational description of our pre-
scriptive competence in demonstrative and non-demonstrative (inductive) rea-
soning. (Gödel assumed that the formal system in which he worked is omega-
consistent in order to show that proof of the negation of the Gödel sentence leads 
to contradiction, in this case, an omega-inconsistency. Omega-consistency is 
weaker than consistency. If a formal system is omega-consistent, it follows that it 
is consistent. Putnam makes the same assumption.) 

Given that anyone is justified in believing that if P converges on CL, it li-
censes one to believe a sentence that is mathematically false, Putnam formulates 
a criterion of adequacy (CA) for accepting any formalization of human prescrip-
tive demonstrative and non-demonstrative competence  

(CA) The acceptance of a formal procedure P as a formalization of (part or all) 
of prescriptive inductive (demonstrative and non-demonstrative) compe-
tence is only justified if one is justified in believing that P does not con-
verge on P’s own Gödel sentence (i.e., CL) as argument. 
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From CL and CA, it follows that no human being can demonstrate that P is 
prescriptive whenever our minds work in the exact way that P says they should 
work. When we believe CA and also believe that P is both complete and also 
correct in describing our prescriptive demonstrative and non-demonstrative 
competence, it easily follows that we will believe that P does not converge on 
CL. However, that is to believe CL. But notice that this belief is justified, and 
that (by assumption) all justification of beliefs can be formalized in P. Since we 
are committed to believing CL, we are in a contradiction. That is Putnam’s in-
genious PGA.  

Notice that Putnam has not made any claims that there is something human 
minds can do that no finitary computing machine can do, nor has he assumed 
that P is feasibly long. (That is why Putnam does not commit the logical error 
that Penrose commits). He has, though, shown that P could not be justified with-
in cognitive science without licensing us to believe a contradiction. One conse-
quence of PGA is that any formal theory proposed in cognitive science of how 
we do inductive reasoning cannot be justified without also licensing us to believe 
a contradiction. (This is a disturbing and important result that has not caught the 
attention of cognitive scientists working on the problem of formally characteriz-
ing inductive reasoning.)  

6.1. PGA and the Kaplan-Montague Paradox 

Is it really the case that the key terms in CL can be arithmetized? If they can-
not be arithmetized, then PGA fails. I contrast Putnam’s Computational Liar with 
the version that Kaplan and Montague (1960) constructed in order to show the 
Gödel incompleteness theorems extend to the modal predicates “knowledge” and 
“necessity”. Kaplan and Montague needed to find for the knowledge predicate 
suitable analogues of the Hilbert-Bernays derivability conditions for the prova-
bility predicate. Montague employed a weak epistemic system consisting of the 
four schemata: 

(i.) Kα → α 
(ii.) Kα, if α is an axiom of first-order logic 
(iii.) K(α → µ) → (Kα → Kµ) 
(iv.) K(Kα → α) 

Montague (1963) appreciated Tarski’s insight (1983), in the latter’s proof of 
the indefinability of truth in first-order logic, that two prima facie consistent 
theories cannot always be combined into a consistent theory. In Tarski’s indefin-
ability work, Robinson arithmetic relativized to ß cannot be combined with Tar-
ski’s schema for the language of Robinson arithmetic relativized to ß and ex-
tended with a truth predicate T. Montague saw that this insight can be general-
ized: two prima facie true theories, one a theory of its own syntax and the other 
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a theory that has principles capturing the logic of concepts such as knowledge, 
belief or necessity, cannot be combined into a consistent theory. The tool neces-
sary for the proof is the Gödel diagonal lemma: 

Suppose T is an extension of Robinson arithmetic relativized to ß. Let α be 
a formula whose only free variable is v0. Then there is a sentence ζ such that:  

├ T ζ  if and only if  α(ζ/vo), where, 
if n is the Gödel number of ζ, ζ is the nth numeral. 

The key to the Montague-Kaplan proof is the fact that knowledge is a proper-
ty of “proposition-like” objects recursively built from atomic constituents. Given 
enough arithmetic, it is easy to associate with each “proposition-like” object 
a Gödel number. Then, structural properties and relations between “proposition-
like” objects can be arithmetically simulated by explicitly defined arithmetical 
predicates of the Gödel numbers of the “proposition-like” objects.  

Recall Putnam’s Computational Liar:  

CL There is no evidence on which acceptance of the sentence CL is justified. 

We need to arithmetize the properties and relations in CL in order to use Gö-
del’s diagonal lemma. Can “evidence”, “acceptance”, and “justified” be arith-
metized? It is not obvious that they can. Consider the ramified type theory in 
Russell and Whitehead’s Principia Mathematica. No one has succeeded in show-
ing it is subject to the Gödel incompleteness theorems, for there is no general 
theory of the intensional provability relation. It will do no good to simply assert 
that consistency cannot be proved within any sufficiently strong system because 
Gödel’s second incompleteness theorem tells us this. Richmond Thomason (1980; 
1989) has pointed out in this connection that “it has never been possible to state 
the [second incompleteness] theorem at this level of generality with a degree of 
precision that will support a mathematical proof” (1989, p. 54). 

Intensional provability relations link arithmetical theories to a given set of 
propositions when the arithmetical theory is able to prove each of the proposi-
tions in the set. That there cannot be a general theory of the kind Thomason spec-
ifies follows from an interesting result on the peculiarities of the intensional 
proof relation. It is a result of Feferman (1960) that Gödel’s arithmetical formali-
zation of the proposition that Peano arithmetic is consistent can be proved, under 
substitution of different linguistic expressions for the same classes of numbers in 
that arithmetical formalization.  

PGA requires that “evidence”, “acceptability”, and “justified” can be arith-
metized. We can formalize the evidence relation and the property of acceptance 
within computable learning theory, but this raises the question of whether that 
formalization captures all of the uses of these terms in inductive reasoning and if 
the terms can be arithmetized. What of the property of being justified? How 
would we axiomatize its basic features in the way that Kaplan and Montague 
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axiomatized the basic features of knowledge? What happens to PGA if the notion 
of being justified is omitted? Without it, we cannot say that P tells us that we are 
prescriptively justified in believing an arithmetically false sentence. Thus we will 
not be able to show that an absurdity results if P converges upon either CL or the 
negation of CL. In which case, we cannot even express the condition of adequa-
cy that is necessary for obtaining the contradiction. 

O b j e c t i o n : It is true that omitting the notion of “justifies” in PGA blocks 
deriving the contradiction. But that is not a problem for the anti-functionalist end 
to which PGA is applied. You succumb to a dilemma if you argue there is no 
obvious arithmetization of “is justified”. The first horn is that if there is an 
arithmetization of “is justified”, then the contradiction is secured. For the second 
horn, suppose it cannot be arithmetized. If so, then it cannot be part of cognitive 
science. Thus, either way, cognitive science is in jeopardy. On the first horn, 
cognitive science cannot prove that it is correct and on the second horn, induc-
tive reasoning can’t be computationally described. On either horn, the anti-
functionalist wins. 

R e s p o n s e : The first horn of the dilemma is that if “is justified” is arithmetiza-
ble, then PGA is secured. Below we argue that even if PGA is sound, it cannot be 
used to secure the claim that human minds are not finitary computing machines 
or the claim that cognitive science cannot be justified. The second horn is easily 
dismissed, though. That “X” is not arithmetizable does not logically imply “X” is 
not formalizable. Why think any property or relation whatsoever, even though 
formalizable, can be arithmetized? Certainly, Gödel numbers can be assigned to 
formalized sentences and to formalized properties. But it does not follow from 
that fact that any formalized property is arithmetizable. The example of Principia 
ramified type theory, discussed above, illustrates the point. The burden of proof 
is upon Putnam, to show that the epistemic property of being justified, under 
a suitable formalization, can be arithmetized. (Artemov-Fitting logics of justifi-
cation are not a method of reasoning to achieve justification, but a method for 
reasoning about justifications. An open question is whether a Montague-Kaplan 
type paradox could be constructed using their justification predicate.)  

6.2 Strengthened PGA Leads to an Absurdity  

One problem with PGA is that if not all inductive methods or, more broadly, 
methods of inquiry into the world, are subject to the Gödel incompleteness theo-
rems, then it is possible that in using methods that are subject to the Gödel in-
completeness theorems, we can employ weak inductive methods that are not 
subject to the Gödel incompleteness theorems to prove CON(method subject to 
the Gödel incompleteness theorems) or the Gödel sentence (of a method subject 
to the Gödel incompleteness theorems) in another epistemic modality or with 
mathematical certainty less than the degree of mathematical certainty of the 



130 JEFF BUECHNER  
 

proof procedure of the formal system in which the methods are formalized. Both 
human minds (that have or do not have a finitary computational description) and 
finitary computing machines that are subject to the Gödel incompleteness theo-
rems can use weak methods that are not subject to the Gödel incompleteness 
theorems. Any EGF or MGF argument that ignores this possibility commits 
a logical error no less serious than the logical error Penrose commits in his anti-
functionalist argument. On the other hand, if the above possibility is taken seri-
ously, then EGF and MGF arguments can fail. What can be done? One sugges-
tion is to show all methods of inquiry into the world are subject to the Gödel 
incompleteness theorems. 

Suppose we strengthen PGA in the following way: all methods of inquiry into 
the world are subject to the Gödel incompleteness theorems. (Putnam appears to 
say this is how he wants his argument to be interpreted; see Putnam, 1988.) Such 
methods include all inductive methods, all demonstrative methods and all meth-
ods to which Putnam calls attention in (1988): rational interpretation, reasonable 
reasoning and general intelligence. Although he makes the strengthened PGA 
argument in (1994a), he alludes to it in:  

This is analogous to saying the true nature of r a t i o n a l i t y —or at least of hu-
man rationality—is given by some “functional organization”, or computational 
description […]. But if the description is a formalization of our powers to reason 
rationally in toto—a description of a l l  our means of reasoning—then inability to 
know something by the “methods formalized by the description” is inability to 
know that something i n  p r i n c i p l e . (Putnam, 1988) 

Strengthened PGA claims all inductive methods, all notions of epistemic jus-
tification, all methods of inquiry into the nature of the world are subject to the 
Gödel incompleteness theorems. The truth of (x) CON(method of inquiryx) is 
essential to the soundness of PGA. If we can’t prove (x) CON(method of inquiryx), 
then we cannot show that strengthened PGA is sound. Why is that? If we can’t 
prove (x) CON(method of inquiryx), method of inquiryx might be inconsistent, in 
which case anything is provable. If so, we can’t prove that the epistemic notions 
of “acceptance” and “justifies” are subject to the Gödel incompleteness theorems. 
Even if we can prove CON(method of inquiryi) using method of inquiryj 
(a stronger extension of method of inquiryi), if CON(method of inquiryj) can’t be 
proved, then it’s possible that both CON(method of inquiryi) and NOT-
CON(method of inquiryi) can be proved within method of inquiryj. If each meth-
od of inquiry is subject to the Gödel incompleteness theorems, then no method of 
inquiry can be proved consistent. If no method of inquiry can be proved con-
sistent, it is possible no method of inquiry is consistent.  

I will now argue that strengthened PGA engenders an absurdity. Suppose that 
all methods of inquiry (such as statistical methods and methods that deliver 
proofs in another epistemic modality) are subject to the Gödel incompleteness 
theorems. That supposition would have as a consequence that all of our reason-
ing (in whatever method of inquiry that reasoning occurs) about the Gödel in-
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completeness theorems is subject to the Gödel incompleteness theorems. In 
which case, that reasoning might not be correct, and so that reasoning could not 
be epistemically justified. Why is that? For any method of reasoning, its’ con-
sistency cannot be proved. Thus it is left open that any method of reasoning 
might be inconsistent. Consider the following: for any chain of reasoning that 
establishes proposition p, it is possible there is another chain of reasoning that 
establishes not-p. This is so because it is possible that all methods of inquiry are 
inconsistent. If so, one could validly reason to p and one could validly reason to 
not-p, for any inconsistent method of inquiry. Thus, for all p, p cannot be epis-
temically justified, since for each p, one might validly infer not-p and p. This is 
an absurdity. Take this absurdity to be a reductio of the argument that all forms of 
reasoning are subject to the Gödel incompleteness theorems. 

Given this absurdity, the most natural explanation of it is that one assumed 
that all methods of inquiry are subject to the Gödel incompleteness theorems. 
Give up that assumption, and the absurdity is removed. But giving up that as-
sumption means there must exist some methods of inquiry that are not subject to 
the Gödel incompleteness theorems. If so, it is possible that any such method can 
prove CON(P) or CON(method of inquiry subject to the Gödel incompleteness 
theorems) with less than mathematical certainty or in some other epistemic mo-
dality. And if that is the case, then any finitary computational machine could also 
make such inferences. No cognitive difference would be registered between 
human minds and any finitary computational machine. (There might be signifi-
cant cognitive differences between human minds and finitary computational 
machines which can compute functions that human minds cannot compute, ow-
ing to resource limitations, such as the length of time allowed for computing 
values of the function.)  

7. A Fundamental Logical Problem for EGF and MGF 

We now introduce a logical difficulty that arises in MGF and EGF arguments, 
how anti-functionalists might respond to it and whether Putnam can satisfactorily 
respond to it. We remark that a difficulty noticed by George Boolos (1986) will 
not be considered here. Boolos argued the Gödel disjunction (Gödel, 1995) is not 
derivable from the Gödel incompleteness theorems without first clarifying what 
it means for a human mind to be equivalent to a finite computing machine. What 
does it mean to assert that the human mind is equivalent to a Turing machine? 
We do not consider it here, because Nathan Salmon (2001) has convincingly 
argued the Gödel disjunction can be used to make philosophically interesting 
claims about the limitations of the human mind even if we do not have a precise 
description of what it is for human minds to be equivalent to Turing machines. 

 
 



132 JEFF BUECHNER  
 

7.1. The Logical Problem Confronting EGF and MGF Arguments Is Recur-
sively Unsolvable 

The possibilities Kreisel (1972) notes for finitistically proving CON(PA) with 
less than mathematical certainty or in some other epistemic modality must be 
taken seriously by anti-functionalists who offer EGF or MGF arguments. Failure 
to take them into account is a logical error in EGF or MGF arguments. Why is 
that? Where a human agent can finitistically prove CON(P) with less than math-
ematical certainty or in some other epistemic modality—and that is how such 
human agents prove CON(PA) and the Gödel sentence for PA, so also might 
a finitary computational machine hypothesized to provide a computational de-
scription of human mentality. If so, neither MGF nor EGF arguments can distin-
guish human mentality from finitary computational machines. Failure to consider 
this possibility is a logical error in Lucas-Penrose-Putnam arguments. However, 
taking this possibility into account is a recursively unsolvable problem. The anti-
functionalist is then faced with a dilemma: either the anti-functionalist fails to 
take into account Kreisel’s way out, in which case they commit a logical error in 
their argument or else they do take it into account, in which case they must solve 
a recursively unsolvable problem.  

The anti-functionalist might voice the following objection to the claim that 
they commit a logical error by failing to take into account Kreisel’s way out: 
“The functionalist must find a specific method of inquiry or program that proves 
CON(P) with less than mathematical certainty or in another epistemic modality. 
The anti-functionalist is not required to find such a method. No logical error is 
committed by failing to consider the possibility of such a way out”. This objec-
tion can be easily dismissed. The anti-functionalist makes the claim that a human 
mind not fully characterized by any finitary computational machine can deter-
mine the truth of CON(P). But it is possible that there is a method of inquiry or a 
program that can determine CON(P) with less than mathematical certainty or in 
some other epistemic modality. It is up to the anti-functionalist to dismiss that 
possibility. To dismiss it, the anti-functionalist must prove a negative existential 
claim: there is no such method of inquiry or program. It will be shown below 
that dismissing this possibility is a recursively unsolvable task.  

Recall that Putnam’s objection to Penrose’s argument is that the program 
P might be so large that it cannot be humanly surveyed, and so no human could 
establish CON(P). Putnam only needs to cite the possibility that the program P is 
so large that no human could survey it. Since it is a possibility which, if true, 
would undermine Penrose’s argument, Penrose must respond to it. It is not 
a legitimate argumentative move for Penrose to reply that Putnam must provide 
an actual P which cannot be humanly surveyed. The burden of proof is on Pen-
rose—to show that the actual P can be humanly surveyed. Of course, P has yet to 
be written, since we do not now have a complete finitary computational descrip-
tion of human mentality (should there be one), so Penrose cannot counter Put-
nam. That is why Putnam’s critique of Penrose’s argument is so devastating.  
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Anti-functionalists who wish to avoid that logical error by taking these possi-
bilities into account confront a computationally daunting task. Call that task 
“DISJUNCTION”. It is the following: The anti-functionalist must show that 
either: (i) each method or program for mathematically or non-mathematically 
finitistically proving, with less than mathematical certainty or in some other 
epistemic modality, the consistency of P (the ultimate computer program that 
completely describes the human cognitive mind) is subject to the Gödel incom-
pleteness theorems or (ii) if that cannot be done, because such a method or pro-
gram is not subject to the Gödel incompleteness theorems, show that the proofs 
delivered by those methods or programs are not epistemically justified.  

From DISJUNCTION there is a dilemma for anti-functionalists using EGF or 
MGF arguments:  

F i r s t  h o r n : The anti-functionalist must show, for each possible method or 
program capable of finitistically demonstrating the consistency of P with less 
than mathematical certainty or in some other epistemic modality, that it is either 
subject to the Gödel incompleteness theorems or that, where it is not subject to 
the Gödel incompleteness theorems, it is epistemologically inadequate.  

S e c o n d  h o r n : If the anti-functionalist does not enumerate all of these possi-
bilities, a logical error is committed in their EGF or MGF argument.  

DISJUNCTION has logical complexity Π(1,2). Suppose an anti-functionalist 
offers an MGF argument. In virtue of DISJUNCTION, they must be able to 
perform an infinitary computational task. If they have infinitely many resources, 
they will be able to complete the task. If not, then they will not. But if they do 
not complete the task, then they commit a logical error in MGF. Thus the anti-
functionalist who uses an MGF argument must either have the capacity to make 
infinitary computations or else commits a logical error. But it is not known 
whether human beings do or do not have infinitary computational capacities.  

The anti-functionalist must show that human beings can prove CON(P), but 
the machine for which P is its program cannot prove CON(P). Neither the hu-
man nor the machine can finitistically prove CON(P) with mathematical certain-
ty in the program for P. So the anti-functionalist must finitistically prove CON(P) 
with less than mathematical certainty or in some other epistemic modality that is 
not available to the machine. To show these methods are not available to the 
machine, she must (according to DISJUNCTION) be able to make infinitary 
computations to canvass all of the possibilities for doing just that or else commit 
a logical error. But, once again, it is not known whether human beings do or do 
not have infinitary computational capacities. 
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7.2. DISJUNCTION is Π(1,2) in the analytic hierarchy 

(a) The first disjunct in DISJUNCTION . 

How many methods of reasoning are there for finitistically proving CON(P) 
with less than mathematical certainty or in some other epistemic modality? Since 
formal systems such as PM, FOL, and sentential logic prove their truths with 
mathematical certainty, and since the Gödel theorems tell us that we cannot fi-
nitistically establish CON(P) with mathematical certainty, those formal systems 
cannot be used. But probabilistic formal systems can deliver their truths with less 
than mathematical certainty.  

For instance, assume we use a statistical method based on a Carnapian meas-
ure function to finitistically prove CON(P) with less than mathematical certainty. 
Then there are infinitely many possible methods that can be used, since Carnapi-
an inductive logics employ a caution parameter that has infinitely many values 
and which differentiates different logics (Carnap, 1952; 1962). (This establishes 
an existence proof that there are infinitely many inductive methods. For recent 
work on new probabilistic proof methods in randomness and computation, see 
Wigderson, 2019) How many different systems of formal inductive reasoning are 
there? How many probabilistic logics are there? How many hybrid modal proba-
bilistic logics? Thus far we have the following computational problem: (i) Look 
at each method for finitistically proving CON(P) with less than mathematical 
certainty or in some other epistemic modality. (ii) Show it is subject to the Gödel 
incompleteness theorems.  

What of proving some proposition in an epistemic modality other than that of 
mathematical certainty? For instance, philosophical nonmathematical reasoning 
that cannot be translated into first-order logic might be an example. One problem, 
though, is that Hilbert’s thesis that any argument can be translated into first-order 
logic makes it difficult to claim that there is reasoning in a natural language that 
cannot be captured in first-order logic.    

There are infinitely many applicable methods of reasoning with less than 
mathematical certainty or in another epistemic modality. Each of them must be 
enumerated and checked for being subject to the Gödel incompleteness theorems. 
And there is an additional regress-like wrinkle. It is the following. Suppose 
a program P* proves CON(P) with less than mathematical certainty or in some 
other epistemic modality. The anti-functionalist needs to verify that P* is subject 
to the Gödel incompleteness theorems. (If not, then neither an MGF nor an EGF 
argument can be deployed.) 

The wrinkle is that even if P* is subject to the Gödel incompleteness theo-
rems, there might be a program P** that can be used to mathematically and fi-
nitistically prove CON(P*) with less than mathematical certainty or in some 
other epistemic modality. Suppose that P** is shown to be subject to the Gödel 
incompleteness theorems. If so, there is a possibility there is a program P*** that 
can be used to mathematically prove CON(P**) with less than mathematical 
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certainty or in some other epistemic modality. So we have the possibility of an 
infinite regress for each program or method for proving CON(P*) and its star 
relatives that we have shown to be subject to the Gödel incompleteness theorems.  

The procedure then, is the following. Look at each method1,i for proving 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity. Show it is subject to the Gödel incompleteness theorems. If it is, look at each 
method2,j for proving CON(“method1,i”) with less than mathematical certainty or 
in some other epistemic modality. Show it is subject to the Gödel incompleteness 
theorems. If it is, look at each method3,k for proving CON(“method2,j”) with less 
than mathematical certainty or in some other epistemic modality. Show it is sub-
ject to the Gödel incompleteness theorems. Continue in this way ad infinitum. 

Let’s consider an objection the anti-functionalist might raise to the specter of 
the infinite regress. She tells us that there will be no infinite regress, because of 
her dialectical situation in EGF or MGF arguments. Whenever computational 
functionalists propose a method M, all she has to do is to show M is subject to 
the Gödel incompleteness theorems. She plays a waiting game. She waits for the 
computational functionalist to propose a method, and only then does she need to 
show that the proposed method is subject to the Gödel incompleteness theorems 
(Lewis, 1969; 1979; Lucas, 1961; 1970).  

This objection fails, for two reasons. The first is that methods of proof that 
prove a theorem with less than mathematical certainty or in some other epistemic 
modality are methods of proof that will be used to prove the consistency of the 
methods for proving CON(P) that are susceptible to the Gödel incompleteness 
theorems. So we are still considering a specific machine M and not any other 
machine, M’. The anti-functionalist does not, contra J. R. Lucas, play a wait and 
see game with the computational functionalist.  

Second, all MGF and EGF arguments are responsible to certain epistemic 
standards: if there are any relevant possibilities that undermine the arguments, 
they must be examined. If it is possible there is a method or program P not sub-
ject to the Gödel incompleteness theorems that finitistically proves CON(M) 
with less than mathematical certainty or in some other epistemic modality, then 
that undermining possibility must be discharged.  

The anti-functionalist implicitly makes a negative existence claim in EGF 
and MGF arguments: there is no method or program subject to the Gödel incom-
pleteness theorems by which CON(P) can be finitistically shown correct with 
less than mathematical certainty or in some other epistemic modality. Since there 
are infinitely many possibilities for finitistically proving CON(P) with less than 
mathematical certainty or in some other epistemic modality, each of them must 
be taken into account. If not then the negative existence claim fails.  

7.3. How Program Length Contributes to the Complexity of DISJUNCTION 

Suppose that P is so long it can’t be surveyed by any human agent, whether 
they are finitistically computationally describable or not. If that is the case, we 
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will not know if there are any programs or methods that can be used to prove 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity. But there might be ways of compressing the length of P so that we can then 
determine if there are methods that can be used to prove CON(P). One way of 
doing this is to reduce P to some program P* that is humanly surveyable. (One 
then looks at methods for proving CON(P*) with less than mathematical certain-
ty or in some other epistemic modality.) There are three ways in which this can 
be done. One method is by a relative interpretation of P in P*, another is by a 
translation of P into P* and the third is a reduction of P to P*. There are logical 
differences between interpretations, translations and reductions, which are the 
subject of reductive proof theory. What is common to all three is that the map 
from P into P* is recursive and preserves negation. The latter condition ensures 
that logical consistency is preserved under the map. 

The maps between P and P* preserve consistency, provided P* is consistent. 
Since the assumption is that P is consistent, we need to find a short and con-
sistent P*. Suppose P* is not feasibly short. It is possible there is a P** that is 
consistent and feasibly short to which P* can be reduced or translated or into 
which it can be interpreted. At each level of reduction for which there is a con-
sistent and infeasibly long Pn*, it is possible that in a reduction to the next level, 
by either a translation, reduction or interpretation, there is a consistent and feasi-
bly short P(n+1)*. 

To avoid in EGF and MGF arguments the logical error committed by Penrose, 
we have to consider the possibility that P is infeasibly long and then to consider 
how it might be compressed. The possibility of an infinite chain of reductions of 
length omega is a prospect that cannot be a priori ruled out. (The chain length 
could be omega, since a reduction might not decrease the length of Pn*.) There 
are also other methods that can compress P. For instance, P could be translated 
into another programming language in which compression devices called MAC-
ROS are available or other higher-order programming constructs that facilitate 
program compression. There are infinitely many different programming systems, 
so there are that many possibilities that might need examination in the search for 
a feasibly short P. There are also speed-up theorems in the theory of computabil-
ity that tell us there’s no recursive bound on the speed-up of some programs 
(over the initial program for which there is speed-up).  

The anti-functionalist can object to the preceding infinite regress generated 
by program compression considerations in the same way she objected to the first 
infinite regress above: “The computationalist must first present to me a feasibly 
short P. Once that is done, we can then see if there are methods or programs that 
finitistically prove CON(P) with less than mathematical certainty or in some 
other epistemic modality”. Once again, the anti-functionalist misconceives of her 
epistemic situation in the anti-functionalism dialectic. If it is possible that there is 
a feasibly short P, then she must examine the possibilities under which it can be 
obtained. Many of these possibilities (such as relative interpretability) might be 
dead-ends, might generate infinite regresses or might create trade-off problems. 
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7.4. The First Disjunct of DISJUNCTION is Π(1,2) in the Analytic Hierarchy 

We first noted that there might be infinitely many distinct methods for finitis-
tically proving CON(P) with less than mathematical certainty or in some other 
epistemic modality. For each such method, the anti-functionalist must show 
either that it is subject to the Gödel incompleteness theorems or that it is not 
epistemically justified. We then noted that for each method M that proves 
CON(P) and is shown subject to the Gödel incompleteness theorems, there might 
be a method M * that proves CON(method M ) with less than mathematical cer-
tainty or in some other epistemic modality. If so, the anti-functionalist must show 
method M * is subject to the Gödel incompleteness theorems. In general, for each 
M that is shown subject to the Gödel incompleteness theorems, there might be an 
M * that proves its correctness for which it must be shown it is subject to the 
Gödel incompleteness theorems. After that, we saw that if P (or any of the meth-
ods or any of the M *’s) is infeasibly long, we need to see if we can compress it to 
obtain a feasibly short P (or short M *, etc.) Each of these feasibly short M’s must 
then be shown to be subject to the Gödel incompleteness theorems. 

There are infinitely many methods of reasoning that might finitistically prove 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity. For each method Mi subject to the Gödel incompleteness theorems, it is pos-
sible there is a method or program that finitistically proves CON(Mi) with less 
than mathematical certainty or in some other epistemic modality. Let Mj be the 
method that finitistically proves CON(Mi), where i ≠ j. If Mi is subject to the 
Gödel incompleteness theorems, then there might be an Mk (i ≠ j ≠ k) that finitis-
tically proves CON(Mi) and which must then be shown by the anti-functionalist 
to be subject to the Gödel incompleteness theorems. For each of the infinitely 
many Mi’s, there are infinitely many M in*’s. Finally, for every Mi and M in*, it is 
possible it is infeasibly long and thus we need to look for a compression of it into 
a feasibly short program. But for each Mi and M in*, there might be an infinite 
sequence of compression reductions Ri.   

Each method or procedure can be considered to be a function from the natu-
ral numbers to natural numbers. Determining that a method or procedure is or is 
not subject to the Gödel incompleteness theorems is a recursive predicate. The 
predicate is applied to each method or procedure, of which there are infinitely 
many. So there is a quantifier over the set of methods and procedures—it is 
a function quantifier. For all such methods or procedures, it is possible there 
exists a method or procedure not subject to the Gödel incompleteness theorems 
which verifies its consistency with less than mathematical certainty or in some 
other epistemic modality. (Mx) (∃My) (My is not subject to the Gödel incomplete-
ness theorems AND My proves CON(Mx) with less than mathematical certainty 
or in some other epistemic modality). In the analytic hierarchy, this sentence has 
logical complexity Π(1,2). 
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(b) The second disjunct in DISJUNCTION 

Recall the second disjunct in DISJUNCTION: If a method or program for 
proving CON(P) with less than mathematical certainty or in some other epistem-
ic modality is not subject to the Gödel incompleteness theorems, then show that 
the proofs delivered by that method or program are not epistemically justified. 
The anti-functionalist must show that for each method or program examined by 
the procedure described in the first disjunct of DISJUNCTION that is not subject 
to the Gödel incompleteness theorems, it is not epistemically justified. This must 
be done to save any EGF or any MGF argument. Suppose the anti-functionalist 
argument is an EGF argument. The claim is: P cannot be proved correct because 
it is subject to the Gödel incompleteness theorems (and thus cognitive science 
cannot be justified). But there might be other ways to prove CON(P) with less 
than mathematical certainty or in another epistemic modality. If those ways are 
subject to the Gödel incompleteness theorems, the claim remains intact. If any of 
those ways are not subject to the Gödel incompleteness theorems, they prima 
facie refute the claim. The only way to save the claim is to show that the meth-
ods or programs not subject to the Gödel incompleteness theorems are not epis-
temically justified. That is, proofs delivered by those methods or programs are 
not epistemically warranted.  

Since any method or any procedure might not be subject to the Gödel incom-
pleteness theorems, then every subset of the infinite methods tree might need to 
be tested for epistemic adequacy—that it is epistemically justified. Of course, no 
point in the infinite methods tree might need to be tested, if every point repre-
sents a method or program that is subject to the Gödel incompleteness theorems.  

How we can show that a method or program is not epistemically justified? If 
what is proved by a method has a 50% chance of being true, we can conclude the 
method is not justified. However, what do we say when the probability of being 
true is greater than ½? What is the cut-off point? What if we do not have suffi-
cient statistics for showing the likelihood of what a method proves? What epis-
temological theory do we employ in assessing epistemic justification of a method? 
Even if we are guided by statistical methods used in the sciences, those methods 
still make philosophical presuppositions about the nature of probabilities.  

Suppose that a method uses nonmathematical philosophical reasoning 
(Kreisel, 1972) that contains no quantitative information necessary for obtaining 
probabilities. How do we assess these methods for epistemic justification? Is the 
epistemic justification of a quantitative method different in kind from the epis-
temic justification of a non-quantitative method? What does it mean to say we 
search the space of epistemologies for various construals of epistemic justifica-
tion (Audi, 1988; Lehrer, 1990)? Given that EGF and MGF arguments are philo-
sophical arguments claiming to refute a philosophical position in the philosophy 
of mind, any elucidation of the notion “epistemic justification of P (for any P)” 
must be philosophically respectable. If the philosophical construal of “epistemic 
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justification of P (for any P)” is not philosophically respectable, the anti-
functionalist will not be able to satisfy the second disjunct of DISJUNCTION. 

These issues concerning epistemic justification are critical problems for the 
anti-functionalist. Without establishing that methods or procedures not subject to 
the Gödel incompleteness theorems are not epistemically justified, EGF and 
MGF arguments fail. The anti-functionalist must be prepared to decide what 
counts as epistemic justification of the correctness of P (for any P), and so what 
counts as the epistemic justification of cognitive science. Being able to assess the 
epistemic justification of methods that prove CON(P) with less than mathemati-
cal certainty or in another epistemic modality is a necessary condition for the 
success of EGF and MGF arguments. An important philosophical project, then, is 
elucidation of the notion “epistemic justification of proofs of CON(P) with less 
than mathematical certainty or in another epistemic modality”.   

7.5. Chains and Tangled Chains in the Methods Tree Exhibiting Defeater 
Relations 

Suppose that a method or procedure is not subject to the Gödel incomplete-
ness theorems and that it is not epistemically justified. Does it follow it can be 
dismissed by the anti-functionalist? No, for this method might epistemically 
justify CON(M *), where method M * is not subject to the Gödel incompleteness 
theorems and epistemically justifies CON(P). This may happen if we allow rela-
tive interpretations, translations and reductions between P, the method and M *. 
But it can happen even if these relations do not occur. There might be chains in 
the methods tree, of arbitrary length, in which a method that does not epistemi-
cally justify P epistemically justifies a method which epistemically justifies P. 
Such chains can be of arbitrary length. Each of these chains must be examined 
by the anti-functionalist. It is well-known is epistemology that justification of 
a proposition can be defeated and can be restored after defeat, given the appropriate 
conditions (Pollock, 1999). The same can happen with methods for proving CON(P). 

For example, suppose we have a chain in the methods tree of length 1,000 in 
which the 1,000th element in the chain is not subject to the Gödel incompleteness 
theorems. It is a method that does proves CON(P) with less than mathematical 
certainty or in some other epistemic modality, but is not epistemically justified 
when considered in isolation from all of the other methods in the chain. However, 
the 529th method in the chain epistemically justifies the 530th method in the chain, 
which, in turn, epistemically justifies the 531st method in the chain. This contin-
ues, until the 1000th element in the chain is epistemically justified.  

Even if the nth method in a chain is not epistemically justified by the n-1st 
method in that chain (where the two methods are consider in isolation from all 
other methods), it does not follow the anti-functionalist can dismiss it, since 
there might be chains, of arbitrary length starting with the n-kth method, between 
the n-1st and n-kth methods, which transmit epistemic justification in such a way 
that the n-1st method is epistemically justified, and in consequence of this, is able 
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to epistemically justify the nth method. Additionally, one method in a chain might 
defeat epistemic justification of another method in the chain. If a chain of meth-
ods is finitely long, the power set of that chain consists of all subsets of methods 
which might need to be considered by the anti-functionalist. If a chain is infinite-
ly long (because there are infinitely many methods or programs), then all possi-
ble chains that can be built with those methods or programs will have the power 
set of that infinitely long chain, and need to be considered by the anti-
functionalist.  

An additional complication in building such chains is the existence of meth-
ods or programs that defeat epistemic justification of CON(P) or of CON(Mi). 
Moreover, those methods or programs might not be formalized or even formal-
izable—suppose they are instances of what Kreisel means by “nonmathematical 
philosophical reasoning”. Justification can be achieved by many different forms 
of reasoning. If your aim is to show that some proposition is not justified, then 
you must consider all of the ways in which it could be justified. 

Suppose that Mk defeats justification of Mi, and Mi can prove correct CON(P) 
with less than mathematical certainty or in another epistemic modality. However, 
there might be a method or program Mk–i that defeats justification of Mk, thus 
restoring Mi so that it can prove correct CON(P). Call this a tangled chain of 
methods or programs. Notice this problem is similar to the logical problem fac-
ing defeater epistemologies (Pollock, 1999). There might be chains of defeaters, 
of arbitrary length, in which the 999th member of the chain defeats the 347th 
member of the chain, while the 876th member of the chain defeats the 999th. 
Simply enumerating and individually assessing each element in the chain is not 
enough. Each element in the chain must be evaluated for justificatory relations 
with every other sequence of elements in the chain. 

Although formalizable methods or procedures can be considered to be func-
tions over the natural numbers, I am less confident about methods or procedures 
for, say, nonmathematical philosophical reasoning. Perhaps they can be formal-
ized and considered to be functions over the natural numbers. But the relation of 
one method justifying another might not be recursive, and might not even be 
formalizable. So it might be that no logical complexity measure can be assigned 
to the second disjunct of DISJUNCTION.  

We have the following results:  
(i) It is possible there are epistemically justified methods or programs which 

prove, with less than mathematical certainty or in some other epistemic modality, 
CON(P). EGF arguments must show there are no methods which can do that. If 
not, the conclusion of the EGF argument—that cognitive science cannot be 
demonstrated to be a correct theory—fails. EGF arguments assume human minds 
have a finitary computational description. Showing there are no epistemically 
justified methods or programs which can prove CON(P) with less than mathe-
matical certainty or in some other epistemic modality is recursively unsolvable. 
Finitary human minds that have a finitary computational description cannot 
complete this task. If human minds have a metarecursive computational structure, 
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they might be able to complete the task. But we do not know if human minds 
have a metarecursive computational structure.  

(ii) To save the MGF conclusion that there is a cognitive task human minds 
can do that finitary computing machines can’t, it must be shown either (a) that 
human minds can prove CON(P) with mathematical certainty or (b) that there is 
no epistemically justified method or program by which CON(P) can be proved, 
with less than mathematical certainty or in some other epistemic modality. Since 
only an infinitary mind can prove CON(P) with mathematical certainty (and only 
if mathematical certainty can be defined for an infinitistic system of reasoning), 
(a) has no empirical basis in cognitive science. There is no empirical evidence 
that human minds can perform infinitary tasks, such as constructing infinite 
proof trees. EGF arguments must establish (b), and we saw they cannot do so, 
because it is a recursively unsolvable task. It is a mystery how a human mind, 
even one that has no finitary computational description, could complete the task 
(unless it has a metarecursive computational structure, but we do not know 
whether this is so.) 

8. A Categorization of Anti-Functionalist Arguments  
Using the Gödel Incompleteness Theorems Into Sixteen Cases 

There are sixteen cases that are determined by partitioning anti-functionalist 
arguments into (i) epistemic and metaphysical uses of the Gödel incompleteness 
theorems—that is, EGF and MGF arguments, (ii) Penrose error cases (infeasibly 
long programs), and (iii) showing some, but not all weak inductive methods, are 
subject to the Gödel incompleteness theorems (PGA) and showing that all meth-
ods of inquiry into the world (i.e., all inductive methods) are subject to the Gödel 
incompleteness theorems (strengthened PGA).  

There are eight cases when PGA or strengthened PGA succeeds. There are an 
additional eight cases when PGA or strengthened PGA fails. (We contend they 
both fail.) What is surprising is that even if PGA or strengthened PGA succeeds, 
the anti-functionalist acquires virtually no advantage over the computational 
functionalist in anti-functionalism arguments. It’s important to note that in all 
MGF cases it is not assumed that human minds are finitary, nor is it assumed that 
they are infinitary. If human minds are infinitary and have a metarecursive struc-
ture, should we consider them to have a computational description analogous to 
finite minds with a computational structure? If human minds are infinitary and 
do not have a metarecursive structure, we should not consider them to have 
a computational description. But it is unknown whether human minds are or not 
infinitary. Similarly, although some cognitive scientists and philosophers believe 
human minds are finitary and can be described computationally, it is not known 
whether they are finitary.  

In the first kind of EGF argument, it is assumed human minds are finite. Not 
so for the second kind of EGF argument (see Section 4.2.2 above). However, the 
second kind of EGF argument shows that metaphysical claims established by 
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MGF arguments are epistemically justified. Thus MGF arguments need to be 
categorized—the second kind of EGF argument does not. The phrase “EGF ar-
guments” below refers to the first kind of EGF argument.  

8.1. The First Eight Cases: PGA and Strengthened PGA Succeed 

A successful PGA shows that some, though not all, weak methods of inquiry 
are subject to the Gödel incompleteness theorems. The first four cases cover 
a successful PGA. There are two cases for an EGF refutation of functionalism 
and two cases for an MGF refutation of functionalism. The two cases for each 
are when the computational description P is feasibly short and when it is infeasi-
bly long.  

C a s e  ( i ): Recall that EGF arguments assume human minds are fully character-
ized by a finitary computational description. Suppose P is feasibly short. Since 
not all weak inductive methods have been shown to be subject to the Gödel in-
completeness theorems, there may be weak methods that prove CON(P) with 
less than mathematical certainty or in another epistemic modality. If so, an EGF 
argument fails, since it is the point of an EGF argument to show that human 
minds cannot justify the finitary computational description P of themselves. That 
is, there isn’t a proof of CON(P) that is epistemically justified. But a weak meth-
od might provide such a proof.  

C a s e  ( i i ): Suppose an EGF argument and that P is infeasibly long. Since not 
all weak methods have been shown to be subject to the Gödel incompleteness 
theorems, use weak methods to perform a statistical analysis to recover the full 
size of P from the fragments available. Then use weak methods to establish 
CON(P), with less than mathematical certainty. The EGF argument fails, for the 
same reasons in case (i). 

C a s e  ( i i i ): Assume an MGF argument. Recall that MGF arguments show 
human minds do not have a finitary computational description, and argue that 
human minds are metaphysically different from finitary computing machines, 
since there are cognitive activities we can perform, that finitary computing ma-
chines cannot perform. Suppose that P is feasibly short. Even if human minds do 
not have a finitary computational description, we cannot use weak inductive 
methods or programs subject to the Gödel incompleteness theorems to establish 
CON(P), in the epistemic modality of the proof procedures of the weak methods. 
We can only use weak methods or programs not subject to the Gödel incom-
pleteness theorems to establish CON(P) with less than mathematical certainty or 
in another epistemic modality. However, finitary computing machines can do the 
same thing, so we can’t establish a metaphysical difference between them and 
human minds. The MGF argument fails.  
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C a s e  ( i v ): Assume an MGF argument and that P is infeasibly long. Even if 
human minds do not have a finitary computational description, we cannot use 
weak inductive methods subject to the Gödel incompleteness theorems to do 
a statistical analysis of the fragments of P and recover P from that analysis and 
then prove CON(P). We can only use weak methods or programs not subject to 
the Gödel incompleteness theorems to do this. However, so can finitary compu-
ting machines. Once again, there is no metaphysical difference which we can 
establish between them and finitary human minds. The MGF argument fails.  

Now we look at the four cases in which strengthened PGA succeeds. Recall 
that strengthened PGA shows that all methods of inquiry into the structure of the 
world (i.e., all inductive methods) are subject to the Gödel incompleteness theo-
rems. The four cases are analogous to the four cases for PGA. 

C a s e  ( v ): Assume an EGF argument and that P is feasibly short. If so, then 
there are no weak methods or programs that can be used to show CON(P). In 
that case, the EGF argument succeeds, since we have shown that a human mind 
with a computational description P cannot justify P. 

C a s e  ( v i ): Assume an EGF argument and that P is infeasibly long. Since there 
are no weak methods or programs available for a statistical analysis of fragments 
of P to recover P, nor for showing CON(P), it follows that the EGF refutation 
succeeds. We have shown that a human mind with a finitary computational de-
scription P cannot justify P. 

C a s e  ( v i i ): Assume an MGF argument and that P is feasibly short. There are 
no weak methods that can be used to show CON(P). In which case, even human 
minds with no finitary computational description will not be able to justify P. 
However, finitary computing machines cannot do this either. In which case, there 
is no discernible metaphysical difference (concerning computability) between 
human minds with no finitary computational description and finitary computing 
machines. Hence, the MGF argument fails.  

C a s e  ( v i i i ): Assume an MGF argument and that P is infeasibly long. There 
are no weak methods or programs that can be used to perform a statistical analy-
sis on a fragment of P and recover P, nor to show CON(P). In which case, even 
human minds with no finitary computational description will not be able to justi-
fy P. However, finitary computing machines cannot do this either. In which case, 
there is no discernible metaphysical difference (concerning computability) be-
tween human minds with no finitary computational description and finitary com-
puting machines. Hence, the MGF argument fails.  

These analyses reveal an interesting truth. It is that all MGF arguments fail, 
even though either PGA or strengthened PGA succeeds. On the other hand, 
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though EGF arguments fail even where PGA succeeds, EGF arguments succeed 
where strengthened PGA succeeds. Thus there is a critical philosophical differ-
ence between MGF and EGF arguments.  

Note that if it is demonstrated that human minds are able to construct infinite 
proof trees and do not have a metarecursive structure that allows for a computa-
tional description analogous to a computational description of finitary minds, 
then all MGF arguments will succeed wherever PGA and strengthened PGA 
succeed. Using the Gödel theorems to refute functionalism by an MGF argument 
can only succeed if it is a fact (and known to us) that human minds can construct 
infinite proof trees, but have no metarecursive structure that allows for a compu-
tational description analogous to a computational description of finitary minds. If 
that cannot be demonstrated, then even though PGA or strengthened PGA suc-
ceeds, no MGF argument can succeed. 

8.2. The Second Set of Cases: PGA and Strengthened PGA Fail 

We now look at the same kinds of cases, under the assumption that PGA and 
strengthened PGA fail (in the way in which I have argued they fail). Cases ix–xii 
will happen when PGA fails. That is, PGA fails to show that some weak induc-
tive methods are subject to the Gödel incompleteness theorems. 

C a s e  ( i x ): Suppose an EGF argument and that P is feasibly short. Since it has 
not been shown that any weak methods are subject to the Gödel incompleteness 
theorems, all weak methods are available for proving CON(P), with less than 
mathematical certainty. So a human mind that has a finitary computational de-
scription can prove P is correct (i.e., justify P). Since there are more weak meth-
ods available for proving CON(P) with less than mathematical certainty, and in 
other epistemic modalities, than there are when PGA succeeds, EGF arguments 
fail more often when PGA fails than they do when PGA succeeds. 

C a s e  ( x ): Suppose an EGF argument and P is infeasibly long. Since it has not 
been shown that any weak inductive methods are subject to the Gödel incom-
pleteness theorems, all weak inductive methods are available for statistically 
recovering P and proving CON(P). So a human mind that has a finitary computa-
tional description can epistemically justify P. Since there are more weak meth-
ods available for recovery of P and proof of CON(P), and in other epistemic 
modalities, than there are when PGA succeeds, EGF arguments fail more often 
when PGA fails than they do when PGA succeeds. 

C a s e  ( x i ): Suppose an MGF argument and that P is feasibly short. Although 
all weak inductive methods are available for proving CON(P) with less than 
mathematical certainty, all of these methods are also available to finitary compu-
ting machines. In which case, there is no means of discerning a metaphysical 
difference (concerning computability) between human minds with no finitary 



 USING KREISEL’S WAY OUT… 145 
 

computational description and finitary computing machines. MGF arguments fail 
when strengthened PGA fails, but no worse (or no better) than they failed when 
PGA succeeded.  

C a s e  ( x i i ): Suppose an MGF argument and P is infeasibly long. Although all 
weak inductive methods are available for statistically recovering P and for prov-
ing CON(P) with less than mathematical certainty, all of these methods are 
available to the finitary computing machine. In which case, there are no means of 
discerning a metaphysical difference (concerning computability) between human 
minds with no finitary computational description and finitary computing ma-
chines. MGF arguments fail when strengthened PGA fails, but no worse (or no 
better) than they did when PGA succeeded. 

Now we examine the four cases when strengthened PGA fails, because of the 
absurdity to which it succumbs. Recall the absurdity: P encompasses all of the 
epistemically adequate weak methods M of inquiry into the world that could 
prove CON(P) with less than mathematical certainty or in another epistemic 
modality. Suppose that all methods of inquiry are subject to the Gödel incom-
pleteness theorems. For each method M, we cannot prove that it is consistent. So 
it is possible that each method M is inconsistent. For any chain of reasoning that 
establishes proposition p, it is possible there is another chain of reasoning that 
establishes not-p. One could validly reason to p and one could validly reason to 
not-p, for any inconsistent method of inquiry. Thus, for all p, p cannot be epis-
temically justified, since for each p, one might validly infer not-p and validly 
infer p. This is an absurdity. Take this absurdity to be a reductio of the argument 
that all forms of reasoning are subject to the Gödel incompleteness theorems. 

C a s e  ( x i i i ): Suppose an EGF argument and P is feasibly short. The reasoning 
is exactly the same as it is for case (ix). All weak methods are available for prov-
ing CON(P) with less than mathematical certainty or in another epistemic modal-
ity. So a human mind that has a finitary computational description can epistemi-
cally justify P. Since there are more weak methods available for proving CON(P) 
with less than mathematical certainty, and in other epistemic modalities, than 
there are when PGA succeeds, EGF arguments fail more often when strength-
ened PGA fails than they do when strengthened PGA succeeds. 

C a s e  ( x i v ): Suppose an EGF argument and P is infeasibly long. The reason-
ing is exactly the same as it is for case (x). All weak methods are available for 
statistically recovering and proving CON(P) with less than mathematical certain-
ty. So a human mind that has a finitary computational description can epistemi-
cally justify P. Since there are more weak methods available for recovery of 
P and proof of CON(P), and in other epistemic modalities, than there are when 
PGA succeeds, EGF arguments fail more often when strengthened PGA fails 
than they do when strengthened PGA succeeds. 
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C a s e  ( x v ): Suppose a MGF argument and P is feasibly short. The reasoning is 
exactly the same as it is for case (xi). All weak methods are available for proving 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity to finitary computing machines and human minds with no finitary computa-
tional description. In which case, there is no means of discerning a metaphysical 
difference (concerning computability) between human minds with no computa-
tional description and finitary computing machines. MGF arguments fail when 
strengthened PGA fails, but no worse (or no better) than they did when strength-
ened PGA succeeded. 

C a s e  ( x v i ): Suppose a MGF argument and P is infeasibly long. The reasoning 
is exactly the same as it is for case (xii). All weak methods are available for sta-
tistically recovering P and for proving CON(P), with less than mathematical 
certainty or in another epistemic modality, to finitary computing machines and 
human minds with no finitary computational description. In which case, there is 
no means of discerning a metaphysical difference (concerning computability) 
between human minds with no finitary computational description and finitary 
computing machines. MGF arguments fail when strengthened PGA fails, but no 
worse (or no better) than they did when strengthened PGA succeeded. 

That concludes the categorization of cases under PGA and strengthened PGA, 
where they succeed and where they fail. Do we have any reason to believe that 
P will be infeasibly long? Now, we have no such reason. We do not know what 
ultimate cognitive science will look like, so we do not know, now, whether in 
ultimate cognitive science the ultimate program P will be infeasibly long. We do 
not have a theory of feasible computability that will tell us whether programs 
that have outputs of certain kinds are feasibly short. We do not know if human 
minds can be completely described computationally. We do not know if there is 
an ultimate cognitive science.  

9. Twelve Objections to the Absurdity Engendered by Strengthened PGA 

There are several anti-functionalist objections to the absurdity that threatens 
to destroy PGA and strengthened PGA and thus threatens to destroy EGF and 
MGF arguments. I enumerate and respond to them below. 

O b j e c t i o n  1: Even if P is infeasibly long, human minds can epistemically 
justify P, though no finite computing machine (which P formally characterizes) 
can. Since all epistemically adequate weak methods of inquiry into the world—
including any that confer empirical justification upon CON(P)—are, by PGA, 
subject to the Gödel incompleteness theorems, no finite computing machine 
formally characterized by P can employ those methods to prove, with less than 
mathematical certainty or in another epistemic modality, CON(P). However, 
human minds can do that, since statistical methods fall under the weak methods 
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subsumed by P and statistical methods are employed where human minds face 
resource limitations or do not have all the facts. The burden of proof is on the 
shoulders of the functionalist, to show that for programs greater than length L no 
statistical method subsumed under P can empirically justify CON(P).  

R e s p o n s e: It is true that no finitary computing machine formally characterized 
by P can use the statistical methods subsumable under P, provided that strength-
ened PGA succeeds. But human minds, even under the assumption they have no 
finitary computational description, are similarly forbidden. If all formalized 
statistical methods are shown by strengthened PGA to be subject to the Gödel 
incompleteness theorems, then no finitary human mind can use them to recover 
P and then prove CON(P).  

O b j e c t i o n  2: Finitary human mind can empirically justify CON(P) by reduc-
ing its consistency problem to a consistency problem for a formal system that 
does not subsume any of the weak methods of inquiry into the world that are 
subsumed by P. We then use weak methods to prove, with less than mathemati-
cal certainty, CON(REDUCING FORMAL SYSTEM) and use the reduction to 
conclude CON(P).  

R e s p o n s e: If P subsumes all methods of inquiry into the world, then any for-
mal system that does not subsume them is probably not a formal system to which 
P can be reduced. Suppose that, for the sake of argument, it is. Reductive proof 
theory requires there is a recursive function that maps every proof in the reduced 
system to a proof in the reducing system. Moreover, this mapping must itself be 
provable in a formal system that is, in general, included in the reducing system. 
When these conditions are satisfied, the reducing system will be a conservative 
extension of the reduced system. There is nothing in the reduced system that 
cannot be proved in the reducing system and, more importantly, there is nothing 
in the language of the reduced system that can be proved in the reducing system, 
though not proved in the reduced system. In other words, for any proof in PGA 
that any epistemically adequate weak method in P is subject to the Gödel incom-
pleteness theorems, there will be a corresponding proof in the reducing system 
that whatever is the analogue of the weak method in P is subject to the Gödel 
incompleteness theorems.   

O b j e c t i o n  3: If P is infeasibly long, it fails as an explanatory theory in cogni-
tive science. Any finitary computational description we can’t follow is one that 
can’t be explanatory for us. Thus, under the assumption human beings have no 
finitary computational description that characterizes their complete mentality, an 
infeasibly long P secures for anti-functionalists the conclusion that cognitive 
science is not justified. If a scientific theory has no explanatory value, it loses 
epistemic justification.  
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R e s p o n s e: This objection does not advance the anti-functionalist even one 
square forward in the functionalism debate. If it turns out that P is infeasibly 
long, then human beings might never discover it. What we do discover will be an 
approximation to P which we do find explanatory and that is not infeasibly long. 
The objection which the anti-functionalist just voiced is really a skeptical objec-
tion, and it is one which could be voiced in any scientific discipline whatsoever. 
The anti-physicalists can say that the ultimate theory of physics is super-long and 
thus has no explanatory value. The same response to the anti-functionalist holds 
here as well. Yes—it is a worry, but no—it is not a worry that gives the anti-
functionalist any advantage, for it is a general skeptical worry. 

O b j e c t i o n  4: Let’s try to refine the preceding objection. Genuine warranted 
assertibility and epistemic justification have no finitary computational descrip-
tion. These methods, because they are not formalizable, are not subject to the 
Gödel incompleteness theorems. Finitary human minds—under the assumption 
they have no finitary computational description—can use these methods to pro-
duce a proof of CON(P). So there is something a finitary human mind can do 
that no finitary computing machine can do. 

R e s p o n s e: This is a confused objection. How can methods resisting formaliza-
tion be used to prove the correctness of a formal system? Strengthened PGA 
shows that all epistemically adequate weak methods are subject to the Gödel 
incompleteness theorems. Thus it shows that all epistemically adequate weak 
methods have no c o m p l e t e  finitary computational description. But if strength-
ened PGA fails, it is left open that there are formalizable epistemically adequate 
weak methods that can prove, with less than mathematical certainty or in another 
epistemic modality, CON(P). If strengthened PGA fails, then the anti-functionalist 
must compute the solution to a recursively unsolvable problem, in order to show 
that there are no epistemically adequate weak methods that are not subject to the 
Gödel incompleteness theorems. The point is that the only way we have of show-
ing that there is no complete finitary computational description of X is by using 
a Gödelian argument. Strengthened PGA is such a Gödelian argument, but it fails.  

O b j e c t i o n  5: The absurdity is a travesty of mathematical reasoning. If you are 
right, then you have shown that the Gödel theorems in their original context—
proving the incompleteness of Peano arithmetic and the unprovability of 
CON(PA)—fail to work. One can run your absurdity argument on the provability 
predicate and easily reach the absurd conclusion that there is no unprovable 
sentence in Peano arithmetic. You would have shown that Gödel is wrong. Since 
that is too absurd to consider, we must conclude that you are wrong! 

R e s p o n s e: That is an important objection However, you did not think very 
clearly about the matter at hand. The provability predicate is not defined by Pea-
no arithmetic. We have independent reasons for believing in its cogency and we 
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could construct it even if Peano arithmetic did not exist. What we are able to do 
in Peano arithmetic is to arithmetize it and then employ the diagonal lemma to 
secure the incompleteness theorems.  

The situation is quite different when it comes to program P—the computa-
tional description of our methods of inquiry into the world. Recall that in PGA 
the analogue of the notion of “proof” for Peano arithmetic is the notion of “justi-
fies”. However, P defines the notion of justification. If there were no P, there 
would be no notion of justification. If it turns out that the notion of justification 
cannot itself be justified—and that is exactly what PGA attempts to show—then 
we have no coherent notion of justification. If there are truths about justification 
we are forbidden from justifying, the notion is incoherent. In which case, we 
can’t appeal to the Montague-Kaplan-Thomason axioms for axiomatizing “justi-
fies” so that it can meaningfully satisfy the Gödel diagonal lemma, since we 
have no reason to think that these axioms applied to “justifies” are true. On the 
other hand, we do have independent reasons for thinking that the Hilbert deriva-
bility conditions for the provability predicate are true, independently of the ques-
tion of the consistency of Peano arithmetic.  

O b j e c t i o n  6: You cannot be serious that human minds with no finitary com-
putational description have no epistemic advantages over finitary computing 
machines. Can’t a human mind with no finitary computational description survey 
an infeasibly long P? If not, then what could possibly be the difference between 
the human minds and finitary computing machines? Are you proposing that they 
are identical? 

R e s p o n s e: No, we are not. But just because a human mind has no finitary 
computational description does not entail it is able to construct infinite proof 
trees or that it has the computational resources to survey an infeasibly long P. 
Human minds that have no finitary computational description might not have any 
epistemic advantages over finitary computing machines. Even infinitary agents 
cannot prove the consistency of Peano arithmetic using a finitary and effective 
proof, since finitary and effective proofs of it are prohibited by Gödel’s incom-
pleteness theorems. If all weak methods for proving CON(PA) are subject to the 
Gödel incompleteness theorems, then an agent with an infinitary mind can only em-
ploy an infinitary method to prove CON(PA). In which case, the anti-functionalist 
must demonstrate that human minds are infinitary or give up the view that there is 
an epistemic difference between human minds that have no finitary computational 
description and finitary computing machines governed by P.  

If human minds, under the assumption they have no finitary computational 
description, prove CON(P) with less than mathematical certainty or in another 
epistemic modality, by weak methods not subject to the Gödel incompleteness 
theorems, they are not distinguishable from finitary computing machines that can 
similarly employ those weak methods to prove CON(P). If those weak methods 
are subject to the Gödel incompleteness theorems, then neither the human mind 
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that has no finitary computational description nor the finitary computing ma-
chine can prove CON(P) in the characteristic epistemic modality of the proof 
procedures of the formal systems that formalize the weak methods.  

The anti-functionalist wants to prove that all weak methods which could, un-
der some standard of epistemic adequacy, prove CON(P), with less than mathe-
matical certainty or in some other epistemic modality, are subject to the Gödel 
incompleteness theorems. Yet this task is just what engenders the absurdity. If all 
weak methods which could, under some standard of epistemic adequacy, prove 
CON(P) with less than mathematical certainty or in some other epistemic modal-
ity, are subject to the Gödel incompleteness theorems, then they cannot be used 
to prove CON(P), even by minds that have no finitary computational description. 
This is so, because whatever the epistemic modality of the proof of CON(P) no 
agent, no matter what its computational structure (whether finitary or metarecur-
sive), can prove CON(P) in that epistemic modality.  

O b j e c t i o n  7: An epistemic use of the Gödel theorems does, in fact, render 
a metaphysical conclusion. It shows that the cognitive structure of the human 
mind is subject to the Gödel incompleteness theorems. That, in turn, shows that 
we cannot be metaphysically distinguished from finitary computing machines.  

R e s p o n s e: However, that is a moot conclusion, since the anti-functionalist 
who employs an EGF argument proceeds from the assumption that the human 
mind has a finitary computational description. That is, she proceeds from the 
adoption of the metaphysical picture of the human kind as a finitary computing 
machine. The Gödel theorems tell us about the limitations faced by such finitary 
computational descriptions, but the basic metaphysics is already in place. EGF 
arguments don’t conclude to a metaphysical conclusion, as is done in MGF ar-
guments.  

O b j e c t i o n  8: That the anti-functionalist falls into an absurdity in escaping 
from the simple logical error of Penrose is a clever observation, but it is false. 
We do not say that an absurdity arises out of the fact that Peano arithmetic is 
subject to the Gödel incompleteness theorems. A formal system strong enough to 
carry out (minimally) Robinson arithmetic is one for which we cannot, with 
mathematical certainty, employing a finitistic and effective proof procedure, 
prove its consistency. However, that we cannot is not license for us to infer that 
we can reasonably doubt that Peano arithmetic is subject to the Gödel incom-
pleteness theorems. That is absurd. It is too easy a move. Certainly, we would 
have encountered someone in mathematics making it long ago. But no one did, 
because it is nothing short of being numbingly stupid. 

R e s p o n s e: You are quite right about Peano arithmetic. No absurdity—of the 
kind we have specified—arises, and it would be numbingly stupid to claim one 
does. It is the assumption that all forms of reasoning are subject to the Gödel 
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incompleteness theorems which produces the absurdity. The absurdity shows the 
assumption is false. Gödel did not prove that all formal systems are incom-
plete—only those that are string enough for Peano arithmetic.  

Additionally, the epistemic situations with respect to Peano arithmetic and 
with respect to P are quite different. There is probably not a single mathemati-
cian who genuinely doubts the consistency of Peano arithmetic. There are infini-
tary proofs of it—Gentzen discovered one in the mid-thirties and Ackermann 
polished it five years later. We have good reason to believe that the Gentzen 
proof works. We have, then, no reason to believe that the Gödel incompleteness 
theorems fail to hold of a formal system that encompasses Peano arithmetic. 
There is no absurdity, even though we cannot prove, with mathematical certainty, 
using a finitistic and effective proof procedure, the consistency of Peano arithme-
tic. From that we do not conclude that Peano arithmetic might be inconsistent.  

The epistemic situation is much different with respect to P, which is a finitary 
computational description based on a cognitive theory, an ultimate one at that. 
We do not have the same intuitions about its consistency that we have about the 
consistency of Peano arithmetic, for we do not even have the cognitive theory 
that underlies P. It is a suppositional device to carry out the anti-functionalist 
argument. Nor, for the same reasons, do we have an infinitary proof of CON(P). 
If P encompasses all finitary methods of inquiry into the world, and we show 
that all of these methods are subject to the Gödel incompleteness theorems, then 
we have no methods of inquiry left with which to carry out the consistency proof 
of P, other than infinitary ones. We cannot, however, say that we have good 
reason to believe that P is consistent, since we have no idea what it will look like 
and, even if we did, it is still based on a cognitive theory which has to be tested. 
If we cannot test it, because all our procedures for testing it are subject to the 
Gödel incompleteness theorems, we are in an epistemic situation of maximal 
ignorance. We have no good reason to believe it is consistent and no good reason 
to believe it is inconsistent. In that epistemic situation, we cannot accept the 
result that all epistemic methods of inquiry are subject to the Gödel incomplete-
ness theorems. The absurdity cannot be dismissed by comparing it with the 
disanalogous epistemic situation in Peano arithmetic. It is, then, a genuine epis-
temic problem for the anti-functionalist.  

O b j e c t i o n  9: You mistakenly think that since PGA and strengthened PGA 
incur an absurdity, it is left open for finitary human minds and finitary computing 
machines to use any weak methods of empirical inquiry into the structure of the 
world. The absurdity does not entitle the agent to use all weak methods. Given 
there is an absurdity, how would you determine the weak methods which escape 
being subject to the Gödel incompleteness theorems because of the absurdity? 
You cannot stipulate there are weak methods that can be used by a human agent. 
Just as a paradoxical sentence (such as the Liar sentence) can’t be assumed true, 
agents can’t conclude from the absurdity of strengthened PGA that there are 
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weak methods that are not subject to the Gödel incompleteness theorems and that 
are thereby legitimate to use. 

R e s p o n s e: That is a perceptive point, but it is misguided. The analogy with 
Liar sentences is not acceptable. Once we show a Liar sentence is paradoxical, 
we cannot assume it is true, nor can we assume that it is false. In some truth 
theories, we withhold assignment of a truth-value to it, in which case it has a null 
functional status in our discourses.  

On the other hand, the assumption in strengthened PGA that led to the ab-
surdity is that all methods of inquiry into the world are subject to the Gödel in-
completeness theorems. The absurdity shows that assumption is false—not all 
methods of inquiry into the world are subject to the Gödel incompleteness theo-
rems. So it is left open that there are weak methods which are not subject to the 
Gödel incompleteness theorems. 

O b j e c t i o n  1 0: Any intuitions about the consistency of P must be seen as 
evidence for the claim that we have infinitary capacities. We would not have 
those intuitions unless there is some infinitary reasoning process, below the 
threshold of conscious perception, which accounts for them. The best explana-
tion of why we have these intuitions is that there is some infinitary reasoning 
mechanism in us which causes us to have those intuitions. Thus, even though 
there is an absurdity for the anti-functionalist who wants to show all weak meth-
ods are subject to the Gödel incompleteness theorems, the intuitions we would 
(since P does not exist—it is merely a hypothetical construct) have about the 
correctness of P are reliable indicators of our infinitary capacities. The absurdity 
is no hindrance to the anti-functionalist, since human minds are infinitary and we 
do not even need PGA.  

R e s p o n s e: If we do have intuitions that P is consistent, and we set a probabil-
ity level for the reliability of those intuitions higher than the reliability we 
would—in probabilistic terms—rate the weak methods for showing P is con-
sistent, with less than mathematical certainty or in some other epistemic modality, 
and we know that there are no other weak methods available and that only infini-
tary methods can prove the correctness of P with mathematical certainty, what 
can we reasonably conclude about the nature of our cognitive capacities? We 
can’t reasonably conclude that we have infinitary cognitive capacities. It would 
be the case that the best explanation of our intuitions is that an infinitary reason-
ing mechanism causes us to have them if we had no alternative explanations of 
them. But we have alternative explanations of how we could have such intuitions, 
and these explanations do not posit infinitary reasoning processes. For instance, 
we have experiences with cognitive theories of inductive reasoning, and we see 
an analogy between them and P. If they are known to be consistent, we conclude 
that it is highly likely P is consistent as well. We might, also, be simply mistaken. 
Our probabilistic intuitions are notoriously shaky, a fact well-known to cognitive 
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psychologists. In that case, the best explanation for our intuitions is that we have 
made errors in probabilistic reasoning. If we had independent evidence the hu-
man mind performs infinitary operations, then the explanation of our intuitions 
about the correctness of P in terms of infinitary operations would be superior to 
the two alternatives we have just cited. But, in the absence of that evidence, the 
two alternatives are not inferior to it, since they are sensitive to established work 
in cognitive psychology, while there is no established work that shows we have 
infinitary reasoning powers.  

O b j e c t i o n  11: We can use the Gödel incompleteness theorems to show that 
there are capacities which human minds have that finitary computing machines 
do not have. Let the formal system characterizing the capacities of a finitary 
computing machine be P. Suppose P is subject to the Gödel incompleteness 
theorems. Then the finitary computing machine can’t prove CON(P) and can’t 
prove its own Gödel sentence. However, a human mind can prove CON(P) and 
the Gödel sentence in P by ascending to a more powerful formal system, P*, that 
contains P. The finitary computing machine characterized by P, however, cannot 
ascend to P*.  

R e s p o n s e: That point is well-known in the functionalism debate. Perhaps ascent 
to P* may prove futile, since P* may be so long that finitary human minds cannot 
survey it and thus cannot prove that it is consistent. That is the Penrose error. 

However, even if we discount the Penrose error, there is still a problem. Re-
call that what the second Gödel incompleteness theorem rules out is the possibil-
ity of finitistically proving, with mathematical certainty, and within the system P, 
CON(P). If one ascends to P*, then CON(P) can be proved finitistically with 
mathematical certainty, period. However, this is true only if one can finitistically 
prove, with mathematical certainty, that P* is consistent. But now the Gödel 
theorems take root in P*. It is impossible to finitistically prove CON(P*) with 
mathematical certainty, within P*. That means that the ascent to P* is futile un-
less P* can be proved consistent. But that cannot be done within P*. It can only 
be done by ascending to a stronger system P** that contains both P and P*. With-
in P**, one can finitistically prove CON(P) and CON(P*) with mathematical 
certainty, but only if P** is consistent. 

Notice the epistemic pattern which emerges. For any n less than omega, one 
can finitistically prove with mathematical certainty CON(Pn) in the formal sys-
tem Pn+1 only if one can finitistically prove, with mathematical certainty, 
CON(Pn+1). However, for any n less than omega, it is impossible to finitistically 
prove CON(Pn) with mathematical certainty within Pn. 

The anti-functionalist will have to ascend infinitely high to the infinitary 
formal system Pomega, in order to finitistically prove, with mathematical cer-
tainty, CON(P). That is just to say that the anti-mechanist will have to possess 
the cognitive capacity to construct an infinite proof tree in order to finitistically 
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prove, with mathematical certainty, CON(P). Indeed, this is true for any Pn, 
where n is less than omega.  

It easily follows from these considerations that the anti-functionalist has no 
advantage over the functionalist in showing that there are cognitive capacities 
which finitary human minds possess, but which a finitary computing machine 
lacks. If human minds possess an infinitary cognitive capacity, there is some-
thing we possess that finitary computing machines lack. But there is no conclu-
sive evidence that we possess an infinitary cognitive capacity. It is open to us to 
prove CON(P) with less than mathematical certainty or in another epistemic 
modality, but it is open to finitary computing machines to do the same as well. If 
the methods for proving CON(P) with less than mathematical certainty or in 
some other epistemic modality are subject to the Gödel incompleteness theorems, 
then the very same considerations expressed above will apply to this case also. In 
which case, the anti-functionalist has no advantage over the functionalist in 
demonstrating there is a cognitive capacity which human minds possesses that 
finitary computing machines lack.  

O b j e c t i o n  1 2: The anti-functionalist using an MGF argument has an avenue 
of escape. Although there cannot be a finitistic proof within P that establishes, 
with mathematical certainty, CON(P), it is possible for a human mind (not sus-
ceptible to the Gödel incompleteness theorems) to prove CON(P), with mathe-
matical certainty, by using mathematical reasoning that is not subject to the Gö-
del incompleteness theorems. 

R e s p o n s e: That is a good objection, but it might not work. If the mathematical 
reasoning in question is captured by a formal system that is not subject to the 
Gödel incompleteness theorems, it might be too weak to finitistically prove 
CON(P) with mathematical certainty. Perhaps CON(P) could be finitistically 
proved with mathematical certainty in the ramified type theory of Principia 
Mathematica. But since there is no adequate theory of its intensional proof pred-
icate (which is why it is not subject to the Gödel incompleteness theorems), it is 
not known whether such a proof will have mathematical certainty.  

On the other hand, if there is a system of mathematical reasoning which is 
not subject to the Gödel incompleteness theorems only because it cannot be 
formalized (justified perhaps on philosophical grounds), such as Brouwer’s view 
of intuitionism, it is not known whether such reasoning can establish its conclu-
sions with mathematical certainty and it is not known whether such reasoning is 
(or is not) finitary.  

There are systems of mathematical reasoning that are captured only by infini-
tary formal systems (such as the system in Turing’s completeness theorem), that 
are not subject to the Gödel incompleteness theorems. But there is no conclusive 
evidence human agents can engage in infinitary reasoning, where proper infini-
tary reasoning implies the ability of the reasoner to construct infinitary proof 
trees. This will not help the anti-functionalist who uses an MGF argument. 
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The moral, then, is that the anti-functionalist can dream of a system of 
finitary mathematical reasoning which can finitistically prove CON(P) with 
mathematical certainty, and which is not subject to the Gödel incompleteness 
theorems But we have no reason to believe such a system of mathematical rea-
soning exists, nor that it is logically possible.  

10. The Epistemology of Mathematical Certainty:  
A New Project for Philosophy of Mind 

Proving that an arbitrary mathematical sentence is true is beyond the pale of 
a mechanical proof procedure, since the set of mathematical truths is not recur-
sive, not recursively enumerable, and not definable in arithmetic. This is another 
reason why mechanical proof procedures that verify a proof of a theorem in 
mathematics must be mechanical. If we attempt to show that each line in a proof 
preserves truth by showing that each line in the proof is true in and of itself and 
without examining how it was obtained, there is no guarantee we will be able to 
complete the job of verifying the proof of the theorem (even if we have the time 
and resources). On the other hand, if the proof verification procedure is mechani-
cal, then we do not check that each line of the proof is true. Rather, we check that 
it has the requisite syntactical form. The relation “p is a proof of α” is recursive, 
where “α” is a sentence in some language and “p” is a proof of that sentence. It 
follows that all of the theorems in that language are recursively enumerable. 
There is a fundamental dichotomy between proof and truth arising from these 
considerations. Mathematical truth is not recursively enumerable, while mathe-
matical provability is recursively enumerable. One way of describing the Gödeli-
an incompleteness phenomena is that they witness this dichotomy.  

If we relax the standards of mathematical proof, we might not have assurance 
that intersubjective agreement can be reached as to whether a derivation is 
a legitimate proof of its conclusion. In which case, we cannot be assured we will 
be mathematically certain of the truth of the theorem derived. It is the epistemo-
logical requirement in mathematics that a proof establish with mathematical 
certainty the truth of its conclusion that allows the anti-functionalist to capitalize 
on the Gödel incompleteness theorems in EGF and MGF arguments. Relaxing 
this requirement in mathematics is relevant to the philosophy of mind. We must 
ask: what is the epistemic goodness of weak mathematical methods—those 
which do not confer mathematical certainty on what they establish?  

An area in philosophy of mathematics that connects with philosophy of mind 
is mathematical intuitionism. Can intuitionistic reasoning as originally envisaged 
by Brouwer deliver mathematical certainty? Is it infinitistic? If so, does it have 
a metarecursive computational structure? Work needs to be done to explore 
Kreisel’s musing:  

There is the old and familiar idea, or: idealization, which regards a t h o u g h t  and, 
in particular, a p r o o f  of a general proposition as an infinite object. [I]nfinite ob-
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jects are better r e p r e s e n t a t i o n s of proofs than the words we use to com-
municate proofs… (1967, p. 203) 

and Brouwer: 

These m e n t a l  mathematical proofs that in general contain infinitely many terms 
must not be confused with their linguistic accompaniments, which are finite and 
necessarily inadequate, hence do not belong to mathematics. (1967, p. 460, note 8) 

A virtue of Lucas-Penrose-Putnam anti-functionalist arguments is that they con-
nect mathematical logic with the philosophy of mind and might cast light on 
issues in the foundations of mathematics.  
N o t e 1: An anonymous reviewer of this paper made several important remarks: 
that Kreisel (1965; 1967) and Gödel (in his Dialectica paper; see Gödel, 1990) 
perhaps hold the view that human minds are capable of infinitary mental proofs, 
that Gödel (1995) perhaps believes mathematics is empirical (and so statistical 
methods would be an appropriate means of proving theorems), and that there is 
an interesting problem in Kripke’s Schema (formalizing Brouwer’s creating 
subject)—namely, the assumptions in his argument using the schema are incom-
patible with infinitary mental proofs. Van Atten (2018) provides an excellent 
discussion of this matter. If human minds are capable of infinitary mental proofs, 
the question of whether such mental acts have a metarecursive computational 
structure is raised and with it, whether such a computational structure can be 
accommodated within functionalism. I thank the anonymous reviewer for these 
remarks and other useful suggestions. 
N o t e 2: This paper revises and expands two earlier versions (Buechner, 2007; 
2010). The most prominent changes are the nature of the problem that I contend 
arises for Putnam’s use of the Gödel incompleteness theorems to refute function-
alism and the nature of the problem that arises for functionalists whose burden of 
proof is to show there are no ways (that avoid the incompleteness theorems) of 
establishing the consistency of first-order arithmetic with less than mathematical 
certainty or in some other epistemic modality than that of mathematical certainty. 
The most significant overlap is in the categorization of the Lucas-Penrose-
Putnam anti-functionalist arguments. Although there are changes of emphasis in 
that categorization in this paper, I still believe it is a significant contribution to 
the role of the Gödel incompleteness theorems in the functionalism debate. 
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