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S U M M A R Y : This paper is a direct continuation of (Łełyk, Wcisło, 2017), where one 

particular way of comparing axiomatic theories of truth was discussed at length in the 

context of extensions of one concrete truth theory—the basic stratified theory of composi-

tional truth, known under the name CT−. Other possible truth theories and ways of com-

paring them were only briefly sketched. In the current study we want to describe this field 

of research in greater details. In Section 2 we shall introduce various axiomatic theories of 

truth. The formal definitions will be supported by intuitive explanations. In Section 3 we 

introduce three relations that can serve as explications of strength of a theory. One of them 

will be, known from (Łełyk, Wcisło, 2017) the proof-theoretical strength, and two others, 

model-theoretical strength and Fujimoto definability, will be its refinements. In the last 

section we shall discuss the formal results showing how these relations shape the universe 

of theories under investigation. 

 
K E Y W O R D S : axiomatic theories of truth, conservativity, Peano Arithmetic, disquotation, 

Kripke-Feferman, Friedman-Sheard. 

 

 

1. INTRODUCTION 

Suppose that we are working with a formal theory Th formulated in 

a language ℒ, which is capable of expressing syntactical properties of formulae 
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of ℒ. By this we mean, as a first approximation, that there exists a procedure of 

assigning names to syntactical terms and formulae of ℒ, i.e. a function which 

given any term t or a formula φ returns a closed term of ℒ, which we denote ⸢t⸣ 

or ⸢φ⸣ respectively. ⸢φ⸣ is to be thought of as φ taken into quotation marks. Sec-

ondly, Th must be able to correctly describe syntactical relations between various 

φ’s. By this we mean, to give some examples, that there exist formulae in the 

language of Th Conj(x, y, z) (to express “x is a conjunction of y and z”) and 

Subst(x, y, z, w) (to express “x results from y by substituting name z for variable 

w”) such that, for example, the following are provable in Th: 

∀y, z (Conj(⸢φ∧ψ⸣, y, z) → y = φ∧z = ψ 

∀x (Subst(x, ⸢y = y⸣, ⸢0⸣, ⸢y⸣) → x = ⸢0 = 0⸣). 

The first one expresses within Th that the only candidates for conjuncts of φ∧ψ 

are φ and ψ and the second one that only 0 = 0 is the result of substitution of 0 

(as a symbol) for variable x in formula x = x. In formal terms, we demand that all 

the primitive recursive functions be strongly represented in Th, but the Reader 

may safely use the intuitive description above. 

It can be shown that already very modest arithmetical theories meet the re-

quirements put forward in the above paragraph. Hence already very basic theo-

ries can talk about their own syntax. In striking contrast to the above, no such 

theory is capable of expressing the notion of truth for its own language. 

Theorem 1 (Tarski). Let Th be a consistent theory which is sufficiently strong to 

develop basic theory of syntax. Then there is no formula T(x) such that for every 

sentence ψ in the language of  Th, Th proves 

 T(⸢ψ⸣) ≡ ψ. (TB(ψ)) 

It is a very basic intuition that every theory which is to be called a truth theo-

ry for Th should deliver all (i.e. for every ψ in the language of Th) the equiva-

lences (TB(ψ)). To the group of such sentences we shall refer also as a T-scheme. 

In the effect the theorem tells us that in order to develop the theory of truth for 

Th we have to (at least) enrich its vocabulary. The most straightforward step now 

is simply to add the predicate for the property “x is a true sentence” along with 

some axioms governing its use. And this is precisely how an axiomatic theory of 

truth is born: 

Definition 2. We say that P is an axiomatic theory of truth over Th if P is formu-

lated in the language of Th extended with a fresh unary predicate T and for every 

ψ in the language of Th, (TB(ψ)) is provable in P. 

In the next section we show that theories satisfying the above definition are 

very diverse. 
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2. A VARIETY OF TRUTH THEORIES 

Let us start by drawing two most basic classification lines between axiomatic 

theories of truth. They concern rather the syntactical shape of the chosen axioms 

for the truth predicate and serve to illustrate approaches that one can take in 

designing a theory of truth. 

We say that a theory of truth P is t y p e d  (or: s t r a t i f i e d ) if the axioms of 
P regulate the behaviour of the truth predicate T only on sentences without the 

predicate T. Otherwise, P is u n t y p e d . We say that P is d i s q u o t a t i o n a l  if 
P is axiomatized by sentences of the form (TB(ψ)), for various ψ. We say that 
P is compositional if it is axiomatized by (in addition to the axioms of Th) finite-

ly many sentences determining how the truth of a formula depends on the truth 

of its subformulae. 

Let us now illustrate this distinction with some canonical examples. For this 

purpose, we focus on one concrete choice of the base theory Th, and assume that 

it is always Peano Arithmetic (PA). It is given by finitely many axioms stating 

basic properties of addition, multiplication and successor (denoted with S) func-

tions, such as 

∀x, y  x ∙ S(y) = x ∙ y + x 

and infinitely many axioms of induction of the form 

 ψ (0)∧∀y (ψ (y) → ψ (y + 1)) → ∀yψ (y) (Ind(ψ)) 

where ψ is in the language of arithmetic and may contain free variables other 

than y. The above sentence expresses the principle of induction for the set de-

fined by ψ(y): if 0 is in this set and if y + 1 is in it whenever y is, for arbitrary 

number y, then every number is its member. We shall use ℒ to denote the lan-

guage of arithmetic and ℒ𝑇  to denote ℒ  enriched with a fresh predicate T. The 

choice of PA as a base theory was commented already in the earlier paper (Łełyk, 

Wcisło, 2017). 

Each theory P presented below results as an answer to the following ques-

tions: 

1. Should P be typed or untyped? 

2. Should P be disquotational or compositional? 

3. For which formulae ψ of ℒ𝑇 should we add to P the axiom of induction 

(Ind(ψ))? 

Question 3 is normally answered by allowing axioms (Ind(ψ)) for ψ from 

a particular level of the arithmetical Σn hierarchy. The basic Σ0 (which, by defini-

tion, equals Π0 ) level contains only formulae ψ in which every quantifier is 
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bounded, i.e. whenever a formula of the form ∃xφ occurs in ψ, then φ is of the 

form (x < t∧φ’), where t is a term that does not contain variable x (dually for the 

universal quantifier). We say that ψ is in the class Πn +1  if ψ is of the form 

∀x1…∀xk φ, where φ ∈ Σn. Dually, ψ ∈ Σn +1 if ψ = ∃x1…∃xk φ where φ ∈ Πn. 

 

2.1. Typed and Disquotational Theories 

 

These can be considered the simplest truth theories as they are axiomatized 

solely by (variations of) the T-scheme. The most basic such theory is called TB−: 

Definition 3. TB− is PA together with all sentences TB(ψ) for ψ—a sentence in ℒ. 

If we allow induction axiom (Ind(ψ)) for every ψ ∈ ℒ𝑇, then the respective theo-

ry is denoted with TB. 

TB− correctly guesses the truth of sentences. For example, 

TB− ⊢ T(⸢0 = 0⸣). 

Indeed the above holds, since T(⸢0 = 0⸣) ≡ 0 = 0 is an axiom of TB− and 0 = 0 is 

provable in PA. Similarly, if ψ is any arithmetical formula, then the (name of the) 

axiom of induction for ψ is provably within the scope of T. 

However, even in the presence of full induction, the TB scheme alone has 

very strong limitations. For example it does not prove that every sentence of the 

form t = t is true, where t is an arbitrary closed term. Formally 

 TB− ⊬∀ t  T( ⸢t = t⸣). (1) 

The above requires some explanation: for every concrete term t the sentence T( ⸢t 

= t⸣) will be provable in TB−, exactly by the reasons given above. However using 

induction in PA we can prove the universal sentence, that for every term t there 

exists a formula which results by the substitution of t in x = x for every free oc-

currence of variable x. ∀ t  T( ⸢t = t⸣) abbreviates that every such sentence is true. 

For the proof of 1 see (Halbach, 2011). 

To overcome this obstacle one can extend the TB scheme, introducing u n i -

f o r m  Ta r s k i  b i c o n d i t i o n a l s . To introduce them we need one more 

arithmetical function: the value of a term. Let us recall that for any arithmetical 

term we can define its value (i.e. the natural number denoted by it) by the follow-

ing recursion: 

0° = 0 

S(s)° = S(s°) 

(s + t)° = s° + t°  

(s · t)° = s° · t° 
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Now such a definition can be formalized in PA, hence there exists an arithmetical 

formula y = x° such that 

PA ⊢ ∀ t∃!y  y = t°. 

For the sake of readability, we shall treat the symbol ·° as it was actually a term-

forming expression. For every formula ψ(x1,…, xn) we define UTB(ψ) to be the 

sentence 

 ∀ t1…∀ tn T( ⸢ψ(t1,…, tn) ⸣) ≡ ψ(t1°,…, tn°). (UTB(ψ)) 

For every concrete ψ(x1,…, xn) the above sentence says that for all terms t1,…, 

tn the sentence resulting by substituting ti for xi, for i ≤ n, in ψ(x1,…, xn) is true if 

and only if ψ(a1,…, an) holds where for each i, ai is the value of term ti. 

Definition 4. UTB− extends PA with all sentences of the form UTB(ψ) for ψ—an 

arithmetical formula. UTB extends PA with induction axioms for all formulae of 

ℒ𝑇.  

With this definition it is a straightforward observation that for every arithmet-

ical formula ψ(x) 

UTB− ⊢ T(⸢∀x ψ(x)⸣) ≡ ∀t T(⸢ψ(t)⸣), 

i.e. the universal sentence ∀x ψ(x) is true if and only if ψ(t) is true for every term 

t (in the sense of PA). In particular, 

UTB− ⊢ ∀t T(⸢t = t⸣). 

However, there are still very important limitations to uniform Tarski bicondition-

als: the theory does not have the resources needed to establish the universal va-

lidity of even the simplest propositional schemes. For example 

UTB ⊬ ∀φ T(⸢φ∨¬φ⸣), 

where T(⸢φ∨¬φ⸣) abbreviates: “the disjunction of φ and ¬φ is true”. For the proof 

of it, once again consult (Halbach, 2011). 

Remark 5 (Historical remark). The first results about typed disquotational theo-

ries of truth were obtained already by Tarski in (1995), who immediately noticed 

their limitations. 
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2.2. Typed Compositional Theories 

 

The limitation demonstrated at the end of the previous section points to the 

fact that we cannot write the axiom for the truth predicate T in the form 

∀φ T(φ) ≡ φ, 

since, if φ is quantified, then it should occupy the place of a variable in the for-

mula within the range of the quantifier. The way out of the problem is to choose 

axioms which would give us a procedure of determining the truth value of an 

arbitrary ℒ sentence. In particular we can determine how the truth of a complex 

sentence depends on the truth of its immediate constituents. We give two exam-

ples of such sets of axioms and start from the less obvious one: 

Definition 6. PT− extends PA with the following finitely many axioms for the 

truth predicate: 

1. ∀s, t [T(⸢s = t⸣) ≡ s° = t°]. 

2. ∀s, t [T(⸢¬s = t⸣) ≡ s° ≠ t°].  

3. ∀φ [T(⸢¬¬φ⸣) ≡ T(φ)]. 

4. ∀φ, ψ [T(⸢φ∧ψ⸣) ≡ T(φ) ∧T(ψ)]. 

5. ∀φ, ψ [T (⸢¬(φ∧ψ)⸣) ≡ T(⸢¬φ⸣)∨T(⸢¬ ψ⸣)]. 

6. ∀v ∈ Var∀φ ∈ Formv [T(⸢∀vφ⸣) ≡ ∀t T(φ[t/v])]. 

7. ∀v ∈ Var∀φ ∈ Formv [T(⸢¬∀vφ⸣) ≡ ∃t T(⸢¬φ[t/v]⸣)]. 

8. ∀t, s ∀v ∈ Var∀φ ∈ Formv  [s° = t° → T(φ[s/v]) ≡ T(φ[t/v])]. 

For a natural number n, PTn denotes the result of adding to PT− the axioms of 

induction for Σn formulae with the truth predicate, i.e. all sentences Ind(ψ) for 

ψ—a Σn formula of ℒ𝑇. 

Let us have a word of comment about the meaning of the above axioms: by 

writing ∀φ we implicitly quantify over (codes of) ℒ sentences (not ℒ𝑇, though!) 

and the intended reading of, e.g., axiom 3 is: “For every arithmetical sentence φ, 

the sentence resulting from φ by adding two negations at the front of φ is true if 

and only if φ is true.” 

In axiom 6 Var denotes the set of variables (more precisely: a formula “x is 

a variable”) and ∀v ∈ Var is to be read as “For every variable v…”. ∀φ ∈ Formv 

expresses “For all formulae φ with at most one free variable v”. Consequently, 

the whole axiom 6 reads: “For every variable v and for every formula φ with at 

most v free, the sentence ∀vφ is true if and only if for every term t the sentence 

resulting from φ by substituting term t for every free occurrence of variable v is 

true.” 
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The above axiom is correct, since for every natural number n there exists 

a term naming it, for example 

S(S(…S(0)))⏟        
n times S

 

and this procedure formalizes in PA (such terms are defined by a routine induc-

tion), hence 

PA ⊢ ∀x∃t  t° = x. 

Terms of the form (Num) are called c a n o n i c a l  n u m e r a l s . The canonical 

numeral for n will be denoted n. Obviously, there are more terms than such ones. 

Axiom 7 states that as long as two terms denote the same number it is irrelevant 

for the truth of a formula, which of them is used. 

The Reader may wonder what does “P” in PT stands for and why we build 

a compositional theory of truth for arithmetical sentences without including the 

axiom 

 ∀φ ∈ Sentℒ (T(¬φ) ≡ ¬T(φ)). (NEG(ℒ)) 

on the list. The answer to both questions is the same: we want the truth predicate 

T to appear only positively, i.e. non-negated, in the truth axioms. This makes 

such a theory easier to investigate and allows to study questions about how much 

(NEG(ℒ)) contributes to the properties of axiomatic theories. Moreover, there is 

a very intuitive picture in the background of the positive aspect of PT−: we think 

of the truth of sentences as being evaluated in stages. At the first stage atomic 

sentences are classified as either true, i.e. T(⸢s = t⸣) holds, or false i.e. T(⸢¬(s = t)⸣) 

holds. For example after this stage we will be able to conclude that T(⸢0 = 0⸣) 

and T(⸢¬0 = S(0)⸣) hold. At the next stage, and more generally at any later stage, 

sentences of the form ¬¬φ, (φ∧ψ), ¬(φ∧ψ), ∀xφ and ¬∀xφ get evaluated for all 

φ, ψ which were evaluated at an earlier stage.3 A sentence φ is true if at some 

stage φ is classified as such. It is false if ¬φ is classified as true. In such a way if 

φ is classified as true or false, then we are given a procedure which reduces the 

problem of φ’s truth value to the problem of truth value for atomic sentences. In 

such a situation we say that φ is g r o u n d e d . 

Observe that the axiom (NEG(ℒ )) does not quite match this picture: we 

should not classify ¬φ as true simply because φ was not classified as true at an 

earlier stage. This is because φ might require a longer procedure of evaluation 

and finally it will be classified as true. For example, after the first stage the sen-

tence 

 
3 There is one subtlety in here: according to the axiom 5 it is sufficient for one of φ, 

ψ to get evaluated as false to classify φ∧ψ as false. 
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(0 = 0) ∧ (0 = 0), 

is not classified as true. However it would be a mistake to classify ¬((0 = 0) ∧ (0 

= 0)) as true based on this. 

Since for every sentence φ of ℒ we can build such a procedure of evaluation 

(this is shown by induction on the complexity of φ), it can easily be shown that 

PT− is indeed a theory of truth. In fact, it properly extends UTB−: 

Proposition 7. For every φ(x1,…, xn), 

PT− ⊢ ∀t1,…, tn T(⸢φ(t1, . . . , tn)⸣) ≡ φ(t1°,…, tn°). 

We urge the Reader that this does not show that (NEG(ℒ)) is provable in PT−, 

for the above proposition shows only that for every φ s e p a r a t e l y  

PT− ⊢ T(⸢¬φ⸣) ≡ ¬T(⸢φ⸣). 

However, PT− lacks induction axioms for formulae with the predicate T, so it 

cannot internalize the reasoning in the proof of Proposition 7. Upon adding the 

axiom (NEG(ℒ)), PT− axioms 2., 3., 5. and 7. become redundant. The resulting 

theory is called CT−: 

Definition 8. CT− extends PA with the following axioms for the truth predicate:  

1. ∀s, t [T(⸢s = t⸣) ≡ s° = t°]. 

2. ∀φ [T(⸢¬φ⸣) ≡ ¬T(φ)].  

3. ∀φ, ψ [T(⸢φ∧ψ⸣) ≡ T(φ)∧T(ψ)]. 

4. ∀v ∈ Var∀φ ∈ Formv [T(⸢∀vφ⸣) ≡ ∀t T(φ[t/v])]. 

5. ∀t, s ∀v ∈ Var∀φ ∈ Formv  [s° = t° → T(φ[s/v]) ≡ T(φ[t/v])]. 

As usual, CTn denotes CT− extended with Σn induction for formulae of ℒ𝑇 and 

CT admits a full ℒ𝑇 induction scheme.  

The above theory should look familiar, as its axioms are straightforward for-

malisations of inductive Tarski truth conditions in ℒ𝑇 . Let us point out some 

properties of CT−: 

Proposition 9. CT− ⊢ PT−. 

S k e t c h  o f  t h e  p r o o f . Let us show how to prove the axiom 7. We work in 

CT−. Fix a variable v and a formula φ(v) with at most one free variable as shown. 

By (NEG(ℒ)) T(⸢¬∀xφ⸣) is equivalent to ¬T(⸢∀xφ⸣). This, in turn, by axiom 4. of 

CT− is equivalent to ¬∀tT(φ[t/v]). The last formula, by De Morgan laws for quan-
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tifiers, is equivalent to ∃t¬T(φ[t/v]). Since for every t, φ[t/v] is a sentence the 

above is equivalent to ∃tT(⸢¬φ[t/v]⸣), which ends the proof of axiom 7.      □ 

Similarly, in CT− we can show that the law of non-contradiction (to give an 

example) holds for all formulae, i.e. 

Proposition 10. CT− ⊢ ∀φ T(⸢¬(φ∧¬φ)⸣). 

P r o o f . Work in CT− and fix φ. Observe that ¬(T(φ)∧¬T(φ)) holds, since this is 

an instantiation of logical tautology. By the subsequent use of the axiom for 

negation, conjunction and once more negation we show that ¬(T(φ)∧T(⸢¬φ⸣)), 

¬T(⸢(φ∧¬φ)⸣) and finally T(⸢¬(φ∧¬φ)⸣) hold.               □ 

Later on (in Section 2.5) we shall demonstrate some natural, but unprovable 

in CT− properties of the truth predicate. Let us now turn to untyped composition-

al theories. 

 

2.3. Untyped Compositional Theories 

 

As famously argued by Kripke (see Kripke, 1975), typing seems to be a way 

too radical response to the Liar paradox. There are many sentences with the truth 

predicate whose truth conditions are unproblematic, for example 

“‘0 = 0’ is true.” 

is true while “‘0 = 1’ is true and ‘0 = 0’ is true” is false. In this section we intro-

duce axiomatic theories which are capable of dealing with such examples cor-

rectly. 

What does it mean that a theory is compositional? We certainly expect such 

a theory to state the truth conditions for atomic sentences and then to character-

ize, that way or another, the truth conditions for complex sentences in terms of 

the truth conditions of its immediate subformulae. If we want our theory with the 

truth predicate T to correctly characterize the truth of all atomic sentences, then it 

should prove an analogon of axiom 1. of CT−, but also for sentences of the form 

T(t), where t is a term. Hence, such an axiom could look as follows 

 ∀ t T(⸢T(t)⸣) ≡ T(t°). (TRP) 

TRP is meant to abbreviate “TRansParency”. However, we cannot have (TRP) 

and take the axioms of CT− with the quantifiers ∀φ, ∀ψ ranging over all ℒ𝑇 sen-

tences, since the resulting theory would prove 

T(⸢φ⸣) ≡ φ, 
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for every sentence φ with the truth predicate, and hence be inconsistent by Tar-

ski’s theorem. In fact, as shown by Halbach (1994; see also Halbach, 2011), TRP 

together with the negation axiom for the whole language ℒ𝑇, i.e. the sentence 

 ∀φ ∈ Sentℒ𝑇  (T(¬φ) ≡ ¬T(φ)). (NEG(ℒ𝑇)) 

are enough to reconstruct the reasoning in the Liar paradox.4 Hence, we have two 

ways to go: 

1. Accept TRP and resign from (NEG(ℒ𝑇)). 

2. Reject TRP and try with compositional axioms à la CT−. 

Two truth theories which we shall discuss represent the above two possibilities. 

The first one is KF, which stands for KripkeFeferman and generalises PT− to the 

untyped realm:5 

Definition 11. KF− results by adding to PA the following ℒ𝑇 sentences:  

1. ∀s, t  [T(⸢s = t⸣) ≡ s° = t°]. 

2. ∀s, t  [T(⸢¬s = t⸣) ≡ s° ≠ t°]. 

3. ∀t  [T(⸢T(t)⸣) ≡ T(t°)]. 

4. ∀t  [T(⸢¬T(t)⸣) ≡ [T(⸢¬t°⸣)∨¬Sentℒ𝑇(t°)]. 

5. ∀φ ∈ ℒ𝑇 [T(⸢¬¬ φ⸣) ≡ T(φ)]. 

6. ∀φ, ψ ∈ ℒ𝑇 [T(⸢φ∧ψ⸣) ≡ T(φ)∧T(ψ)]. 

7. ∀φ, ψ ∈ ℒ𝑇  [T(⸢¬( φ∧ψ)⸣) ≡ T(⸢¬ φ⸣)∨T(⸢¬ ψ⸣)]. 

8. ∀v ∈ Var ∀φ ∈ Formℒ𝑇
𝑣  [T(⸢∀vφ⸣) ≡ ∀t T(φ[t/v])]. 

9. ∀v ∈ Var ∀φ ∈ Formℒ𝑇
𝑣  [T(⸢¬∀vφ⸣) ≡ ∃t T(⸢¬φ[t/v]⸣)]. 

10. ∀t, s ∀v ∈ Var ∀φ ∈ Formℒ𝑇
𝑣  [s° = t° → T(φ[s/v]) ≡ T(φ[t/v])]. 

As usual KFn results from KF− by adding induction axioms for Σn formulae of 

ℒ𝑇 and KF admits induction axioms for all ℒ𝑇 formulae. 

Let us observe that axioms 5.–10. are axioms of PT− generalised to all formu-

lae and axioms 3.–4. corresponds to axioms 1.–2., giving positive compositional 

truth conditions for atomic T sentences. Let us mention that this set of axioms is 

consistent, as essentially shown already by Kripke in (1975). The intuition be-

hind KF− is that T(x) expresses: “x is a true and g r o u n d e d  sentence”, in the 

 
4 There is a subtlety in here: the contradiction can be derived granted that we have 

a slightly richer language: symbols representing some primitive recursive functions 

should be added. 
5 More correctly: PT− is the typed counterpart of KF−, since the latter theory was for-

mulated first. 
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sense discussed when describing PT−. Unlike in the typed case, however, this 

time some sentences are essentially ungrounded, for example the standard liar 

sentence, φL, constructed via the diagonal lemma. One can show that the assump-

tion that it’s truth is determined, i.e. 

T(⸢φL⸣)∨T(⸢¬φL⸣) 

holds, leads to the conclusion that both φL and ¬φL are true, i.e. T(⸢φL⸣)∧T(⸢¬φL⸣) 

holds. Basing on the intuitive description we gave for PT− it can easily be seen 

that no grounded sentence can have this property.6 

Let us now discuss one essential drawback of KF: the theory is essentially 

a s y m m e t r i c , in the sense that it’s theorems need not be provably true. For 

example, KF does not prove that the sentence 

∀φ T(φ)∨¬T(φ), 

which is an easy consequence of KF, is true. Indeed, by using the compositional 

axioms of KF one can show that 

T (⸢∀φ T(φ)∨¬T(φ)⸣) 

is equivalent to 

∀φ T(φ)∨T(⸢¬φ⸣), 

i.e. the assertion that each sentence is determined. What is worse, this theory 

cannot even be consistently closed under the following rules of reasoning 

φ

T(φ)
 (NEC) 

T(φ)

φ
 (CONEC) 

since one can show that (TRP) (axioms 3. and 4.), axiom 7. and the above two 

rules are enough for reconstructing the reasoning from the Liar paradox. This 

essentially shows that if one demands a little bit compositionality and closure 

under (NEC) and (CONEC) rules, then one should reject one of the axioms 3. or 

4. Recall also that TRP is inconsistent with (NEG(ℒ𝑇)). It turns out, that rejecting 

 
6 One of Kripke’s (1975) achievements is to give a formal framework for discussing 

such issues with mathematical rigour. For example one can distinguish paradoxicality 

from ungroundedness and conclude e.g. that the truth-teller sentence φT, i.e. the sentence 

asserting its own truth, is ungrounded but not paradoxical. Intuitively this means that the 

step-by-step procedure described when explaining groundedness does not lead to the 

ascription of either truth or falsity to φT, but the stipulation that its truth is determined 

does not force us to conclude that it is both true and false. 
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TRP we can have both closure under (NEC) and (CONEC) and the global axiom 

for the negation. A theory that goes in this direction is called FS−: 

Definition 12. FS− results by adding to PA the following axioms:  

1. ∀s, t  [T (⸢s = t⸣) ≡ s° = t°]. 

2. ∀φ ∈ ℒ𝑇 [T(⸢¬ φ⸣) ≡ ¬T(φ)]. 

3. ∀φ, ψ ∈ ℒ𝑇 [T(⸢φ∧ψ⸣) ≡ T(φ)∧T(ψ)]. 

4. ∀v ∈ Var ∀φ ∈ Formℒ𝑇
𝑣  [T(⸢∀vφ⸣) ≡ ∀t T(φ[t/v])]. 

5. ∀t, s ∀v ∈ Var ∀φ ∈ Formℒ𝑇
𝑣  [s° = t° → T(φ[s/v]) ≡ T(φ[t/v])]. 

and closing the resulting theory under the rules (NEC) and (CONEC). The mean-

ing of FSn and FS are as in the rest of cases, except that the extended theory is 

also closed under (NEC) and (CONEC). 

The above list of axioms is due to Halbach (1994), who offered it as 

a compositional axiomatization of Friedmann-Sheard theory from (1987). In 

effect the results of both papers taken together provide a consistency proof for 

this theory. Let us note that the above axioms are straightforward generalisations 

of CT− axioms to the untyped case. 

At first sight FS− seems to be a much more natural theory than KF: it is fully 

compositional and the lack of (TRP) axioms is somehow compensated by the 

rules (NEC) and (CONEC). However, there is a high price to be paid: as famous-

ly shown by McGee in (1985; see also Halbach, 2011) we cannot find the inter-

pretation for FS− in the standard model of arithmetic, ℕ. Let us contrast this with 

the case of e.g. CT−. While for the latter theory it is true, that no d e f i n a b l e  

subset of ℕ can serve as its interpretation, there is a set Tr ⊆ ℕ such that 

(ℕ, Tr) ⊨ CT−. 

For Tr it is sufficient to take the set of Gödel codes of all sentences which are 

true according to the standard Tarskian definition. Similarly, one can find the 

interpretation for the KF truth predicate in ℕ—this was the way Kripke has orig-

inally shown the consistency of KF.7 No such subset exists for FS−, as witnessed 

by the theorem below: 

Theorem 13 (McGee, 1985). FS− is ω−inconsistent, i.e. there is a formula 

φ(x) ∈ ℒ𝑇 such that FS− ⊢ ∃xφ(x), but for every n ∈ ℕ, FS− ⊢ ¬φ(n). 

 

 

 

 
7 This is an anachronism, since KF was not formulated at that time. However, Krip-

ke’s fixpoint construction gives immediately the consistency of this theory. 
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2.4. Untyped Disquotational Theories 

 

As the Reader probably observed with each new section, we introduce types 

of theories which are more expressive that the previous ones. Hence presenting 

disquotational theories at the end may seem to be surprising. However, as the 

next theorem witnesses this is fully justified. Let PAT denote a theory in ℒ𝑇 ex-

tending PA with no non-logical axioms for the predicate T. 

Theorem 14 (McGee, 1992). For every φ ∈ ℒ𝑇 there exists a ψ such that TB(ψ) 

is equivalent to φ over PAT, i.e. 

PAT ⊢ φ ≡ (T(ψ) ≡ ψ). 

The proof of the above is very simple and it is called “McGee’s trick”: we fix 

φ and consider the formula 

θ(x) ≔ φ ≡ T(x). 

By the diagonal lemma there exists a sentence ψ such that 

PAT ⊢ ψ ≡ θ(⸢ψ⸣). 

The thesis follows by the definition of θ and the associativity of ≡. As a corollary, 

if φ is any of the axioms for KF− or FS−, then there exists an untyped T-

biconditional which is equivalent to it. In other words, both FS− and KF− can be 

presented as untyped disquotational theories.8 

It can be argued that theories obtained by McGee’s trick are not natural and 

hence shouldn’t be taken into consideration, however it is hard to make this ar-

gument precise. Now we shall deal with some more natural (in the intuitive sense) 

theories, which directly correspond to TB and UTB. To define them assume that 

our language ℒ𝑇 does not contain the symbol → for material implication. If φ is 

a formula in such a language then we call φ  p o s i t i v e  if each occurrence of 

T is within an even number of negations. The assumption that → does not occur 

in φ is important, since θ → θ’ is equivalent to ¬θ∨θ’, hence → hides one oc-

currence of the negation. 

Definition 15. PTB− extends PA with axioms TB(ψ) for positive ℒ𝑇 sentences ψ. 

PUTB− extends PA with all sentences of the form UTB(ψ) for positive ℒ𝑇  formu-

 
8 We owe the Reader some explanation, since FS− was defined as the closure of 

a certain group of axioms under two rules of reasoning, so the last claim does not exactly 

follows from the McGee’s trick. However, as shown by Halbach (2011), FS− can be 

equivalently axiomatized by an infinite set of reflection principles and without the use of 

additional rules of reasoning. 
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lae ψ. PTB and PUTB denote the extensions of PTB− and PUTB− with induction 

axioms for all formulae of ℒ𝑇.  

Since every arithmetical formula is trivially positive, PTB− and PUTB− ex-

tends TB− and UTB− respectively. Moreover, as in the typed case PTB− is 

a subtheory of PUTB− and the latter theory is provable in KF− (as shown by 

Cantini, see Halbach, 2011). In particular both theories are consistent. We shall 

deal with their expressiveness in the last section. 

 

2.5. Additional Axioms 

 

We shall briefly consider some axioms that can be additionally added to the 

above theories. Each axiom has both typed and untyped version. Let us start with 

axioms for positive compositional theories (PT−, KF−). Since such theories does 

not prove axiom (NEG(ℒ)), or its untyped variant (NEG(ℒ𝑇)), this gives rise to 

two principles that can be studied separately. For further usage let us introduce 

the following abbreviations: 

tot(φ(v)) ≔ ∀t (T(φ[t/v])∨T(¬φ[t/v])) 

cons(φ(v)) ≔ ∀t ¬(T(φ[t/v])∧T(⸢¬φ [t/v]⸣)) 

and let us define first two principles: 

COMP ≔ ∀v ∈ Var ∀φ ∈ Formℒ𝑇
𝑣  tot(φ) 

CONS ≔ ∀v ∈ Var ∀φ ∈ Formℒ𝑇
𝑣  cons(φ). 

The intended reading of the above principles is that t o t  (abbreviates “total” and) 

means that the truth value of φ(t) is determined for every term t. c o n s  abbrevi-

ates “consistent” and expresses that for no term t, φ(t) is contradictory (i.e. both 

true and false). COMP and CONS abbreviate “complete” and “consistent” re-

spectively. Let us observe that both CONS and COMP are provable in FS−. 

However neither of them is provable in KF− (see Halbach, 2011). 

The next axioms give us a little bit of induction: each of them will be prova-

ble in any of the theory considered in the presence of induction for bounded 

ℒ𝑇 formulae. Let us start with the most obvious one, called internal induction. 

We first define INT(φ) to be the sentence 

(T(φ[0/v])∧∀x(T(φ[x/v]) → T(φ[x + 1/v]))) → ∀x T(φ[x/v]) 

x denotes the canonical numeral for x (the procedure of assigning canonical nu-

merals to numbers formalizes in PA) and consequently T(φ[x/v]) should be read: 

“The result of substituting the canonical numeral naming x for every free occur-

rence of variable v in φ, is true.” 
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Now we define 

 ∀v ∈ Var ∀φ ∈ Formv INT(φ). (INT(ℒ)) 

In short, (INT(ℒ)) says that every arithmetical formula satisfies induction axiom. 

In the context of PT− (when it is not provable that every arithmetical formula is 

total), we shall study also its restriction to total formulae: 

 ∀v ∀φ ∈ Formv (tot(φ) → INT(φ)). (INTtot(ℒ)) 

In the context of untyped theories it makes sense to consider these axioms for 

entire ℒ𝑇 language. They are denoted INT(ℒ𝑇 ) and INTtot(ℒ𝑇 ) and differ from 

the above axioms only by changing Form𝑣 to Formℒ𝑇
𝑣 . 

If P is any theory and φ is any additional axiom, then we use the notation 

P + φ 

to denote the theory P∪{φ}, i.e. the theory resulting from P by adding the axi-

om φ. In the context of extensions of FS− we also write FS− + φ + (NEC) if we 

want to consider the closure of FS− + φ under (NEC) rule (+ (CONEC) has an 

analogous meaning).  

*  *  * 

The above short presentation was meant to convince the Reader that there are 

many ways of axiomatically defining a meaningful notion of truth. We believe 

that each of the above presented theories, taking into considerations also their 

variations by adding induction axioms or what we called “additional axioms”, is 

interesting on its own. In the next section we shall also treat them as examples 

illustrating differences between various notions of strength. 

3. RELATIONS OF STRENGTH 

In this section we shall study some possibilities of defining order on theories 

of truth. The intuitive idea will be that a stronger (or more properly: not weaker 

than) theory “says more” (“no less”) about the property of being true or about the 

extrasemantical realm of the base theory. Each of the defined relations will be 

reflexive and transitive (i.e. a preorder), hence will in natural way give rise to an 

equivalence relation on theories via the condition 

P ≡ P’   P ≤ P’∧P’ ≤ P,  
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where ≤ is the chosen relation. Hence, each of the relations below can also be 

seen as a way of explicating the notion of “sameness” between theories. Similar-

ly, each such relation naturally gives rise to a strict preorder relation ⪇ via the 

condition P ⪇ P’  P ≤ P’∧P’ ≰ P. 

Let us observe that there is one obvious first relation to consider: we say that 

a theory P is no weaker than P’ iff P ⊢ P’, i.e. P proves every axiom of P’. Then 

if P and P’ are comparable both ways, i.e. P ⊢ P’ and P’ ⊢ P holds, then P and P’ 

are simply axiomatizations of the same set of sentences. This relation provides us 

with an obvious necessary condition for any other candidate for the relation of 

strength, for if P ⊢ P’ then P should be no weaker than P’ in any reasonable 

sense of “no weaker than”. However, for various reasons this relation is too strict 

being too sensitive to slight perturbations of our theories. We shall now proceed 

to more permissive candidates and discuss what is here meant by “slight pertur-

bations”.  

 

3.1. Fujimoto Definability 

 

This relation, under the name of r e l a t i v e  t r u t h  d e f i n a b i l i t y , was in-

troduced by Kentaro Fujimoto in (2010). To present the way it improves on ⊢ let 

us consider the following slight perturbation of TB−:  

P ≔ TB− + ∀t T(⸢t = t⸣), 

i.e. the extension of TB− by a single axiom mentioned on the right. As argued 

when discussing TB−, 

TB− ⊬ P. 

However, TB− can “improve itself” to make P provable. Consider a formula 

T ’(x) ≔ T(x)∨∃t  x = ⸢t = t⸣, 

which intuitively says that x is either true, in the sense of the truth predicate T, or 

is a sentence of the form t = t, for some closed term t. Then, if φ is any sentence 

of ℒ, then 

TB− ⊢ T ’(⸢φ⸣) ≡ φ. 

Indeed, the right-to-left implication is immediate, since by the very logical form 

of T ’ we have (provably in TB−) 

∀x T(x) → T ’(x). 
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The left-to-right one is also easy, since sentences of the form t = t are true. More-

over, by definition, 

TB− ⊢ ∀t T ’(⸢t = t⸣), 

hence T ’, provably in TB− serves as an interpretation for a truth predicate satisfy-

ing P. This was one the simplest cases of Fujimoto definability. Now the defini-

tion proper: 

Definition 16. If Θ, T ’(x) are any ℒ𝑇 formulae, then Θ[T ’/T] denotes a formula 

in which any occurrence of T(t) is replaced with T ’(t) (possibly with renaming 

bounded variables so as to avoid clashes). If P is any theory of truth, then 

P [T ’/T] 

denotes the theory whose axioms are sentences Θ[T ’/T] for Θ—an axiom of P. 

We say that P F u j i m o t o  d e f i n e s  P’ if there exists an ℒ𝑇 formula T ’ such that 

P ⊢ P’ [T ’/T]. 

In such a case we also say that P is Fujimoto no weaker than P’ and write P’ ≤F P. 

If this holds both ways, then we say that P and P’ are Fujimoto equivalent and 

denote it ≡F. 

Let us observe that if P ⊢ P’ then obviously P’ ≤F P, for one can take T ’(x) ≔ 

T(x) to witness Fujimoto definability. But the example preceding the definition 

shows that the relation is more permissive and still very intuitive: if P’ ≤F P, then 

P admits conceptual resources to prove all about the notion of truth that P’ can 

prove. The fact that it uses a definable predicate T ’ and does not simply prove 

that T satisfies axioms of P’ should not be that important (for the extended philo-

sophical discussion consult the original Fujimoto’s paper [2010]). 

Let us point one canonical, easy, but somewhat surprising fact about Fujimo-

to definability. Consider two theories extending KF− with additional axioms 

introduced at the end of the last section: KF− + COMP and KF− + CONS. The 

first one extends KF− with the sentence saying, that the truth value of every sen-

tence is determined, the second one—with the sentence saying that no sentence 

is both true and false. Observe that since KF− + COMP + CONS ⊢ (NEG(ℒ𝑇)) 

then by Tarski’s theorem this theory is inconsistent. Hence, 

KF− + COMP ⊢ ¬CONS 

KF− + CONS ⊢ ¬COMP. 

However, consider the formula 
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T ’(x) ≔ ¬T(⸢¬x⸣), 

saying: “¬x is not true”. It can be easily shown that 

KF− ⊢ KF−[T ’/T]. 

Moreover, reasoning in KF− the following are equivalent for every sentence 

φ ∈ ℒ𝑇 

1. ¬(T ’(φ)∧T ’(⸢¬φ⸣)) 

2. ¬T ’(φ)∨¬T ’(⸢¬φ⸣) 

3. ¬¬T(⸢¬φ⸣)∨¬¬T(⸢¬¬φ⸣) 

4. T(⸢¬φ⸣)∨T(φ) 

the last sentence is an instantiation of COMP for sentence φ. So also 1. is true for 

φ and since φ was arbitrary we proved CONS[T ’/T] in KF− + COMP. The same 

T ’ works in the other direction and thus it shows that KF−+ COMP ≤F KF− + 

CONS and KF−+ CONS ≤F KF− + COMP. Hence 

KF− + COMP ≡F KF− + CONS. 

Let us now note two important structural properties of Fujimoto definability. 

Let Ind(ℒ𝑇) ≔ {Ind(φ)   |   φ ∈ T} denote the set of induction axioms for ℒ𝑇 

formulae. Then we have 

Proposition 17. If P ≤F P’, then P + Ind(ℒ𝑇 ) ≤F P’ + Ind(ℒ𝑇 ). 

The proof of this is almost obvious: if T ’(x) witnesses Fujimoto definability 

of P in P’, then the very same formula witnesses Fujimoto definability of P + 

Ind(ℒ𝑇) in P’ + Ind(ℒ𝑇). This is because for every ℒ𝑇 formula φ, φ[T ’/T] is again 

an ℒ𝑇 -formula, so we have an induction axiom for it in P’ + Ind(ℒ𝑇 ). As 

a corollary we get that 

KF + CONS ≡F KF + COMP. 

The second property is connected to models. Let us introduce a piece of notation: 

if ℳ is any model of some language ℒ’ and φ(x) is any ℒ’-formula with at most 

one free variable, then φℳ denotes the set of elements satisfying φ in ℳ. Now 

suppose ℳ  is a model of PA with universe ℳ  and Tr ⊆ ℳ  is such that 

(ℳ, Tr) ⊨ P’. If P ≤F P’, then 

(ℳ, φ(ℳ,𝑇𝑟)) 
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is a model of P. Indeed, by Fujimoto definability, we know that (ℳ, Tr) ⊨ P[φ/T] 

and for every ψ ∈ ℒ𝑇 we have 

(ℳ, Tr) ⊨ ψ[φ/T]    (ℳ, φ(ℳ,𝑇𝑟)) ⊨ ψ. 

In particular, if P ≤F P’, then in any model of P’ we can find an interpretation for 

the truth predicate which makes ℳ a model of P. By McGee’s theorem (Theo-

rem 13) it now follows that FS− is not Fujimoto definable in any of the theories 

discussed previously (except FS− itself, of course), since they all admit an inter-

pretation in the standard model of arithmetic, ℕ. 

 

3.2. Model-Theoretic Strength 

 

With the discussion about models of truth theories from the last section we 

implicitly moved to the second notion of strength. Let us offer now some more 

explanation to better prepare for the upcoming definitions. 

Models of axiomatic theories of truth are of the form (ℳ, Tr), where ℳ is 

a model of the base theory, which is PA in our case, and Tr is a subset of the 

universe of ℳ (denoted M). Most of truth theories (extensions of FS− being the 

unique exceptions out of the theories discussed above) can be interpreted in the 

standard model of arithmetic, ℕ, i.e. we can find a set of natural numbers (codes 

of some sentences) Tr ⊆ ℕ such that (ℕ, Tr) serves as a model of the chosen 

theory of truth. For typed theories (TB, UTB, PT−, CT− and various their exten-

sions) this is unproblematic, for every element of the universe of ℕ (i.e. a natural 

number) n such that 

ℕ ⊨ “n is a sentence” 

is a code of some real sentence φ. Hence if we put 

Tr ≔ {⸢φ⸣ ∈ ℕ | ℕ ⊨ φ}, 

then (ℕ, Tr) will be a model of CT, hence any other typed theory of truth dis-

cussed in Section 2. Let us observe that in such a model all induction axioms are 

automatically true, since every nonempty set of natural numbers has the least 

element (ℕ is well-founded). 

Neither of the above discussed features that helped us defining an extension 

for CT in ℕ transfers to n o n - s t a n d a r d  m o d e l s  of PA. These are, by defini-

tion, models of PA that are not isomorphic with ℕ, or, equivalently, which con-

tain an element c which is greater than any of their elements denoted by 

a standard numeral. More precisely: ℳ is non-standard if it contains an element 

c such that for every natural number n 

ℳ ⊨ c ≠ n. 
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(Recall that n denotes the canonical numeral naming n.) Every such element c is 

called non-standard. It immediately follows that, in any non-standard model of 

PA, there must be infinitely many such elements, since neither of 

c + 1, c + 2,…, c − 1, c − 2,…, 2c, 3c,…, c2, c3,… 

can be equal to a standard (i.e. not non-standard) number. In particular non-

standard models of PA are never well-founded, since if c is any non-standard 

element, then so are 

c − 1 > c − 2 > c − 3 > … > c − n > … 

for every n. The existence of such models follows from two independent sources: 

the fact that PA is incomplete (by Gödel’s first incompleteness theorem) and the 

compactness theorem for first-order logic. Kaye (1991) provides a very good 

first introduction to non-standard models of PA. 

One might be tempted to ignore the existence of such bizarre objects as de-

scribed above. After all, don’t we know that natural numbers are well-founded 

and hence we can limit our attention to what happens in ℕ? However, this crite-

rion is stated in a metatheory with respect to PA and cannot be restated within 

this system: for PA all its models are on a par or at least there seems to be no 

convincing internal to PA arguments ruling out ill-founded models.9 This point of 

view (that all models are on a par) is particularly adequate if our base theory is 

a toy model of all of our knowledge about extrasemantical facts (e.g. those that 

do not involve the notion of truth). Such a perspective is often adopted e.g. in the 

formal study of the deflationism (see e.g. Fischer & Horsten, 2015). Hence, if the 

base theory is all that we know, all its models should be equally good for us. We 

think about them as of possible worlds which are admissible from the point of 

view of our theory. The main question now is: when such a possible world can be 

expanded to a model of the respective truth theory? 

Definition 18. Let ℳ ⊨ PA. We say that ℳ e x p a n d s  to a model of an ℒ𝑇 the-

ory P if there exists Tr ⊆ M such that (ℳ, Tr) ⊨ P. 

Let us now show why, for a given non-standard model ℳ ⊨ PA, the question 

whether ℳ expands to a model of a theory of truth P is, in case of many P’s, 

non-trivial. Why can’t we simply do what we did in the case of ℕ and take 

Trℳ  ≔ {⸢φ⸣   |   ℳ ⊨ φ}? This, in fact, will work but only for one of our theo-

ries: TB−. It is a very simple exercise to show, that for every ℳ 

 
9 In (2018) Cieśliński argued that implicit commitments of theories may provide us 

with an internal to PA (or any base theory) ways of separating some non-standard models. 

However, even in this approach, all non-standard models that we will need later on, are 

left untouched. 
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(ℳ, Trℳ) ⊨ TB−. 

  

This however breaks down already for UTB−. As we have already noted, PA 

proves that for every x there exists a canonical numeral naming x. This numeral, 

provably in PA consists of a string of S’s of length x followed by 0 (with some 

brackets in the meantime, compare (Num)). Since this is a theorem of PA, then if 

ℳ is any non-standard model with a non-standard element c, then 

ℳ ⊨ “There exists a canonical numeral naming c” 

Let us fix the unique element c witnessing the above statement. Then 

ℳ ⊨ “c consists of a string of S’s of length c followed by 0”. 

In particular c itself is a non-standard element of ℳ. Let us now suppose that for 

some set A ⊆ M, (ℳ, A) ⊨ UTB−. Since ℳ ⊨ c = c, and c is a term naming c, it 

follows that ℳ ⊨ c° = c°. Hence by our assumption we must have that ⸢c = c⸣ 

(i.e. the code of a sentence asserting that c = c) is an element of A. However ⸢c = 

c⸣ ∉ Trℳ  because it is a non-standard element (since already c is).10 

This, however, can easily be fixed: for a given nonstandard model ℳ, define 

UTrℳ  ≔ {⸢φ(t1,…, tn)⸣ ∈ M   |   φ(x1,…, xn) ∈ Formℒ , ℳ ⊨ φ(a1,…, an)∧ 

⋀ a
i
= t

i

°

i≤n

}. 

UTrℳ  consists of codes of those formulae which are of standard logical depth, 

but may contain arbitrary terms, and are true in the model on the values of these 

terms (according to the model). This set, however, stops working even for the 

simpler out of our two typed compositional theories: PT−. To see this, observe 

e.g. that PA proves that for every x there exists a sentence consisting of a string 

of x negations and then 0 = 0 i.e. the sentence of the form 

¬…¬ ⏟  
x times ¬

0 = 0 

Hence in any non-standard model ℳ and for any non-standard element c ∈ M 

we must have a sentence θ ∈ M such that 

  ℳ ⊨ “θ starts with a string of c negations which is followed by 0 = 0”. 

 
10  We tacitly assume that our coding is monotone, i.e. a sequence has always no 

smaller code than any its subsequence. Most standard Gödel codings have this property. 
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Now suppose (ℳ, A) ⊨ PT− and θ and c are as in the above. Then, by axiom 1. 

of PT−, ⸢¬0 = 1⸣ ∈ A, since ℳ ⊨ 0 ≠ 1. Now let us consider a sentence (in the 

sense of ℳ) ⸢¬(θ∧0 = 1)⸣ ∈ M. By axiom 5., which expresses that the negation 

of conjunction is true iff one of the conjuncts is false, we have 

(ℳ, A) ⊨ T(⸢¬(θ∧0 = 1)⸣) ≡ T(⸢¬θ ⸣)∨T(⸢¬0 = 1⸣). 

Hence, since ⸢¬0 = 1⸣ ∈ A, also ⸢¬(θ∧0 = 1)⸣ ∈ A. But ⸢¬(θ∧0 = 1)⸣ ∉ UTrℳ , 

since this sentence does not have a standard logical depth (already θ contains 

a non-standard number of negations). Hence, in a non-standard model ℳ, UTrℳ  

is n e v e r  an interpretation for PT−. 

For PT− this too can be fixed, but requires a slightly more complicated argu-

ment (one formalizes the step-by-step procedure described in the previous sec-

tion and iterates it through ordinal numbers). Hence, for every non-standard 

model ℳ there exists a set PTrℳ  such that (ℳ, PTrℳ) ⊨ PT−. What about the 

next step and the case of CT−? Here, in order to find an extension for it in a non-

standard model ℳ , we encounter another level of complication: for any two 

sentences φ, ¬φ i n  t h e  s e n s e  o f  ℳ we have to choose exactly one and put it 

into the extension. It can be shown, that the procedure of finding PTrℳ  leaves 

the truth value of many non-standard sentences undetermined. For example, if θ 

is as above, neither θ, nor ¬θ will be in PTrℳ . This is essentially due to the well-

foundedness of the construction of PTrℳ . 

It turns out that, in general, this c a n n o t  be fixed: there are non-standard 

models of PA in which there is no appropriate extension for CT−. Moreover this 

is not due to the fact that CT− proves an arithmetical sentence which is not prov-

able in PA, because it does not. One can show that any consistent extension of 

PA has both a model in which one can interpret CT− and a model in which one 

cannot do it. We will say more about it when discussing concrete results in Sec-

tion 4. 

We have just seen that the obstacles for finding the interpretation of a theory 

of truth in a non-standard model may be caused by typically truth-theoretical 

axioms (such as (NEG(ℒ))). Let us mention one more such source of complica-

tions: adding Ind(ℒ𝑇) to our theory, i.e. extending the truth theory with all induc-

tion axioms for ℒ𝑇 formulae. Let us illustrate this with the simplest possible case: 

we shall show that (ℳ, UTrℳ) is never a model of TB (mind the lack of “ − ”). 

Assume the contrary. Let φ(x) be the ℒ𝑇 formula 

“Every sentence of logical depth at most x is either true or false”. 

Then, by the definition of UTrℳ , it follows that (ℳ, UTrℳ) ⊨ φ(n) for every 

natural number n. Moreover this reverses: (ℳ, UTrℳ) ⊨ φ(a) if and only if a is 

a standard element of ℳ, because there are no elements of non-standard logical 

depth in UTrℳ . Consequently, 
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(ℳ, UTrℳ) ⊨ ¬φ(a)  a is a non-standard element of ℳ. 

But as we have already seen, the set of all non-standard elements in any non-

standard model of PA does not have the least element. Hence the induction axi-

om for ¬φ(x) is not true in (ℳ, UTrℳ) and we obtained the desired contradiction. 

It transpires that, as in the case of CT−, in general this cannot be fixed by im-

proving UTrℳ . In some non-standard models of PA one simply cannot find the 

interpretation for the truth predicate satisfying TB. A fortiori, this is true about 

all the rest of truth theories extended with induction axioms for ℒ𝑇. 

We shall base the next relation of strength on the above considerations. Intui-

tively, a theory is stronger if it puts more restrictions on the universe of a model 

of our base theory. This should be reflected in the fact that, if P is properly 

stronger than P’, then less models of PA expands to a model of P, then to 

a model of P’. The definition follows: 

Definition 19. We say that P is m o d e l - t h e o r e t i c a l l y  n o t  w e a k e r  t h a n  

P’, and denote it P’ ≤𝑀 P, if every model of PA that can be expanded to a model 

of P, can be expanded to a model of P’ as well. 

Hence a theory P is m o d e l  t h e o r e t i c a l l y  s t r o n g e r  t h a n  P’, denoted 

P’ ⪇𝑀 P if P’ ≤𝑀 P and P ≰𝑀 P’. In this situation there are strictly more models 

of PA that carry an interpretation for P’ than those that carry an interpretation for 

P (i.e. the class of models expandable to P is a proper subclass of the class of 

models expandable to P’). 

Let us observe that Fujimoto definability is a refinement of the above relation, 

in the sense that for all truth theories P and P’ it holds that 

P ≤F P’ ⇒ P ≤𝑀 P’. 

Indeed, the crucial fact was already observed at the end of the section devoted to 

Fujimoto definability: if P ≤F P’, then there is a formula (witnessing Fujimoto 

definability) which in any model of P’ defines an interpretation for P. To visual-

ize the difference between the two relations of strength let us write the above 

condition formally:  

∃φ(x) ∈ ℒ𝑇 ∀(ℳ, A)  ((ℳ, A) ⊨ P’ → (ℳ, 𝜑(ℳ,𝐴)) ⊨ P). 

One can now think about this φ(x) as of a fixed procedure for transforming mod-

els of P’ into models of P. On our way leading to the second notion let us weak-

en this condition by allowing this procedure to depend on the model (ℳ, A): 

∀(ℳ, A) ((ℳ, A) ⊨ P’ → ∃φ(x) ∈ ℒ𝑇  (ℳ, 𝜑(ℳ,𝐴)) ⊨ P). 
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The above condition permits to pick a different φ(x) for every model (ℳ, A).11 

Now, our second relation relaxes the above condition even further: we do not 

require that the interpretation of the truth predicate satisfying P be given by 

a formula. We demand only its existence as a subset of ℳ. Hence formally, the 

condition for P ≤𝑀 P’ is 

∀(ℳ, A) ((ℳ, A) ⊨ P’ → ∃A’ ⊆ M   (ℳ, A’) ⊨ P). 

It turns out that this shift makes it possible to compare both TB and UTB (which 

admits full induction) with CT− (which has no induction for formulae with the 

truth predicate) and also some untyped truth theories with the typed ones. We 

shall say more about the concrete results in the last section. 

 

3.3. Proof-Theoretic Strength 

 

The last relation of strength takes us back to the purely syntactical world. It 

can be best seen as a weakening of the provability relation that we started from: 

P ⊢ P’ means that 

For every sentence φ of ℒ𝑇, if P’ ⊢ φ, then P ⊢ φ. 

Now, we want to restrict the above universal condition to ℒ (i.e. arithmetical) 

sentences only. Here is our definition: 

Definition 20. We say that P is p r o o f - t h e o r e t i c a l l y  n o t  w e a k e r  t h a n  

P’, denoted P’ ≤𝑃 P, if every arithmetical sentence provable in P’ is provable 

also in P. 

Hence “proof-theoretically stronger than” means simply “proves more arith-

metical sentences than”. There is a common intuition behind this and the above 

model-theoretical notion of strength: a stronger theory is one, which says more 

about the realm of the base theory. Slightly more concretely: a stronger theory is 

the one which excludes more possibilities admitted by the base theory. In the 

previous example, these “possibilities” were models of PA and truth theories 

could exclude some of them by imposing more requirements on their structure. 

In the current one, the possibilities are sentences which were left undecided by 

the base theory. Let us observe that the latter condition is no stronger than the 

former, i.e. for all P, P’ it holds that 

P’ ≤𝑀 P ⇒ P’ ≤𝑃 P. 

 
11 One can show that the two conditions are equivalent if P is finitely axiomatizable 

modulo PA, so contains only finitely many specific axioms for the predicate T. 
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Indeed, let us show the contraposition. Assume that P’ ≰𝑃 P, hence there exists 

a sentence φ ∈ ℒ such that P’ ⊢ φ but P ⊬ φ. Hence P + ¬φ is a consistent theory. 

Let (ℳ, A) ⊨ P + ¬φ. Since ¬φ is arithmetical, ℳ ⊨ ¬φ. It follows that every 

expansion of ℳ  satisfies ¬φ (because expansions leave the arithmetical part 

untouched). Hence ℳ cannot be expanded to a model of P’, because the latter 

theory proves φ. Hence there is a model of P which cannot be expanded to 

a model of P’. So, P’ ≰𝑀 P. That this is in fact a properly weaker condition, will 

be shown in the next section. 

*  *  * 

Let us briefly summarize the developments of this section. We have intro-

duced three relations, denoted ≤𝐹, ≤𝑀, ≤𝑃, such that each of them is a preorder 

on the set of axiomatic theories of truth. Each of them can be treated as an expli-

cation of the notion of “strength” of an axiomatic theory. These relations (as sets 

of ordered pairs of theories) in turn can be ordered by inclusion, giving us the 

following picture: for all P, P’ it holds that 

 P ≤F P’ ⇒ P ≤𝑀 P’ ⇒ P ≤𝑃 P’. (FMP) 

Below we shall see that each of these implications is strict. The contraposed 

picture will be useful later on: 

 P ≰P P’ ⇒ P ≰𝑀 P’ ⇒ P ≰𝐹 P’. (¬P¬M¬F) 

4. RESULTS & OPEN PROBLEMS 

In this section we present the known results about the strength of axiomatic 

truth theories introduced in Section 2. We shall proceed in the reverse order to 

the one adopted in the previous section, starting from the least restrictive notion 

of strength. Hence each next subsection can be treated as a refinement of the 

informations about strength gathered in the previous sections. 

 

4.1. Results on the Proof-Theoretical Strength 

 

Let us observe that the place of each theory P in this hierarchy is determined 

by the set of its arithmetical consequences, i.e. the set Prℒ(P) ≔ {φ ∈ ℒ  |  P ⊢ φ}. 

Let us start with saying which theories are the weakest in this sense. Since each 

of selected theories extends PA, then the least possible choice of P rℒ (P) is 

Prℒ(PA), i.e. the set of arithmetical consequences of PA.We say that such theories 

are p r o o f - t h e o r e t i c a l l y  c o n s e r v a t i v e  o v e r  PA. Determining which 

theories satisfy this criterion is one of the main research goals in axiomatic truth 

theories and the boundary separating the conservative theories from the non-
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conservative ones is called t h e  Ta r s k i  B o u n d a r y . (Łełyk, Wcisło, 2017) is 

devoted mainly to this area. 

Theorem 21. The following theories are proof-theoretically conservative over 

PA: UTB, PTB, FS− + INT(ℒ) , KF− + CONS + INTtot(ℒ𝑇). 

The conservativity of 

1. UTB is due essentially already to Tarski (1995). A proof of it is presented 

in (Halbach, 2011). 

2. PTB is due to Cieśliński (2011). 

3. FS− + INT(ℒ) is a corollary of the proof of conservativity of CT− + INT(ℒ) 

(originally by Krajewski, Kotlarski and Lachlan, 1981) and Halbach’s ob-

servation about the relation between FS and RT<ω (to be found in Halbach, 

2011). (Enayat, Łełyk & Wcisło, 2019) contains an outline of this proof. 

Note that in this theory we have INT(ℒ) and not INT(ℒ𝑇). 

4. KF− + CONS + INTtot(ℒ𝑇) is due to Cantini (1989). 

Let us observe that from Theorem 21 it follows that each of 

1. TB−, UTB−, TB, 

2. PT− (+INT(ℒ)), CT− (+INT(ℒ)), 

3. PUTB−, KF−, KF− + CONS 

is proof-theoretically conservative over PA, being a subtheory of some theory 

listed in Theorem 21 (theories in 1.—of UTB, in 2.—of FS− + INT(ℒ), in 3.—of 

KF− + CONS + INTtot(ℒ𝑇)). Since KF− + COMP is Fujimoto definable in KF− + 

CONS (as we remarked at the end of Section 3.1) it is also proof-theoretically 

conservative. 

Contemplating the above picture, one can see a common pattern: typed, dis-

quotational theories are conservative (even in the presence of full induction for 

ℒ𝑇) and so are pure (i.e. without induction axioms) untyped theories (we note 

that, however, by McGee’s trick, untyped disquotational theories can be arbitrari-

ly strong). A natural question now is: what happens to compositional theories in 

the presence of induction? Moreover, we haven’t commented the status of PUTB, 

yet. So let us start with the weakest compositional theory from our list, i.e. PT−, 

and add to it induction for ℒ𝑇 formulae from the bottom of arithmetical hierarchy 

(i.e. bounded ones). It turns out that in the presence of even so modest resources, 

axiom (NEG(ℒ)) becomes provable:12 

 
12 Let us observe that the most straightforward argument requires Π1 induction. 
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Theorem 22. (Ł., 2017) PT0 ⊢ CT0. 

Hence, it is not hard to see that actually both theories are equivalent (since 

obviously CT0 ⊢ PT0). It was one of the most important messages of (Łełyk, 

Wcisło, 2017) that CT0 is not proof-theoretically conservative over PA. Hence 

even weak compositionality together with basic induction axioms is enough to 

make the transition from the conservative to the nonconservative side of the 

Tarski Boundary. Now one can invoke standard facts known from fragments of 

arithmetic (see e.g. Hájek & Pudlák, 1993) to conclude that adding induction 

axioms to CT− for every next level of arithmetical hierarchy gives us proof-

theoretically stronger theories. 

Theorem 23 (Folklore). For every n, CTn ⪇𝑃 CTn+1 and, consequently, CTn ⪇𝑃 

CT. 

The characterization of arithmetical consequences of CTn’s and CT is due to 

Kotlarski and Ratajczyk (1990). 

The next step is obviously to consider untyped theories. Here, we also expe-

rience a significant rise in strength. Before going further it might be a good exer-

cise to go back to the definition of FS and KF and try to guess which one of them 

is capable of proving more arithmetical sentences. 

Theorem 24 (Friedman-Sheard, 1987; Halbach, 1994). CT ⪇𝑃 FS. 

The next natural question to ask is about subsystems of FS based on restrict-

ed induction. Here the answer is particularly simple: for every n, FSn is equiva-

lent to full FS. Indeed, it suffices to observe that already FS0 ⊢ FS. This is so, 

because 

FS0 ⊢ INT(ℒ𝑇), 

and INT(ℒ𝑇) is over FS− equivalent to the sentence saying “All axioms of induc-

tion for ℒ𝑇 are true”. Hence if φ is any instantiation of the axioms of induction 

for a ℒ𝑇 formula, then 

FS0 ⊢ T(⸢φ⸣). 

Then, one application of (CONEC) finishes the argument.13 In fact we con-

jecture that this can be improved.14 

 
13 We are grateful to Graham Leigh for pointing this out. 
14 We found the proof of this conjecture while preparing this paper. Since it was not 

properly verified, we leave it as a conjecture. 
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Conjecture 25. CT ⪇𝑃 FS− + INT(ℒ𝑇) + (NEC). 

Going back to what is known, let us mention that FS outstrips CT in strength 

quite significantly: it has the same arithmetical consequences as ω-iterations of 

CT (i.e. the theory RT<ω. This is a result due to Halbach [1994], see also Halbach, 

2011). 

We are left with subsystems of KF. It turns out that already a very limited in-

duction axiom is needed to go well beyond full FS: 

Theorem 26. FS ⪇𝑃 KF− + INT(ℒ𝑇). 

This is a corollary to a result of Cantini from (1989) and the already men-

tioned results due to Friedman-Sheard and Halbach. (Nicolai, 2018) gives a very 

good overview of strength of various KF-like theories. As in the case of CT, the 

arithmetical strength of fragments of KF can be read of the results on fragments 

of PA. 

Theorem 27 (Folklore). For every n, KFn ⪇𝑃 KFn+1 and, consequently, KFn ⪇𝑃 

KF.  

Moreover, it is known (by the results of Cantini [1989] and Feferman [1991]) 

that KF + CONS ≡𝑃 KF. Hence, also KF + COMP ≡𝑃 KF (by Fujimoto defina-

bility). 

The last question is: what about PUTB? Given that disquotational theories 

(UTB, PTB) so far turned out to be weak, one can guess that maybe this is also 

the case of PUTB. However, let us note that, by McGee’a trick (Theorem 14), for 

untyped disquotational theories sky is the limit: such theories can be as strong as 

possible (up to the ultimate limit of proof-theoretical strength: inconsistency). 

Quite surprisingly, already PUTB takes us very far: 

 

Theorem 28 (Halbach, 2011). KF ≤F PUTB. 

Since KF ⊢ PUTB, we also have KF ≡𝐹 PUTB (note that we are dealing here 

with Fujimoto definability). In particular, by (FMP), KF ≡𝑃 PUTB. 

Hence we have the following picture summarizing the results on the proof-

theoretical strength of theories in consideration: 

Conservative theories ⪇𝑃  PT0 = CT0 ⪇𝑃  CT1 ⪇𝑃 … ⪇𝑃  CT ⪇𝑃  FS ⪇𝑃  

KF− + INT(ℒ𝑇) ⪇𝑃 KF0 ⪇𝑃 KF1 ⪇𝑃 … ⪇𝑃 KF ≡𝑃 PUTB. 
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4.2. Results on the Model-Theoretical Strength 

 

Let us start by observing that Theorem 21 makes all the various truth theories 

mentioned in its thesis (together with theories provable in them, mentioned after 

the theorem) identical with respect to the proof-theoretical strength. It turns out 

that the model-theoretical notion of strength has the appropriate granularity to 

distinguish between (almost all of) them. The following diagram summarizes 

what we know (→ stands for ⪇𝑀, while ⇒ for ≤𝑀): 

Figure 1 

 

 

As the first comment, let us say that we do not know whether any of ⇒ is actual-

ly →. In particular, we can show that any model which expands to a model of 

CT− expands also to a model of UTB (mind the lack of “ – ”; this is a result due 

to Bartosz Wcisło from [Łełyk & Wcisło, 2017]), but we do not know whether 

this reverses. Similarly we do not know any relations between CT− and PT− + 

INT(ℒ). 

Let us now explain this diagram in slightly more details. The bottom of this 

hierarchy is occupied by theories which are model-theoretically as weak as pos-

sible: every model of PA expands to a model of PT− as discussed already in Sec-

tion 3.2. The same holds for UTB− and TB− (they are in fact both provable in PT−) 

and, by the result of Cantini (see Cantini, 1989; it was implicit already in Krip-

ke’s fixpoint construction from [Kripke, 1975]), KF− with either of COMP and 
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CONS. The theory at the second level, TB, already eliminates some models. This 

follows by the result of (independently) Engström and Cieśliński (see Łełyk 

& Wcisło, 2017 for a proof). Next two arrows are unpublished results by Bartosz 

Wcisło and the author. That PT− + INTtot(ℒ) is strictly between TB and UTB, and 

UTB is not stronger that PT− + INT(ℒ ) follows from the results of (Łełyk 

& Wcisło, 2019). The strictness of the topmost (vertical) arrow is the conse-

quence of ω-inconsistency of FS− + INT(ℒ). Moreover we conjecture that FS− is 

model-theoretically incomparable with PT− + INT(ℒ). 

 

4.3. Results on Fujimoto Definability 

 

Now, we show that most of theories which turned out to be equivalent using 

two previous notions of strength, can now be distinguished using Fujimoto de-

finability. We shall use the structural properties of Fujimoto definability. 

Proposition 29. TB− ⪇𝐹 UTB− ⪇𝐹 PT− ⪇𝐹 KF− 

P r o o f . In all the cases ≤𝐹 follows straightforwardly, since the theory to the left 

is always provable in its right neighbour. To prove ≱𝐹 we look at inductive ver-

sions of the above theories and observe that 

TB ≱𝐹 UTB ≱𝐹 PT ≱𝐹 KF. 

The first ≱𝐹 follows from the fact that TB ≱𝑀 UTB, as noted in Section 4.2. 

The next two follows from the proof-theoretical strength of respective theories: 

we have 

UTB ≱𝑃  PT ≱𝑃 KF. 

(We used the fact that PT = CT). 

There are two more truth theories which are mentioned at the bottom of the 

diagram from the previous section: KF− + CONS and KF− + COMP. As we have 

already seen they are Fujimoto equivalent. The problem whether each of them is 

Fujimoto definable in KF alone is open. 

To end this section we would like to give some example contrasting Fujimoto 

definability with the previous two notions. Let us recall that we have 

PTB ≤𝑀 PT− + INT(ℒ), and UTB ≤𝑀 CT−. 

In contrast, neither of the inequalities holds for Fujimoto definability (in fact 

in the first case we have an even stronger negative result): 

PTB ≰𝐹 CT and UTB ≰𝐹 CT−. 



 COMPARING AXIOMATIC THEORIES OF TRUTH 285 

 

 

Both results are yet unpublished: the second one is due to Albert Visser, while 

the first one is our observation. 

5. SUMMARY 

The main aim of our paper was to present three formal tools for comparing 

various axiomatic theories of truth. In Section 2 we aimed at showing that there 

are indeed many different approaches to defining a set of axioms for the notion 

of truth. In Section 3 we introduced three different “measures of strength” of 

axiomatic theories of truth, i.e. three reflexive and transitive relations (preorders) 

on the set of axiomatic theories of truth. We have explained the intuition behind 

each of them. The three relations were called (from the most fine-grained to the 

coarsest): Fujimoto definability, model-theoretical strength, proof-theoretical 

strength. Then in the last section we described how they order the truth theories 

introduced in Section 2. We observed that theories made equivalent by the coars-

er relation can be strictly ordered by the next one. 
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