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DOES SCIENCE PROGRESS TOWARDS EVER 
HIGHER SOLVABILITY THROUGH FEEDBACKS 

BETWEEN INSIGHTS AND ROUTINES?

S U M M A R Y : The affirmative answer to the title question is justified in two 

ways: logical and empirical. (1) The logical justification is due to Gödel’s 

discovery (1931) that in any axiomatic formalized theory, having at least the 

expressive power of PA (Peano Arithmetic), at any stage of development there 

must appear unsolvable problems. However, some of them become solvable 

in a further development of the theory in question, owing to subsequent 

investigations. These lead to new concepts, expressed with additional axioms 

or rules. Owing to the so-amplified axiomatic basis, new routine procedures 

like algorithms, can be reached. Those, in turn, help to gain new insights 

which lead to still more powerful axioms, and consequently again to ampler 

algorithmic resources. Thus scientific progress proceeds to an ever higher 

scope of solvability. (2) The existence of such feedback cycles – in a formal 

way rendered with Turing’s systems of logic based on ordinal (1939) – gets 

empirically supported by the history of mathematics and other exact sciences. 

An instructive instance of such a process is found in the history of the number 

zero. Without that insight due to some ancient Hindu mathematicians there 

could not arise such an axiomatic theory as PA. It defines the algorithms of 

arithmetical operations, which in turn help intuitions; those, in turn, give 

rise to algorithmic routines, not available in any of the previous phases of 

the process in question. While the logical substantiation of the point of this 

essay is a well-established result of logico-semantic inquiries, its empirical 
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claim, based on historical evidences, remains open for discussion. Hence the 

author’s intention to address philosophers and historians of science, and to 

encourage their critical responses.

K E Y  W O R D S : Algorithm, arithmetic, axiom, axiomatic formalized theory, 

concept, decidability, feedback, insight (intuition), mathematics, mechanism, 

mentalism, oracle, problem, problem-solving, progress, routine procedure, 

science, solvability.

INTRODUCTION: ON THE DEBATE BETWEEN EXTREME MECHANISM 
AND BALANCED MENTALISM

Albert Einstein is reported to have once said: “if you gave me an 

hour to solve a problem, I would use the first 55 minutes to consider 

if it is the right problem.”

0.1. The existence of the hot debate of a problem as a warrant of its 
non-triviality

Does this essay’s title express the right problem? The anecdote 

does not say what criteria of being the right problem Einstein might 

have in mind. However, it does not seem risky to assume the follow-

ing conditions. (1) The solution is not trivial, i.e., it requires research. 

(2) The problem in question is likely to be solved with the available 

means of research.

That our title question is not trivial is evident from its being the 

focus of the unsettled debate between two opposing approaches to Ar-

tificial Intelligence systems.

One of them claims the following. An AI system is able to imitate 

natural human intelligence, as in some important cases it produces 

identical solutions, but in a way essentially different from that char-

acteristic of the human mind. To wit, AI systems proceed in a purely 

routine way, while the typically human process of problem-solving 

consists in mutual interactions between creative insights and pro-

grammed routines. This approach deserves to be named balanced 
mentalism, as focussing on a balance between mental insights and ro-

bot-like routines. Insights, that is, c rea t ive  conceptua l i za t ions , 

are the source of routines, and those, in turn, facilitate new creative 

conceptualizations (cp. 5.2).
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To evidence such a feedback, as well as the nature of conceptual 

creativity, let us consider the discovery of the number zero by Hindu 

mathematicians, more than a thousand years ago. The creation of this 

concept was a deep and penetrative insight into the realm of arith-

metic, leading to the positional notation of numbers. This story nicely 

exemplifies the feedback between insights and routines, that is, me-

chanical procedures in performing various tasks: in particular, prob-

lem-solving. Owing to the positional notation based on zero, it was 

possible to create algorithms for arithmetical operations: addition, 

multiplication, etc.; a special role is played by binary notation, neces-

sary for the functioning of digital electronic computers.

According to the opposite approach, the way of producing 

a requested solution is exactly like that in the case of natural human 

intelligence. To wit, in both cases the process of problem-solving is 

a mechanical (i.e., algorithmic) routine. Humans are proud of their 

creativity, but in fact that alleged creativity is a mechanical process, 

whose mechanism is still unknown. However, it should be discovered 

owing to future, more advanced, inquiries into the enormous 

complexity of the human brain. Let this approach be called extreme 
mechanism.

The said adjectives will be, for brevity, omitted in what follows, if 

not needed in the given context. Now we have a hint that our title 

question is not trivial, since it reflects a real mind-philosophical con-

troversy between mentalism and mechanism.

To define both options in more detail, let us notice the following. 

Mechanism is the claim that (i) the human mind is identical with the 

human brain, and (ii) the latter is equivalent to the Universal Turing 

Machine (UMT) as defined in Turing’s study (1936). In both cases – it 

is assumed – any successful problem solving is an a lgor i thmic  pro-

cedure ; it is convenient to call it a routine. The extremity of this kind 

of mechanism consists in its being extremely categorical; the adjective 

stresses the fact that followers of mechanism regard their view as un-

reservedly rational and scientific, and without any compromise with 

mentalism.

Mentalism claims that at least one member of the above conjunc-

tion has to be false. This follows from the fact that the extent of fitting 

and fruitful solutions produced by the human mind is essentially 

ampler than that possible to UMT. Mentalism would be extreme if 
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asserted that mental acts alone suffice to solve logical and mathemat-

ical problems, without any need of resorting to routines, i.e., purely 

mechanical procedures; the admittance of such procedures makes it 

a moderate approach.

0.2. On the odds that the mechanism-mentalism contention 
can be solved in the present state of science

Let us dwell a while on the second feature of the right problem, 

that of solvability: the problem in question should be likely to be 

solved with the available means of research. This postulate is relevant 

to the argumentative strategy adopted in this essay. The essay is 

meant as a contribution to the controversy between mechanism and 

mentalism, a contribution based on some metamathematical results. 

In this respect it is like Webb’s book (1980) which bears the infor-

mative title Mechanism, Mentalism, and Metamathematics. I make use of 

the same terms to express the opposite stance, to wit, the balanced 

mentalism.

It is not possible to present Webb’s extensive argumentation, 

and offer convincing counterarguments, within the size limits of the 

present paper. Instead, I focus on some possible philosophical and se-

mantical foundations of mechanism which preceded in time the meta-

mathematical problems and results of Hilbert (1928), Gödel (1931, 

1936), and Turing (1936, 1939).

Moreover, I regard it as pertinent to preserve a kind of symmetry, 

to wit, to consider as an opponent of mentalism somebody as 

renowned and influential as the three mentioned authors, and, like 

them, engaged in the issues of philosophy of mathematics and logic, 

philosophy of mind, and semantics.

Having this in mind, the best possible choice seems to be Ludwig 

Wittgenstein as the author of Tractatus Logico-Philosophicus (1922) 

considered in the context of related views, such as Russell’s logical 

atomism and the Vienna Circles project of unified science (supported 

by mechanist assumptions).

The sequence of discussion is motivated by the fact that Gödel’s 

balanced mentalism, corresponding in a way with Hilbert’s and 

Turing’s problems, requires a more extensive presentation than the 

aphoristic utterances of Wittgenstein. With the conceptual apparatus 
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of Gödel and Turing, e.g. the concept of decidability, it is easier to in-

terpret some of Wittgenstein’s maxims which, without such an aid, 

sound rather mysterious.

It is in order to briefly explain the title phrase “ever higher solv-

ability”. It is to mean the following. Within a definite period of time, at 

every stage of scientific development the means and methods of prob-

lem-solving become more numerous and exact than at any preceding 

stage. The proviso “within a definite period of time” follows from our 

knowledge about some past periods. For instance, in physics, the be-

ginning of the period of increasing solvability may be dated only after 

the entrance on the scene of history of Copernicus and Galileo. In 

logic, the intense increase of solvability starts from the axiomatic and 

formalized system of logic rendered in a precise symbolic language by 

Frege (1879).

The notion of higher solvability can be applied as well to the solv-

ability of the contention between mechanism and mentalism. Accord-

ing to the present author, after Gödel’s and Turing’s discoveries, the 

degree of solvability is higher than in the period of Wittgenstein, and 

proves to be in favour of balanced mentalism. However, there are 

authors who claim that recent results in Artificial Intelligence, neu-

rology, robotics, etc. yield evidence in favour of mechanism, even the 

extreme. Weak points, if there are any, in Wittgenstein’s mechanist 

stance, do not seem to them relevant in the present advanced state of 

scientific knowledge. If they are ready to defend mechanism on that 

or another basis, such a rejoinder will be welcomed by the present 

defender of balanced mentalism.

1. GÖDEL’S DYNAMIC VISION OF EVER ADVANCING 
FRONTIERS OF SOLVABILITY

1.1. Gödel’s incompleteness theorem in the light of the opposition: 
“frontier” vs “limit”

There is in English a suggestive distinction between the concepts 

of frontier and limit. Though fairly subtle, it is thought-provoking, and 

crucial for the present discussion. To realize its role, let us look into 

dictionaries.
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 Limit: the point, edge, or line beyond which something ends, may 

not go, or is not allowed.

 Frontier: 1. A region just beyond or at the edge of a settled area. 

2. An unexploited so far area for discovery or research.

In the latter definition, the second meaning belongs to the vocab-

ulary of academic communities, while the first, which gave origin to 

the second, is taken from the idiom of the American pioneers. These 

with their drive, bravely overcame the limits of their hitherto exploit-

ed lands, pushing the frontiers of their estates more and more to the 

West.

This linguistic phenomenon in English lexis helps us to more pre-

cisely render the philosophical significance of Gödel’s incompleteness 

theorem. People are accustomed to saying that Gödel discovered the 

limits of solvability of mathematical theories; but, instead, it should 

be said that he discovered the frontiers of solvability. That is to say, he 

drew the critical line to mark a limit of algorithmic procedures, and 

devised the strategy of its overcoming in the march towards new lands 

of mathematical truths.

New entities are first grasped through wordless insights, then 

named, and defined in axiomatic manner. If the theory in question 

is not only axiomatized (like Euclid’s geometry), but also formalized 

(like Hilbert’s geometry), then we can obtain algorithms for auto-

mated proving (provers) and for automated checking of handmade 

proofs (checkers).

As new concepts are introduced into a theory, and then axioma-

tized and formalized, the scope of its algorithmic solvability becomes 

ampler. Gödel (1936) gave a classic example of such a process. His 

approach consists in considering an infinite sequence of arithmetical 

theories – such that for every theory there is a theory having a greater 

scope of solvability, due to some conceptual innovations, to wit, intro-

ducing more and more abstract concepts of set.

Before addressing this approach in greater detail, it is in order to 

consider the method of attaining new concepts. It is the attainment 

which does not need any resort to the concepts which already exist in 

the given theory.

In the following subsection 1.2, after mentioning the axiomatic 

method of introducing new ideas, we are to deal with the axiom of 
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comprehension to introduce the notion of abstract set. This concept is 

presupposed in Gödel’s example of amplifying the range of solvabili-

ty, and pushing the frontiers of mathematics. This is why we ought to 

devote special attention to that formula. 

1.2. On the idea of set as introduced by the axiom of comprehension

There is a key difference between introducing new expressions 

and introducing new concepts. The former is not bound to create 

a conceptual novelty; a new expression may express with new words 

an old concept, one that already exists in our language. In such a case, 

we introduce the new expression for the sake of convenience, as 

shorter, having desirable associations, etc. Such a job is done by normal 
definitions. They should satisfy the conditions of eliminability and of 

non-creativity; this implies that there is no increase in the amount of 

information.

In order to introduce a new concept, i.e., one carrying new infor-

mation, and so giving us a chance of solving problems hitherto insolv-

able, we use meaning postulates. These are creative, to enable answer-

ing questions, hitherto unanswerable. There are two kinds of meaning 

postulates: operational definitions in empirical theories, and axiomat-

ic definitions in deductive theories.1

At the very start of the discourse on sets, it is in order to explain that 

the term set will be here used interchangeably with class, as meaning 

exactly the same. In some systems of set theory these two forms are 

employed to distinguish two kinds of multitudes. That practice is jus-

tified by some theoretical needs, but in the present discussion such so-

phistication is not needed; the use of one or the other name will be 

motivated purely by stylistic convenience.

The formula to introduce the concept of set is standardly called the 

axiom of comprehension. Some other names are also in use. Among them 

axiom of abstraction. This is even more telling than the standard term, 

since it defines the abstract concept of set, and occurs in the phrases 

“abstraction class” and “definition by abstraction”. However, to make 

referring to literature easier, I am to follow the standard version, la-

1 More on this subject: Marciszewski (1981), see especially “Definition” pp. 86–96, 
Sections 2.2ff, 4.3 and 5.3.
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belling it “UC” for “Unrestricted Comprehension” (the sense of the 

adjective – explained below).

The axiom reads: There exists a set y whose members (represented by x) are 
precisely those objects that satisfy the condition φ.

Strictly speaking, it is not a concrete single axiom, but what is called 

“axiom schema” since φ represents infinitely many formulas which 

could be substituted for this variable. In symbols the axiom reads as 

follows: 

UC:  ∀x∃y (x ∊ y ⇔ φ(x))

The set whose existence is so postulated is named an abstraction 
class. In logical notation it reads {x: φ(x)} to mean: the class of entities 

which satisfy the condition φ(x). 

UC was used, in the early days of mathematical logic, as the basis 

of “naive” set theory, that is, the one being developed before a strict 

axiomatization has been devised. This formula should be used cau-

tiously since in some substitutions for φ it leads to Russell’s paradox. 

To avoid that antinomy, relevant restrictions have been added. In that 

restricted form the axiom entered the axiomatic set theory of Zermelo 

and Fraenkel, labelled ZF, or ZFC (“C” for axiom of Choice, if added 

to ZF).

In order to distinguish the original simple version from that re-

stricted one adopted in ZFC, the former has been called the “unre-

stricted comprehension axiom”. In the present discourse those re-

strictions are not necessary, hence it is UC which will be referred to.2 

1.3. The increase of the scope of solvability owing to the axiom 
of comprehension

The axiom schema UC can produce an infinite sequence of sets of 

ever higher order. The greater the order of a language, the higher the 

degree of solvability possessed by theories expressible in that language. 

2 See https://en.wikipedia.org/wiki/Axiom_schema_of_specification. This arti-
cle is an extensive account on the forms and history of this axiom. There is in it 
the thought-provoking remark that the remaining ZFC axioms became necessary 
to make up for some of what was lost by changing the axiom schema of unrestrict-
ed comprehension into the restricted one (called also the axiom of specification).
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The order of a set, likewise the order of the respective language, is 

characterized as follows.

Let x range over individuals, labelled as entities of order zero, and 

y range over sets-of-individuals, hence entities of order one. 

UC1:  ∀x∃y (x ∊ y ⇔ φ(x))

Now, let x range over sets-of-individuals (entities of order one), 

and y over classes-of-sets-of-individuals, these classes being entities of 

order two. 

UC2:  ∀x∃y (x ∊ y ⇔ ψ(x))

Next comes UC3 to define sets of the third order: the class-of-class-

es-of-sets-of-individuals. And so on, up to infinity.

The notion of set as defined by UC1 is a conceptual innovation 

with respect to the notion of an individual. Another notion of set, that 

defined by UC2 is a conceptual innovation with respect to the notion 

of a set of individuals, etc., so we deal with an infinity of conceptual in-

novations.

This results in another infinity of conceptual innovations, to wit, in-

finitely many concepts of the quantifier. The symbol ∀x when in UC1 

it ranges over individuals means something other than in the case of 

ranging over sets of individuals, as in UC2. And so on.

Such an ordering of sets and quantifiers determines the order of 

languages. The sentence “this is my pair of shoes” belongs to sec-

ond-order English, for the term “pair” denotes a set. The saying “in 

this store we have a set of 100 pairs of black shoes” belongs to third-or-

der English.3

The language of a logical theory which contains only the quantifi-

ers of first order, is said to be the first-order language. In the case of 

quantifiers of at most second order, we are dealing with a second-or-

der language, and so on.

3 This should be considered by nominalists who try to discourage us from any 
confidence in set theory; let they try to get rid of higher-order phrases in ordinary 
languages.
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Thus, being familiar with the infinite ladder of orders, we are ready 

to appreciate the significance of Gödel’s statement in his communiqué 
Über die Länge von Beweisen (1936), that is, On the length of proofs. The 

main point runs as follows (translated from the German):

Thus, passing to the logic of the next higher order has the effect, not only of 

making provable certain propositions that were not provable before, but also 

of making it possible to shorten, by an extraordinary amount, infinitely many 

of the proofs already available (Gödel, 1986, p. 397).

This assertion was neither demonstrated nor exemplified by Gödel 

himself. This was done by other authors some years later.4

1.4. The endless evolution of mathematics having its source 
in the inexhaustibility of the world of sets (Gibbs Lecture)

The unbounded openness of mathematical language, exemplified 

by Gödel (1936) with the case of number theory, was considered by 

him more extensively a dozen years later in the famous Gibbs Lecture. 
In this case, the idea of infinite sequences of axiomatic systems, was 

extended onto the problem of axiomatizing set theory.

If one attacks this problem, the result is quite different from what one 

would have expected. Instead of ending up with a finite number of axioms, 

as in geometry, one is faced with an infinite series of axioms, which can be 

extended further and further, without any end and, apparently, without any 

possibility of composing all these axioms in a finite rule producing them. You 

will realize, I think, that we are still not at the end, nor can there ever be an 

end to this procedure of forming the axioms, because the very formulation 

of the axioms up to a certain stage gives rise to the next axiom (Gödel, 1995, 

pp. 306–7).

The existence of such infinite chains of axiomatic systems, con-

sidered both in the paper (1936) and in the Gibbs Lecture, Gödel 

inferred from the principle of inexhaustibility of objective mathematics. And 

that, in turn, he conceived as a consequence of his incompleteness 

theorem. It entails the existence of an infinite domain of mathemat-

ical facts which cannot be matched by the set of axioms at any stage 

4 S. R. Buss (1994) produced a detailed proof, while George Boolos offered 
a nice exemplification in the seminal study A Curious Inference (1987). A comment 
on Boolos’s contribution in found in Marciszewski (2006).
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of development of mathematical knowledge, called by him subjective 
mathematics.

It should be noted that there is a difference between the endless 

producing of new axioms in set theory and in number theory. Let us 

consider Gödel’s saying about set-theoretical axioms, that they grow 

to infinity “apparently, without any possibility of composing all these 

axioms in a finite rule producing them” (see the quotation above).

In the case of number theory, as treated by Gödel (1936), there is 

an obvious way of obtaining new systems of axioms: to add quantifi-

ers of the next higher order to those already existing. This is a simple 

finite rule of producing an ordered sequence converging to infinity.

This makes a difference from set theory as to the kind and degree 

of conceptual inventiveness. In the case of order degrees in number 

theory, it is enough to have an intuition concerning the existence of 

set orders, as entailed by the axiom schema of comprehension. This 

intuition gives rise to the rule of obtaining new axioms of ever higher 

order. These new ones are, in a sense, not innovative: each next 

element of the sequence is new, but produced according to the same 

general instruction.

With the theory of sets – says Gödel – it is different. Any progress in 

winning its more powerful axiomatization requires a new insight. For 

instance, Gödel hoped that in the future indubitable axioms would be 

found to decide the continuum hypothesis, owing to the deeper intu-

itions likely to arise in the meantime.

However, inventive insights are no infallible revelations. In the 

progress of science it is necessary to make steps forward, but not always 

are they steps in the intended direction. If not, a step backwards may 

prove necessary in order to look for a better solution: even in mathe-

matics, as was emphasized by Gödel in the question about the possible 

future fate of the continuum hypothesis.

Such a vision of science – sometimes erring, never ending, and 

ever marching forward – is characteristic of our current philosophy of 

science. To get a deeper understanding of this new landscape, let us 

have a look into a time in which the nature of science was conceived in 

a way deeply different from that of ours.
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2. THE FAREWELL OF MODERN SCIENCE TO THE MODELS 
OF OMNISCIENT DAEMONS

2.1. A kinship between the daemons of Laplace and Hilbert. 
The rise and fall of their careers

Everybody must have heard of the daemon imagined by Pierre 

Laplace (1749–1827), while nobody speaks of a similar entity consid-

ered by David Hilbert (1862–1943). Nevertheless, Hilbert’s daemon 

does exist as a hypothetical imaginary being. These two daemons are 

alike in their rise and fall.5

Laplace’s determinism in physics is personified by the omniscient 

daemon. Suppose, he knows the precise location, momentum and 

history of every atom in the universe. Then he can compute, on the basis 

of classical mechanics, the past and the future of the whole universe.

Hilbert entertained the notion of a universal algorithm solving 

computationally any mathematical problem encountered, thus being 

like an omniscient daemon in the universe of mathematics. The very 

term “compute” hints at the kinship of the said concepts. In some 

recent publications, e.g., in Rukavicka’s (2014) paper, one disproves 

Laplace’s demon using Turing machines. Turing, on the same basis 

(an abstract machine), refuted Hilbert’s programme. No wonder, since 

what both daemons have in common, is cognitive maximalism: each 

of them can solve each problem concerning his universe: the physical 

universe in Laplaces’s case, and the mathematical in Hilbert’s. Here is 

Laplace’s statement about his daemon’s problem-solving power.6

We may regard the present state of the universe as the effect of its past and 

the cause of its future. An intellect which at a certain moment would know all 

forces that set nature in motion, and all positions of all items of which nature is 

composed, if this intellect were also vast enough to submit these data to analy-

sis, it would embrace in a single formula the movements of the greatest bodies 

of the universe and those of the tiniest atom; for such an intellect nothing 

would be uncertain and the future just like the past would be present before 

its eyes (Laplace, 1951, p. 4).

5 The idea of telling the history of science in terms of daemons is borrowed 
from Webb (1980).

6 The quotation which follows is taken from the Wikipedia article “Laplace’s 
demon”.
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Hilbert’s daemon is to be understood as a perfect, infallible mind 

which is omniscient in the realm of mathematics. This philosophical 

description is equivalent to the technical formulation of what Hilbert 

called Entscheidungsproblem. It runs as follows:

[A] The decision problem gets solved if one knows a procedure which for a gi-

ven logical expression allows one to decide, with finitely many steps, about its 

validity or its satisfiability. 

[B] The solution of this decision problem has a fundamental impact for all 

those theories whose statements are capable of being logically derived from 

finitely many axioms (Hilbert, Ackermann, 1928, p. 73).7 

The phrase “capable of being logically derived from finitely many 

axioms” means: solvable by a mechanical procedure with the use a formalized 
system of predicate logic, e.g. the system devised by Hilbert and Acker-

mann in their textbook. Hence, no intellectual insight, no conceptual 

inventiveness, is needed. An insight may come or not, while the algo-

rithm in question would always be at hand to bring forth the needed 

infallible solution.

These two visions of cognitive maximalism, Laplace’s and Hilbert’s, 

were anticipated by Leibniz. With Leibniz this vision included the 

computational solvability even of metaphysical and theological ques-

tions. Such an excessive optimism must have proved unrealistic, nev-

ertheless it has been very fertile. Frege’s ingenious system of logic was 

inspired by Leibniz’s visions and projects, such as those in his famous 

text:

If this is done [i.e., an ideal algorithmic language is devised], whenever contro-

versies arise, there will be no more need for arguing among two philosophers 

than among two mathematicians. For it will suffice to take the pens into the 

hand and to sit down by the abacus, saying to each other (and if they wish also 

to a friend called for help): Let us calculate! (Lenzen, 2004, p. 1)8.

7 Translated from German and divided into parts by W. M.
8 Here is the Latin original of 1684 (cf. Gerhardt, 1890, p. 200), translated 

by Lenzen (2004, p. 1): “Quo facto, quando orientur controversiae, non magis 
disputatione opus erit inter duos philosophos, quam inter duos Computistas. Suf-
ficiet enim calamos in manus sumere sedereque ad abacos, et sibi mutuo (accito si 
placet amico) dicere: calculemus.” For an illuminating comment to this text, see 
Benzmüller (2017).
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Frege could succeed, while Leibniz could not. Why? Frege’s 

language of logic was preceded by an intense development of the lin-

guistic practice of mathematicians. In this practice appeared individu-

al variables, quantifiers, and higher-order formulas (e.g. in the princi-

ple of complete induction).

Due to Frege’s achievements, it was possible for Hilbert and his col-

laborators to create a perfectly formalized language, liable to mecha-

nization. Just with respect to such a precise language the Entscheidung-
sproblem could be stated, and Turing could address this problem in his 

study (1936) on computability.

As for the fates of daemons narrated in this story, they were differ-

ent in the two cases. The downfall of Laplace’s daemon was sealed by 

the achievements of modern physics, including quantum indetermi-

nacy; and, additionally, by the computational arguments mentioned 

above (Rukavicka, 2014).

As for Hilbert’s daemon, the story is more involved. Let us look 

deeper into its context and significance.

2.2. Why Hilbert’s daemon had to fail?

Hilbert’s key declaration on Entscheidungsproblem concerns solv-

ability in terms of either “yes” or “not” – as answers to the question 

whether a formula of logic is valid, or whether it is satisfiable. Hilbert 

(1928) meant here first-order predicate logic. The quoted sentence 

is found in the section “The decision problem in predicate logic, and 

its significance”, where limitation to the first order is rendered by the 

title of the chapter in which this section is included; it reads “The 

First-Order Predicate Logic” – FOL, for short.

In spite of such a limitation, it is said in part B that the solution 

of the decision problem has a fundamental significance for all those 

theories whose statements are capable of being formalized, that is, 

“logically derived from finitely many axioms.” This condition is satis-

fied by all mathematical theories, and even more: by all those theories 

outside mathematics which can be formalized; even philosophical 

ones, as dreamt of by Leibniz (see footnote 8 in 2.1), and attempted 

by Gödel (Benzmüller, 2013, 2015).

To appreciate the economy of linguistic means in FOL, let us notice 

that only four primitive logical constants suffice to express all possible 
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formulas of FOL: these can be – as in Frege – the symbols of negation 

and implication, and one (arbitrary) quantifier; plus, the equality sign. 

The rest of the logical constants can be defined in terms of these prim-

itives. If the set-theoretical symbol of membership (∈) is added, then 

in the language based on them one can express all the concepts and 

theorems of mathematics.

A language enjoying such great expressive power is close, in some 

degree to Leibniz’s vision of scientia uiversalis in his text De scientia 
universali seu calculo philosophico. This closeness explains what Leib-

niz’s inspiration meant for Frege; this can be seen in Frege’s study 

(1880–1881).9

Hilbert, appreciating the great expressive power of Fregean logic, 

hoped it would suffice to grant the deductive completeness to arithmetic. 

Its axiomatization by Peano and formalization in Hilbert’s manner, 

provided decidability of logic, should yield a procedure of mechanical 

checking validity of any arithmetical proof.

The adjective “deductive” in the phrase “deductive complete-

ness” means deduction with the use of strictly formal rules, that is, 

rules referring only to the physical form of expressions, not to their 

meaning.10

Only such “physicalism” can ensure the mechanical character of 

deduction which would make it possible for a machine to produce al-

gorithmic proofs. Gödel’s incompleteness theorem is to the effect that 

some arithmetical truths cannot by proved in such a mechanical way, 

hence logic cannot provide a universal algorithm to prove every arith-

metical truth, as expected in Hilbert’s project. However, this project 

could be revived in the more modest and realistic form to be discussed 

in the next section.

9 See in Frege (1973) where exact bibliographical data about Leibniz’s text are 
also found.

10 The nature of formal rules can be better understood against the contras-
tive background of non-formal rules of proof, referring not to linguistic forms 
but to mental operations. Such are found, e.g., in Descartes’ treatise Regulae 
ad directionem ingenii. See https://en.wikipedia.org/wiki/Rules_for_the_Direction_
of_the_Mind.
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3. TOWARDS UNIVERSAL LOGIC AS AN INFINITE SEQUENCE 
OF EVER STRONGER MACHINES

3.1. A computational perspective on developing logic towards ever 
greater deductive potential

Imagine somebody who plans to build a universal plant to produce 

all possible commodities which may be wanted presently and at any 

moment of the future. On the other hand, his colleague, in a more 

realistic mood, entertains another vision of universality. He will grad-

ually exploit his resources: establishing first plants to produce what 

is currently needed, and then ones taking into account newly arising 

demands.

This parable is to reflect two approaches to logic as the universal 

tool of problem-solving. According to Hilbert, it was to be the classical 

predicate logic whose deductive potential would be sufficient to meet 

any problems that may arise in axiomatized formal theories, especial-

ly in mathematics. The undecidability of predicate logic, demonstrat-

ed by Turing (1936) and Church (1936), puts an end to such expecta-

tions. Let us look for an alternative.

The theoretical justification of an alternative has been given by 

Turing (1939) with the idea of oracles (see 5). Conceptual insights 

as to the choice of theories able to function as oracles are owed 

to other researchers. Such choices are motivated by the quest for 

logical devices needed in the research in question to solve its specific 

problems.

Such a strategy of “piecemeal engineering” (to use Popper’s phrase) 

is necessary in the face of Gödel’s and Turing’s results; in particu-

lar, Turing’s (1936) discovery that there are uncomputable functions 

whose values cannot be found by any existing Turing machine. Facing 

this fact, Turing (1939) considered non-mechanical devices – oracles 
(as he called them), each of them able to find values of a certain un-

computable function.

Following the interpretation given by Newman, Hodges (2013), 

and Turing himself (see 5.1), being an oracle can be understood as an 

ability of having insights which result in new concepts, and those in 

new axioms. New axioms increase the deductive potential of a theory, 

and thus solve problems having been hitherto unsolvable.
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Let us compare this strategy and its theoretical justification with 

Hilbert’s vision of a universal problem-solver, as quoted in 2.1. Ac-

cording to Hilbert, the universal machine would be capable of solving 

problems in any axiomatizable theory in which logical derivation 

would be performed as a mechanical procedure. At the background 

of this failed project, Turing’s alternative strategy of “piecemeal en-

gineering”, seems worth considering. Among its representatives, an 

eminent role is played by Christoph Benzmüller. He writes the fol-

lowing:

[What this author proposes] utilises classical higher-order logic (HOL) as 

a unifying meta-logic in which (the syntax and semantics) of varying other 

logics can be explicitly modelled and flexibly combined. Off-the-shelf high-

er-order interactive and automated theorem provers can then be employed 

to reason about and within the shallowly embedded logics. This way Leibniz 

vision can (at least partially) be realised (Benzmüller, 2017).

Thus the decisive step towards universal logic consists in overcom-

ing the limits of FOL and passing to higher order logics, in accordance 

with Gödel’s (1936) statement, as quoted above (in 1.3). Another es-

sential move lies in absorbing modal logics, conditional logics, logics of 

time and space, provability logics, multivalued logics, and free logics, 

to name just a few examples (Benzmüller, 2017, sec. 3).

Such might be a list of prospective constituents of a universal logic, 

as a modern, realistic accomplishment of Leibniz’s dream. However, 

this listing reveals a serious difficulty of the enterprise. Besides FOL, 

almost each item is debatable from one or another philosophical point 

of view. If so: what strategy should we adopt in our tending toward 

the universal logic, and tending as well towards its common accep-

tance by the world of learning?

The strategy of continuing eternal philosophical debates seems 

least promising. More encouraging are two other approaches, very 

different from each other, but in a sense complementary. To wit, 

(i) an appeal to common sense being expressed in our ordinary 

language, and (ii) arguing from computational efficiency. This 

twofold approach has been tried in the literature with respect to the 

second-order logic. 
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3.2. Some cases of competition on the issue of solvability between 
FOL and higher-order logics, and between humans and machines

A discussion leading to a greater appreciation of higher-order 

logics was initiated by George Boolos (1987) with an article entitled 

A Curious Inference. The inference deals with a theorem of arithmetic 

whose oddity consists in an ineffable difference between the length of 

a formalized proof in FOL and a proof in 2nd-order logic. The latter 

occupies ca. two pages of print, while the former – as Boolos calculat-

ed – would require more symbols than the number of elementary par-

ticles in the universe.

Commenting on that fact, Boolos remarks that the property of 

being a higher-order language is omnipresent in our everyday speech, 

without any possibility of expelling it from the ordinary language. 

Boolos does not dwell on examples, but it is easy to find some. Consider 

the statement of the following fact: “In the population of this village 

there are ten married couples, each having three children.”

This message does not presuppose any mysterious metaphysics for 

which nominalists blame higher-order expressions. It is easy to para-

phrase this sentence in a mixed idiom in which set-theoretical terms 

would be inserted into ordinary language, as in the following utter-

ance: “In the set of classes of the given village inhabitants there is 

the class of ten married couples, each of them being in the parental 

relation to three children.”

In the present discussion it is a rather auxiliary argument, of the 

ad hominem type, addressed mainly to nominalists. These, e.g. Tadeusz 

Kotarbiński and his followers, try to defend their position by recourse 

to ordinary language as representing, according to them, common 

sense, claiming that its grammar does not surpass the limits of the 

first-order language. If so, let them try to paraphrase in FOL the 

above-quoted sentence, in order to eliminate names of sets, as “popu-

lation”, “couple” “ten-element set of pairs”, “three children”.

From a scientific point of view, more significant is another way of 

testing the utility of higher-order languages. It is nicely exemplified 

through an experiment described by Benzmüller and Brown (2007) 

in their extensive report: The Curious Inference of Boolos in Mizar and 
OMEGA. Both Mizar and OMEGA are proof assistants, called also 

checkers. That is, computer programs devised to check the correct-
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ness of proofs in mathematics (but applicable also in other areas). The 

former requires proofs written in the language of set theory, the latter 

– of second-order logic. In either case the printout of the checked 

proof occupies ca. 50 pages.

It is reasonable to suppose that the difference between the sec-

ond-order printout and the first-order printout is comparable with 

the difference between their handmade counterparts. And that, ac-

cording to Boolos’s calculation (concerning his case) is like that 

between several thousand symbols of the 2nd-order version and more 

than 1086 symbols in the 1st-order version. Boolos estimates that in 

the latter case there would be more symbols than the number of ele-

mentary particles in the visible universe, and that amounts to roughly 

1086 elements.

The moral to be drawn from such speculations is the following. 

Attempts to use only FOL in mechanized proofs are doomed to failure 

like analogous attempts at using FOL in some handmade formalized 

proofs. The proof discussed by Boolos in its non-formalized form 

requires several lines, i.e., a small fraction of a page, while Andrew 

Wiles’s (1995) non-formalized proof of Fermat’s theorem (see 4) 

requires much more than a hundred pages of manuscript.

This makes us aware of the enormous complexity (measured by 

the length) of Wiles’s proof in its present non-formalized garb. Thus, 

we become faced with the phenomenon of the unimaginably higher 

complexity of the same proof, were it to be formalized according to 

the requirements of mechanized processing, either by a prover or by 

a checker. 

Compare this question with the illuminating story of Boolos’s 

(1987) “Curious Inference”, as sketched in the present subsection. 

Boolos’s case hints at the rapidly growing length (hence complexity) 

of a proof, when passing from a non-formalized (intuitive) to a for-

malized approach. Would such a complexity be tractable with the re-

sources of computer memory and time currently available? This is 

a challenge to be met by competent researchers, especially those who 

intensely avail themselves of checkers in creating databases of formal-

ized mathematical theories.
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4. RELATIVE SOLVABILITY, ALGORITHMIC AND INTUITIVE. 
MORALS TO BE DRAWN FROM THE SUCCESS IN PROVING 

FERMAT’S THEOREM 

Let us consider, as the motto of this section, the following state-

ment.

Formal [i.e., algorithmic] decidability is a concept relative to a given formali-

zation of a mathematical theory, and consequently, the fact that some sentence 

is undecidable in a formal theory does not give any hint as to whether it is 

intuitively solvable (Placek, 2013, p. 47).

“Formal theory” is to be conceived as a theory suitable to be subject-

ed to mechanization owing to a programming interface. The notion of 

re la t i ve  solvability can be instructively illustrated through the sen-

sational story of the career of Fermat’s last theorem stated in 1637. It 

asserts the following. 

 F:  No three distinct positive integers x, y, z can satisfy the equation: 

xn + yn = zn, if n > 2.

This theorem was conjectured by Pierre de Fermat in the margin 

of a copy of Diophantus’ Arithmetica; he claimed he had a proof that 

was too large to fit in the margin (where Fermat used to record his 

comments). In fact, the finding of a demonstration proved so difficult 

that in the succeeding centuries, up to the year 1995 in which Andrew 

Wiles published the solution, great mathematical minds were not able 

to solve the problem, in spite of intense efforts. Now, when we are 

fully aware of the historical circumstances, some objective reasons for 

these failures can be explained.

Wiles’s proof resorts to algebraic geometry and number theory in 

their results and methods so sophisticated that they were not avail-

able either to Fermat himself or to the next generations of mathemati-

cians, up to the late 20th century. When one distinguishes the content 

of mathematics in the 17th and 20th centuries, it becomes evident that 

solvability must be relative to a certain state of this science. Fermat’s 

problem was insolvable with respect to the mathematics of that former 

period, and solvable with respect to the latter. This is true in a most 

general sense of “solvability”, covering its intuitive and its formal, or 

algorithmic, varieties.
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When stating the Entscheidungsproblem (see 2.1), Hilbert thought of an algo-

rithmic solvability. To wit, the kind realized in a formalized proof liable to 

be mechanically (automatically) checked or mechanically produced. This in-

terpretation of solvability is confirmed in part B of the decision problem, 

where Hilbert assigns the attribute of so-interpreted solvability only to “those 

theories whose statements are capable of being logically derived from finitely 

many axioms”, hence those which are axiomatized and formalized; “logical 

derivability” in the sense of logic developed by Hilbert, amounts to formali-

zation of proofs.

These ascertainments lead to the question: what kind of solvabil-

ity characterizes Wiles’s solution of Fermat’s problem? Certainly it is 

relative to the state of mathematics in the nineties of the 20th century. 

Previously the problem was not likely to be solved, even by the most 

gifted mathematicians, for the lack of relevant concepts and theorems. 

Has the solution nowadays obtained any chance to be classified as al-

gorithmic? To answer this question, one should realize the size of 

Wiles’s (1995) proof: much more than 100 pages.11

There would be two possible ways of getting an answer as to 

the chance of algorithmic solvability: by the use of a checker or of 

a prover. Either would require obtaining unimaginably sophisticated 

software, the next step after giving the proof in question a formal-

ized structure. This would require a vast library, in which all math-

ematical theories relevant to the proof would be found in a formal-

ized form.12 

11 To gain a more professional knowledge about Wiles’s result, the Reader 
is advised to consult the following Internet sources. 1) “The proof of Fermat’s 
Last Theorem” – a fully professional textbook by prof. Nigel Boston (Depart-
ment of Mathematics University of Wisconsin – Madison); 2) “Wiles’s proof of 
Fermat’s Last Theorem” – a much more popular and much shorter article in 
Wikipedia.

12 An example of such a device is Mizar Mathematical Library – MML – fruit-
fully explored by mathematicians in various academic communities. This Library 
contained in 2017 almost 6000 articles, that is, formalized proofs concerning 36 
mathematical theories, submitted by almost 300 authors from 18 countries. The 
Library is described in much detail in Bancerek et al. (2018).
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5. FROM CONCEPTUAL INSIGHTS TO FORMAL PROOFS. 
TURING’S O-MACHINES AND GÖDEL’S IDEA 

OF THE INEXHAUSTIBILITY OF MATHEMATICS

5.1. Insights, formalized proofs, algorithms, and mechanized 
proofs. Their mutual relations

The results of Gödel and Turing are complementary to each other 

with respect to the issue: how do creative intuitions give rise to mech-

anized formal proofs? Turing (1939) proposed a schema of an ordered 

sequence of ever stronger problem-solving machines, where each 

increase of algorithmic efficiency is due to a non-mechanical factor – 

called by him an “oracle”. Any “ordinary” Turing machine equipped 

with Oracle is called an O-machine.
Commentators on this conception understand the activity of oracles 

as acts of mathematical intuition. Or, maybe, it should be rather said 

“philosophical intuitions concerning mathematical objects”.

Gödel emphasises the role of philosophical intuition in mathemat-

ics, when claiming that the discovery of the incompleteness of number 

theory was due to his Platonic vision of objectivity and inexhaustibility 

(infiniteness of the domain) of mathematics.

Turing gives us a formal schema of ever stronger machines ordered 

in an infinite sequence, and does not pretend to state whether the 

human mind’s cognitive abilities also allow proceeding in infinity; or 

maybe, at some point they would be too weak to attack the next, still  

more complex, problem.

Gödel is more optimistic in his hope that the frontiers of such 

a process might be pushed further and further by humans, also 

in difficult philosophical issues. He believed that many so-called 

philosophical problems are, in fact, scientific problems, only not yet 

examined by scientists.

He even tried to exemplify this claim, sketching a formal proof of 

Anselm’s ontological argument for God’s existence, so giving it a sci-

entific form. After Gödel’s death, this proof turned out capable of 

obtaining ever more precise form, owing to Dana Scott and other 

eminent logicians, up to the phase in which it has become possible to 

be processed by computer.

In that final phase, the project required mastering such sophis-

ticated logical and computational measures as higher-order modal 
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logics, and a combination of most efficient provers (Benzmüller, 

2013, 2015). There is still another achievement in automating the 

ontological proof. It consists in controlling the correctness of the 

human handmade formalization, by using a program of the type 

checker, called also proof assistant. Such an approach was successfully 

adopted within the framework of analytic tableaux by Melvin Fitting 

(2002).13

Thus, a step has been taken towards realizing Gödel’s idea, central 

to his optimistic rationalism, that is, his belief that people are able 

to perceive concepts more and more clearly, not only in mathemat-

ics but also in fundamental philosophy. For instance, the notion of 

most Perfect Being, conceived by Anselm in his ontological argument 

was becoming clearer and clearer in the successive reflections by Des-

cartes, Leibniz, and Kant, up to Gödel, who was able to give it a strict 

logical form in an advanced logic.

Thus, it has been shown, at least in one question, that even in philos-

ophy there can exist a way from insight to proof, not only formalized, 

but even computational. “Computational” means the highest degree 

of exactness and clarity, since every flaw will be detected by machine.

It ought to be noticed that it may also work the other way around. 

Not only from creative insights to formalized proof, but also from such 

proofs to new insights. Those, again, may push the frontiers forth, up 

to the next level of mechanization.

Benzmüller and Paleo (2013) remark that the exorbitant require-

ments imposed by automated procedures of problem-solving force the 

use of unusual logical means, e.g., some debatable systems of modal 

logic; otherwise the proof would not end with the conclusion we wish 

to get. This obliges us to reconsider the content of intuitions which 

motivate the logical system we use. Such a reflection may lead either 

to revising or to deepening these intuitions.

What Gödel and his followers did, formalizing the ontological 

proof, belongs to the discipline called formal ontology. What some of 

his followers did, those who devised provers or proof-assistants, can 

be called computational ontology. Such a discipline is being born before 

13 It would be impossible to list all relevant logical publication on formalizing 
ontological argument. A representative selection (ca. 40 items) is found in the 
Wikipedia entry “Gödel’s ontological proof ”.
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our eyes. This will, hopefully, open new perspectives on the issue of 

problem-solving with the united forced of creative insights and me-

chanical routines.

5.2. Oracles as non-mechanical devices to aid machines in solving 
problems which otherwise would remain unsolvable

There is a deep interconnection between what we call “computa-

tion” and “deduction”. Each deductive step in a formalized system, 

that is, each move made by a problem-solving machine, is a kind of 

computation. In the case of deduction, this means computing the value 

of the consequence function. Hence, the question arises: is it possible 

to supplement a machine with uncomputable deductive steps? Such 

uncomputable steps in reasoning would be what we call “insights” or 

“acts of intuition”.

Considering this question, Turing introduced the definition of 

an “oracle” which can supply, on demand, the answer to the halting 

problem for every Turing machine. Turing seems to have given this 

concept an interpretation in terms of a mathematician’s “intuition” in 

theorem-proving. In fact, M. H. Newman in a biographical memoir 

on Turing identified the uncomputable “oracle” with intuition. This 

seems to go too far, as the “oracle” is capable of doing more than 

any human being. Nevertheless, Newman had a unique status as 

Turing’s collaborator at this period and must have reflected the tenor 

of Turing’s considerations. In any case, Turing in his definition of an 

oracle makes it clear that it enables one to see the truth of a formally 

unprovable Gödel statement.

The mentioned definition is contained in the passage opening 

Turing’s article (1939). It runs as follows:14

The well known theorem of Gödel shows that every system of logic is in a cer-

tain sense incomplete, but at the same time it indicates means whereby from 

a system L of logic a more complete system L’ may be obtained. By repeating 

the process we get a sequence L, L
1
 = L’, L

2
 = L’

1
, L

3
 = L’

2
,... of logics each more 

complete than the preceding.

14 Here it is quoted from the text of Turing’s (1938) Ph.D. dissertation (1938), 
published in 1939. See URL: http://www.dcc.fc.up.pt/~acm/turing-phd.pdf.
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To make this idea as accessible as would be needed by one for 

whom it would be unexpected, I avail myself of the notion of essential 
extension, opposite to what is known in logic as inessential extension. 

The latter is defined by Tarski, Mostowski, and Robinson (1968, p. 11) 

by two conditions concerning a relation between formal theories. The 

one relevant to the present issue, is the following: “An extension T
2
 of 

T
1
 is called inessential, if every valid sentence of T

2
 is derivable in T

2
 

from a set of valid sentences of T
1
. [...] If T

1
 is axiomatic, then an ines-

sential extension of T
1
 is obtained by adding some new individual con-

stants, but without adding any new non-logical axioms.”

When understanding “essential” as “not inessential”, we derive 

from the above text the following definition concerning axiomatic 

theories (just such ones as are considered in the context of mechanical 

problem-solving issues).

Axioms of a theory, besides their role of being first premises in 

proving theorems, perform the role of meaning postulates to define 

the content of concepts which occur in them, e.g. the concepts of zero 

and sequence in the axioms of arithmetic (see Definition 5.3 in Mar-

ciszewski [1981]). Note that in the process of creating a theory, such 

concepts are prior to axioms; only owing to the idea of zero conceived 

once upon a time, did it become possible for Peano to state his axioms. 

Such a process that leads to creating new axioms is worthy of being 

named creative conceptualization (cp. 0.1).

If new logical axioms are added to the theory T
1
, thus forming the 

theory T
2
, then the latter is an essential extension of the former. Thus, 

all problems solvable in T
1
 are also solvable in T

2
, but not the other 

way round.

This terminological acquisition makes it easy to give a concise in-

terpretation of Turing’s passage in the above textbox. To wit, that 

a system L’ is closer to being complete than a system L, simply means 

that L’ is an essential extension of L. The phrase “more complete” is to 

recall that e.g. the second-order arithmetic is closer to being complete 

than the first-order arithmetic, while the fully complete one is like the 

inaccessible limit of a sequence (Gödel, 1931, 1936).

Now it is easy to explain the role of an oracle. It is a means to 

advise such an essential extension of a theory, which is needed to solve 

the problem in question. As to the nature of the oracle, Turing does 

not go any further than saying that it cannot be a machine. With the 
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help of the oracle we could form a new kind of machine, called an 

O-machine, having as one of its fundamental processes that of solving 

number theoretic problems unsolvable by ordinary Turing machines 

(Turing, 1938, p. 13).

Where do such insights come from? That is the question. Anyway, 

to be or not to be of scientific progress depends on the situations in 

which an oracle, that is, an enlightening insight, causes that a problem 

hitherto unsolvable, becomes solvable in a new and deeper perspec-

tive. From such insights are born also problem-solving machines, and 

those, in turn, assist us in getting new insights.

To incite a critical debate on the issue of intuition, I append a classi-

cal statement of mechanism due to Ludwig Wittgenstein as the author 

of Tractatus Logico-Philosophicus. In this way, those who oppose mental-

ism from the angle of mechanism win an opportunity to exactly define 

their mechanistic stance. Is it akin to that of Wittgenstein, or rather 

distanced from the philosophy of his Tractatus? 

6. WITTGENSTEIN’S SEMANTICS AND ONTOLOGY: 
MAXIMS ON LANGUAGE AND REALITY

6.1 Limits of my language mean the limits of my world

This means that all I know is what I have words for. Hence, what 

I cannot speak about, I must pass over in silence. It is a saying char-

acteristic of Wittgenstein’s semantical landscape. How famous it has 

become is witnessed by the dozens of its occurrences quoted in the 

German original, and almost 300 000 000 (!) in English translations 

(according to Google). In the original the maxim reads as follows: 

 5.6. Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.

It is a view drastically inconsistent with whatever we know about 

language, mind and reality. We know that each mute animal has its 

own world consisting of what it perceives in the environment. We 

know that a very small boy acquires a native language in the process 

of perceiving some things, e.g., a black cat, and asking a parent: what 

is it? After listening to an answer, the child acquires the expression 

“black cat” which did not exist in his vocabulary before asking about 

the name. We also know that a discoverer of a new object or phenom-
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enon, hitherto not known to anybody, proposes a name for it after the 

discovery, not before.

It is hard to believe that a great thinker could have thought some-

thing as counter-evident as the maxim in question. When looking for 

a broader context to explain the riddle, we find the following:

 6.5. For an answer which cannot be expressed, the question too 

cannot be expressed. The riddle does not exist. If a question can 

be put at all, then it can also be answered.15

The riddle does not exist? Just a moment before, I felt it a riddle 

that in Tractatus, besides attractive and convincing ideas, sometimes 

appear such counterfactual views as item 5.6. Might the same author 

display so little sensitivity to such counterfactual evidence? 

The answer may come by scrutinizing the words “can” and “cannot”. 

There is impossibility, so to say, accidental, and another one – princi-

pal; the former removable after taking some steps, the latter insuper-

able. My riddle concerning Wittgenstein’s insensitivity to some coun-

terexamples is, I hope, just accidental.

As for the principal impossibility of answering, the paradigmatic 

cases were found, according to Wittgenstein, like the Vienna Circle, 

in metaphysics. Metaphysical issues were called by them Scheinprob-
leme, that is pseudo problems, having no chance to be solved by serious 

research. Such “riddles”, they claimed, could not appear either in 

science or in scientific philosophy.

Suppose I am a neopositivist in the Wittgensteinian or the Vienna 

Circle style. Then in my language no answers to a pseudoproblem can 

be given because in a rigid language (the only I can accept) its rules 

do not admit concepts which are metaphysical, such as those of God, 

souls, universals, and even numbers, etc. – in accordance with item 

6.5. Hence such notions do not belong to my language, being beyond 

the limits of my scientifically admissible world – according to maxim 

5.6. Thus, that renowned maxim, freed from counterexamples ap-

pearing in ordinary language, refers to an ideal scientific language 

created according to that neopositivistic design.

15 These claims are worth quoting in the original wording too: “Zu einer Ant-
wort, die man nicht aussprechen kann, kann man auch die Frage nicht aussprech-
en. Das Rätsel gibt es nicht. Wenn sich eine Frage überhaupt stellen läst, so kann 
sie auch beantworten warden.”
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In the twenties of the past century, such a stance belonged to the 

mainstream of European philosophy. It embraced, as the fundamental 

principle, the belief in the decidability of logic and mathematics, that 

is, the mechanical (i.e., algorithmic) solvability of any problem arising in 

these and related disciplines. This conviction was undermined only 

in the thirties with the results of Gödel (1931), Turing (1936), and 

Church (1936).

Its clear-cut formulation by Wittgenstein is found in some passages 

which (in slightly differing wording) appear at several places in Trac-
tatus.

Our fundamental principle is that every question which can be decided at all 

by logic can be decided off-hand. [...] It is possible [...] to give at the outset 

a description of all “true” logical propositions. Hence there have n e v e r  be 

surprises in logic. [...] Proof in logic is only a mechanical expedient to facilitate 

the recognition of tautology.16

This declaration sheds an additional light on the connection 

between limits of the world and those of our language. It is assumed 

that a right language should be based on the universal schema of pred-

icate logic in which the whole mathematics, and related sciences, can 

be adequately expressed. As for logic (we read in the quoted passage) 

each problem is solvable in it with a mechanical expedient. The same is 

the case for mathematics because of the fact that the whole of math-

ematics is expressible in the language of logic. Solvability “off-hand” 

does not necessarily mean a quick solution, but that attainable in 

a finite number of steps (as said in the definition of algorithm), while 

“mechanical” means that no creative insight is needed.

Moreover, it is in order to note, according to the neopositivistic 

project of unified science that: (i) all sciences should be mathematized 

(ii) arguments in empirical sciences also will have mechanical (algo-

rithmic) form, owing to the special logic of induction planned for the 

use of empirical sciences. In fact, so far this plan has not been realized, 

and even, as argued by Karl Popper, has no chance to succeed (1959).

Nevertheless, were this great project to succeed, Wittgenstein 

would be right in his claim: “for an answer which cannot be expressed, 

16 See in Tractatus: 5.551; see also 6.125, 6.1251, 6.1262; this item is interest-
ingly pointed by Kneale (1962, p. 729); “never” italicized by Wittgenstein, “me-
chanical” underlined by W. M.
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the question too cannot be expressed” since (in the paradigm of neo-

positivism) the only right way of expression in sciences is in the algo-

rithmized language of logic. Solely in terms of such a language it is 

possible to solve (algorithmically) any scientific problem. Hence, each 

problem is bound to be stated in the same terms in which one states 

its solution. In this sense, the solution can be expressed then and only 

then when the answer can be expressed.

This is the cornerstone of Wittgenstein’s philosophy of language, 

mind and reality, as well as his philosophy of science. This foundation 

has been undermined at the most sensitive point, the belief in the de-

cidability of logic and mathematics. This is the story told in the next 

section. 

6.2. Wittgensteinian maxims in the context of logical atomism and 
of finitism

The term logical atomism is due to Bertrand Russell. However, it 

can be safely used as the name of Wittgenstein’s doctrine too. He and 

Russell agreed that in the main features their philosophical views were 

concordant. This is why Russell so heartily welcomed Wittgenstein’s 

Tractatus and preceded its edition (Wittgenstein, 1922) with an exten-

sive and sympathetic introduction.

Logical atomism holds that the world consists of ultimate logical 

facts, or atoms, which cannot be broken down any further. It is often 

referred to as “Picture theory” for the tenet that the world is faithfully 

pictured by our language with the exactness 1:1 (one-to-one relation-

ship). A map cannot consist of an infinite number of elements, hence 

the mapped world has to be a finite reality.

Let us consider implications of that approach for the issue of prob-

lem-solving. If one has such an ideal site map in which every detail of 

the site is mapped, then every question of how to get around in the 

terrain can be answered with the help of the map alone. Having been 

acquainted with the signs on the map, we are directly related to the 

corresponding objects in the terrain in question.

According to logical atomism, the right scientific language, de-

scribing a set of empirical facts connected by logical relations, supplies 

us with such an ideal map of reality. Thus, on the basis of the trust-

worthy mapping of the world by a properly constructed language, any 
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problems concerning the world are solvable just with resort to the logical 
analysis of language. Since the only properly constructed language is that 

of classical propositional logic and predicate logic. This is why Russell’s 

and Wittgenstein’s atomism is honoured with the adjective “logical”.

The above characterization of logical atomism, entailing the finite-

ness of the world, as well as the full cognitive availability of empiri-

cal facts and logical laws, leads to the conclusion that every scientific 

problem can be solved in a finite number of steps on the basis of the 

hitherto gained knowledge.

What is true about the above assertions is the fact that each of them 

is satisfied when it comes to the language of the propositional logic 

and its semantics. It is a language so closed that no new concept could 

enlarge the resources of its logical constants, beyond the combina-

torially obtained number of twenty symbols. Thus, the limits of the 

language determine the limits of a conceptual apparatus concerning 

the references of logical constants which form the totality of the prop-

ositional domain (“world”).

As for the item 6.5, the first and the third sentence amount to 

saying that if a question can be expressed, the answer can be expressed 

too. This is perfectly right about the language of propositional logic. 

Wittgenstein was convinced that the same has to be right about the 

language of whole logic, including the predicate calculus. However, 

this conviction has been refuted by Turing’s and Church’s sophisticat-

ed proofs of undecidability of that more advanced part of logic.

There is no chance to present here these highly technical ar-

guments, but we can take advantage of a rough exemplification. 

Consider the following formula CF whose validity would be tested 

according to relevant rules of eliminating logical constants; to wit, 

rules belonging to the system of analytic tableaux. 

CF:  ∀x∃y(y > x) ⇒ ∃y∀x(y > x) (CF stands for curious formula)

The structure of this formula causes that in the course of checking 

whether its denial (non-CF) does not lead to contradiction, our rules 

generate here the necessity of constantly repeated returns to the 

starting point. This process is carried out according to an invariably 

the same, perceived intuitively, principle of generating loops. Thus, 

after observing a number of steadily recurring loops we become 
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certain of their inevitability which means that the process will never 

come to a halt. Thus, we solve in an intuitive way some case of the 

halting problem that in no case is solvable by Turing machine.

Thus, it is impossible to prove that non-CF leads to contradiction, 

i.e. to prove that CF is a tautology, that is, a logical truth. Shorter: the 

formula CF is unprovable.

Let’s now take into account that, as Gödel (1930) has shown, the 

first-order predicate logic is complete. This means that whenever 

a formula is logically true, then it is provable. Hence, if it is not 

provable (as is CF), then it is no logical truth. So we have come to solve 

in an intuitive way a problem that is not mechanically solvable in the 

formalized language of logic.

Hence, contrary to Wittgenstein’s stance, we come to the paradox-

ical conclusion that there are riddles which cannot be solved mechan-

ically in an algorithmic language, but can be solved by an intellectual 

insight expressible in ordinary language. Were this point challenged 

by a defender of mechanism, such a rejoinder would be welcome as an 

encouragement to futher scrutiny.
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